线性代数 第六章第二节 二次型化为标准型的三种方法
举例说明将二次型化成标准型的方法

举例说明将二次型化成标准型的方法1. 使用平方配方法将二次型化简成标准型。
对于二次型x^2 - 2xy + 3y^2,可以通过将其分解为(x - y)^2 + 4y^2,得到标准型。
2. 使用线性代数的变量代换方法将二次型化简成标准型。
对于二次型x^2 - 2xy + 3y^2,可以令u = x - y和v = y,然后将原二次型转化为标准型u^2 + 2v^2。
3. 使用正交变换将二次型化简成标准型。
正交变换可以通过特征值分解或奇异值分解来实现。
对于二次型x^2 - 2xy + 3y^2,可以进行正交变换,得到标准型x'^2 + 2y'^2。
4. 使用特征值分解将二次型化简成标准型。
特征值分解可以将二次型的矩阵表示分解为特征向量和特征值的乘积。
通过对角化矩阵,可以将二次型转化为标准型。
5. 使用奇异值分解将二次型化简成标准型。
奇异值分解可以将二次型的矩阵表示分解为奇异向量和奇异值的乘积。
通过对角化矩阵,可以将二次型转化为标准型。
6. 使用正交变换将二次型化简成标准型的等价二次型。
正交变换不仅可以将二次型转化为标准型,还可以将其转化为等价二次型,即具有相同特征值但不同特征向量的二次型。
7. 使用特征值分解将二次型化简成标准型的等价二次型。
特征值分解可以将二次型的矩阵表示分解为特征向量和特征值的乘积。
通过对角化矩阵,可以将二次型转化为等价二次型。
8. 使用奇异值分解将二次型化简成标准型的等价二次型。
奇异值分解可以将二次型的矩阵表示分解为奇异向量和奇异值的乘积。
通过对角化矩阵,可以将二次型转化为等价二次型。
9. 使用主轴变换将二次型化简成标准型。
主轴变换是一种可以将二次型的矩阵表示转化为对角矩阵的变换。
10. 使用化简平方矩阵的方法将二次型化简成标准型。
化简平方矩阵是一种通过行和列的线性组合得到的矩阵,可以将二次型的矩阵表示简化为对角矩阵。
11. 使用特征值问题的解法将二次型化简成标准型。
§6.2 二次型化为标准型的三种方法

定理 对任意对称阵A,存在可逆阵C使得CTAC 为对角阵. 即任何对称矩阵合同于一个对角阵.
上述定理的证明实绩上给出了一种化二次 型为标准型的方法:配方法.
拉格朗日配方法的步骤
1. 若二次型含有 xi 的平方项,则先把含有 xi 的乘积项集中,然后配方,再对其余的变量同 样进行,直到都配成平方项为止,经过非退化线 性变换,就得到标准形 .
2a23x2x3 ... 2a2nx2xn ...... 2an1,n xn1xn
令
x1 y1
x
2 x3
y1 y 2 y3
...
xn y n
它是非退化线性的替换,代入后
f (x1, x2,..., xn ) 2a12y1(y1 y2) 2a13y1y3 ... 2a1ny1yn
1 1 01 0 1
C
C1C2
1
1
0
0
1
2
0 0 1 0 0 1
1 1 3 1 1 1.
0 0 1
C 2 0.
正交变换法
由实对称矩阵的理论,对任意n阶实对称阵
A, 存在正交矩阵Q使得
step3.将特征向量正交化
取 1 1,2 2, 3
得正交向量组
3
( 3 ( 2
,2 ,2
) )
2
,
1 (1 2,1,1)T , 2 (2,1,0)T ,
3 (2 5,4 5,1)T .
step4.将正交向量组单位化,得正交矩阵P
[全]线性代数之化二次型为标准形的方法总结[下载全]
![[全]线性代数之化二次型为标准形的方法总结[下载全]](https://img.taocdn.com/s3/m/5d63934c770bf78a652954fa.png)
线性代数之化二次型为标准形的方法总结
线性代数考研中的两道大题是线性方程组,二次型和相似轮流来的。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。
二次型的标准型:
二次型的标准型
化二次型为标准型:
化二次型为标准型
用正交变换化二次型为标准型的解题步骤为:(1)把二次型表示成矩阵形式;
(2)求矩阵A的特征值及对应的特征向量;(3)对重根对应的特征向量作施密特正交化;(4)全体特征向量单位化;
(5)将正交单位特征向量合并成正交矩阵;(6)令x=Qy。
题型一:化二次型为标准型
例1:用正交变换把如下二次型化为标准型:
解题思路:按照上面用正交变换化二次型为标准型的方法来求解。
解:
总结:用正交变换把二次型化为标准型的题型是考研必考的大题,所以同学们一定要熟练掌握。
化二次型为标准型的方法

