四川大学线性代数课件第三章第二节 初等矩阵和逆矩阵求法

合集下载

线性代数:初等变换法求逆矩阵(finalff3)

线性代数:初等变换法求逆矩阵(finalff3)
线性代数
初等变换法求逆矩阵及 解矩阵方程
初等变换法求逆矩阵
线性代数
两个已知结论 1、n阶矩阵A可逆当且仅当A能够表示成若干初等 矩阵的乘积,即存在初等矩阵P1, P2, … , Pm使得
A= P1P2…Pm .
2、在矩阵A的左边乘以一个初等矩阵相当于对A进 行一次相应的初等行变换;
在A的右边乘以一个初等矩阵相当于对A进行一 次相应的初等列变换.
例 求矩阵X,使AX=B,其中
1 2 3
2 5
A
2
2
1
,
B
3
1
.
3 4 3
4 3
解 若A可逆,则X= A−1B.
1 2 3 2 5
(A
B)
2
2
1
3
1
3 4 3 4 3
3 2
X
2
3
.
1 3
1 0 0 3 2
0 0
1 0
0 1
2 1
3 3
小结
线性代数
1、初等变换求逆矩阵
(A E) 初等行变换 (E A−1 )

A
E
初等列变换
E
A1
2、初等变换求解矩阵方程
(1) A可逆,AX=B
X= A−1B
(A B) 初等行变换 (E A−1 B )
(2) A可逆, XA=C
X= CA−1
A 初等列变换 E
C
CA1
初等行变换法求逆矩阵
线性代数
若A可逆,则A−1可逆,因而A−1可以表示成若干初 等矩阵Q1, Q2, … , Qm 的乘积,即A−1= Q1Q2…Qm .
A可逆, A1 A E

线性代数3.2初等矩阵与求逆矩阵的初等变换法

线性代数3.2初等矩阵与求逆矩阵的初等变换法

1
1

1
1 A) 。 A
0
a2n
a n 2 a nn
0 0 1 0 0 0 1
【注】上面介绍的方法中,只能用行变换,不能用列变换。
16
例2 设
1 1 1 A 1 1 1 1 1 1
PP t t 1
1 P ( A , E ) ( E , A ) 1
1
15

初等行变换 ( A, E ) ( E, A1 )
即对矩阵 ( A, E ) 作初等行变换,当把
A 化为 E
时,
E 就化成了 A ( A
a11 a 21 a n1 a12 a 22 a1n
求 A 1 。 解
( A, E )
1 1 1 1 1 1 1 1 1 1 0 0 r r2 r1 +r3 0 1 0 0 0 1 1 1 1 0 2 2 0 2 0 0 0 1 1 0 1 0 1 1
所以
A 1

1 2 1 2 0
1 2 0 1 2
0 1 2 1 2
18
同样地,也可以利用矩阵的初等列变换方法求矩阵的
逆矩阵。这时,对
2n n
An 阶矩阵 E 进行初等列变换, n
1
当上半子块化为 En 时,A可逆,且下半子块就是 A 。即
后得到的初等矩阵;
(2)用任意常数 k 0 去乘某行(或列)。Ei (k ) 表示单位
矩阵 第i行(列)乘非零常数k后得到的初等矩阵;
2
(3)以数

线性代数3.2初等矩阵与求逆矩阵的初等变换法

线性代数3.2初等矩阵与求逆矩阵的初等变换法
上两式表明:A 经一系列初等行变换化为 E ,则 E
可经这同一系列初等行变换化为 A1。用分块矩阵形
式,两式可以合并为
Pt Pt1 L P1 ( A, E) (E, A1 )

( A, E) 初等行变换(E, A1)
即对矩阵 ( A, E) 作初等行变换,当把 A 化为 E 时,
E 就化成了 A1 ( A 1
初等矩阵。