化二次型为标准型的方法一、绪论高等代数是数学专业的一门重要基础课。
该课程以线性空间为背景,以线性变换为方法,以矩阵为工具,着重研究线性代数的问题。
二次型式多元二次函数,其内容本应属于函数讨论的范围,然而二次型用矩阵表示之后,用矩阵方法讨论函数问题使得二次型的问题变得更加简洁明确,二次型的内容也更加丰富多彩。
本文的中心问题是如何化二次型为标准形,也就是用矩阵方法把对称矩阵合同与对角矩阵。
二次型是高等代数的重要内容之一,二次型的基本问题是要寻找一个线性替换把它变成平方项,即二次型的标准型。
二次型的理论来源于解析几何中二次曲线、二次曲面的化简问题,其理论也在网络、分析、热力学等问题中有广泛的应用。
将二次型化为标准型往往是困惑学生的一大难点问题,而且它在物理学、工程学、经济学等领域有非常重要的应用,因此探索将实二次型化为标准型的简单方法有重要的理论与应用价值。
我们知道,任一二次型和某一对称矩阵是相互唯一确定,而任一实对称矩阵都可以化成一对角矩阵,相应的任一实二次型都可以化为标准型。
在高等代数课本中介绍了将实二次型化为标准型的两种方法:配方法和正交变换法;此外,由于任意矩阵可以利用初等变换化为对角矩阵,因此也可用初等变换法将二次型化为标准型。
通过典型例题,更能体会在处理二次型问题时的多样性和灵活性,我们应熟练掌握各种方法。
以下就是几种方法的简单介绍,并且又提出了一种新的方法:雅可比方法。
我们在解决二次型问题时可对它们灵活应用。
二、 二次型及其矩阵表示在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 22ax 2bxy cy f ++=. (1) 为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方向转轴) ''''x x cos y sin y x sin y cos θθθθ⎧=-⎪⎨=+⎪⎩ (2) 把方程(1)化成标准方程。
二次型化为标准型.

y1 1 0 1 z1 即 y 2 0 1 2 z 2 y 0 0 1 z 3 3
得
2 2 2 f 2 z1 2z2 6z3 .
Page 15
2 2 2 f 1 y1 2 y2 n yn ,
其中1 , 2 ,, n是 f 的矩阵A aij 的特征值 .
Page 3
用正交变换化二次型为标准形的具体步骤
1. 将二次型表成矩阵形式 f xT Ax, 求出A;
2. 求出A的所有特征值 1 , 2 ,, n ; 3. 求出对应于特征值的特 征向量1 , 2 ,, n ;
Page 12
2 2 2 f x1 2 x2 5 x3 2 x1 x2 2 x1 x3 6 x2 x3
2 2 y1 y2 .
所用变换矩阵为
1 1 1 C 0 1 2 , 0 0 1
C
1 0.
Page 13
例3 化二次型
4. 将特征向量 1 , 2 ,, n正交化, 单位化, 得
1 , 2 ,, n , 记C 1 , 2 ,, n ;
2 2 f 1 y1 n yn .
5. 作正交变换x Cy , 则得f的标准形
Page 4
例1 将二次型
2 2 2 f 17 x1 14 x2 14 x3 4 x1 x2 4 x1 x3 8 x2 x3
且有
2 2 2 f 9 y1 18 y2 18 y3 .
Page 8
二、拉格朗日配方法的具体步骤
用正交变换化二次型为标准形,其特点是保 持几何形状不变.
二次型化为标准规定型的三种方法

2x1x2
2x1x 3
2x
2 2
4x2x3
x
2 3
化为标准形
解:配方化简
x12
2x1x2
2x1x3
2x
2 2
4x2x3
x
2 3
x12 2x1(x2 x3) (x2 x3)2 (x2 x3)2 2x22 4x2x3 x32
x1 x2 x3 2 x22 2x2x3
x1 x2 x3 2 x2 x3 2 x32
再配方,得
f 2 y1 y3 2 2 y2 2 y3 2 6 y32 .
令
z1 z2
y1 y2
y3 2 y3
z3 y3
y1 y2
z1 z2
z3 2z3
,
y3 z3
y
1
1
即
y
2
y 3
0
0
0 1 0
z 1 z 2 z 1
1 ,Y 2 3
实二次型f(x1, x2, , xn )=XT AX (AT A), 由于A为实对称,则存在正交矩阵Q使得
Q 1AQ QT AQ diag(1, 2, , n ),
于是线性替换X=QY(称为正交变换)化f为
标准型1y12
2y
2 2
n
y
2 n
.
定理 对于任意n元实二次型f(x1, x2, , xn ) X T AX (AT A),都存在正交变换X=QY化f为
令
y1
y2
x1
x2 x2
x x3
3
y3 x3
即
x1 x2
y1 y2
y2 y3
x3 y3
1 1 0 C 0 1 1 1 0
二次型化为标准型的方法

二次型化为标准型的方法
将二次型化为标准型的方法通常可以通过以下步骤来实现:
针对对称矩阵的二次型:首先,对称矩阵的二次型可以通过合同变换化为对角矩阵,然后再将对角矩阵中的非零元素化为标准型。
针对非对称矩阵的二次型:对于非对称矩阵的二次型,可以通过合同变换化为对称矩阵,然后按照对称矩阵的方法进行处理。
步骤概述:a. 对称矩阵:通过正交变换(合同变换)将二次型化为对角型,再将对角元化为标准型。
b. 非对称矩阵:通过合同变换将二次型化为对称型,然后按照对称矩阵的方法进行处理。
以上是将二次型化为标准型的一般方法,具体的操作步骤可能会根据不同的具体情况而有所不同。
线性代数 第六章第二节 二次型化为标准型的三种方法

零多项式,故 可化为标准型.
含有平方项,这归结为情形 1,
推论1 任意n阶对称矩阵A都与对角形矩阵合同. 证明 由定理4,存在非退化线性变换X=CY,使得
右端标准型的矩阵为
新旧变量二次型的矩阵A与B满足CTAC=B,即A与对角形矩阵 B合同.
3 初等变换法 根据实对称矩阵及合同变换的特征得到.
只作列 变换
即:
求逆 矩阵
记Y=DZ
所用变换矩阵为
定理4 对于任一n元二次型 都存在非退化的线性变换 X=CY ,使之成为标准型(平方和) 证明 对变量个数进行归纳。 平方项的系数不全为零,不妨设
是n-1元二次型或零多项式。由归纳假设,存在非退化线性变换
则非退化线性变换为
情形2
不含平方项,必有
是非退化的线性变换,使得
用正交变换化二次型为标准形的具体步骤
与上一 章化相 似标准 型的做 法基本 一致, 也可以 作组内 正交化
用正交变换将二次型化为标准形的方法 例1 求一个正交变换x=Ty,把二次型
化为标准形,并指出方程f =1表示何种二 次曲面.
解 写出 f 的系数矩阵A,求出A的特征 值和特征向量
由
,
得
当
时,解方程组
得基础解系
当
时,解方程组
得基础解系
将特征向量正交化、单位化
再对α1,β2, β3单位化,得
写出正交变换的矩阵
由
构成正交矩阵
则二次型经正交变换x=Ty化为标准形
显然,f =1表示的二次曲面为单叶双曲面. 注意:化f为标准形的正交变换不唯一.
例2 解
拉格朗日配方法的具体步骤
C为所 求
思考
1、化二次型为标准形的正交变换是否 唯一?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 由于所给二次型中无平方项,所以
记X=BY
得 再把所有含y1的项集中,配平方;同样地 把含有y2的项集中,配平方,就得到
即:
求逆 矩阵
记Y=DZ
所用变换矩阵为
定理4 对于任一n元二次型
都存在非退化的线性变换X=CY,使之成为标准型(平方和)
证明பைடு நூலகம்
对变量个数进行归纳。
平方项的系数不全为零,不妨设
思考题解答
1、正交变换不唯一;
2、标准形不计顺序的话是唯一的;
3、标准形的系数为其特征值,而平方 和的系数则不是特征值,可以任意变 动.
4、没有改变二次型的秩,事实上,二 次型的系数中正负项的个数也没有被 正交变换改变。
化二次型为含有平方项的二次型,然后再按1中方 法配方.
例3
解
含有平方项
去掉配方后多出来的项
所用变换矩阵为
例4 用配方法化二次型
为标准型,并求出所用的可逆线性变换。 解
令
(1)
则
(2)
(2)是可逆线性变换,使
2 2 9 2 f (x1, x2, x3) y1 + y2 - 4 y3
例5
化为标准形,并指出方程f =1表示何种二 次曲面.
解 写出 f 的系数矩阵A,求出A的特征 值和特征向量
由
得
,
当
时,解方程组
得基础解系 当 得基础解系 时,解方程组
将特征向量正交化、单位化
再对α1,β2, β3单位化,得
写出正交变换的矩阵 由 构成正交矩阵
则二次型经正交变换x=Ty化为标准形
是n-1元二次型或零多项式。由归纳假设,存在非退化线性变换
则非退化线性变换为
情形2
不含平方项,必有
是非退化的线性变换,使得
零多项式,故
可化为标准型. 推论1 证明
含有平方项,这归结为情形1,
任意n阶对称矩阵A都与对角形矩阵合同. 由定理4,存在非退化线性变换X=CY,使得
右端标准型的矩阵为
用可逆(或正交)变换化二次型为标准形
目标:
问题转化为:
对任意n元实二次型 f(x1,x2,…,xn)=XTAX( A 为 n 阶对称矩阵),则 必有正交矩阵 P ,使
定理 3
定义 若 P 为正交矩阵,则线性变换 y Px称为正交变换.
正交变换的特征是保持向量的长度不变.
在几何中将二次曲线或曲面的方程化为标准型方程时,如果
显然,f =1表示的二次曲面为单叶双曲面. 注意:化f为标准形的正交变换不唯一.
例2
解
拉格朗日配方法的具体步骤
用正交变换化二次型为标准形,其特点是保 持几何形状不变.
问题:有没有其它方法,也可以把二次型化为标 准形?
问题的回答是肯定的。下面介绍一种行之有 效的方法——拉格朗日配方法.
用正交变换能够化实二次型为标准型,这种方法是根据实
新旧变量二次型的矩阵A与B满足CTAC=B,即A与对角形矩阵 B合同.
3 初等变换法
根据实对称矩阵及合同变换的特征得到.
C为所 求 只作列 变换
思考
1、化二次型为标准形的正交变换是否 唯一? 2、二次型的标准形是否唯一? 3、二次型的平方和和标准形主要区别 是什么? 4、在实数域里考虑,正交变换法和配 平方法没有改变二次型的那些特征?
对称矩阵的性质,求出二次型 的特征值和规范正交的特征向量, 条件要求较强,当研究一般数域P上的二次型(包括实二次型)
的标准型时,可以用拉格朗日配方法,这种方法不用解矩阵特征
值问题,只需反复利用以下两个初等公式
就能将二次型化为平方和。下面首先举例说明,再给出理论证明。
拉格朗日配方法的步骤 1. 若二次型含有 的平方项,则先把含有 的乘积项集中,然后配方,再对其余的变量同 样进行,直到都配成平方项为止,经过非退化线 性变换,就得到标准形; 2. 若二次型中不含有平方项,但是 则先作可逆线性变换
要求保持图形的几何性质(如保持图形的形状不变),就要使用 正交变换等方法。 在统计等方面的应用中,也常常使用正交变换的方法处理二 次型,使变换保持尺度不变。
用正交变换化二次型为标准形的具体步骤
与上一 章化相 似标准 型的做 法基本 一致, 也可以 作组内 正交化
用正交变换将二次型化为标准形的方法 例1 求一个正交变换x=Ty,把二次型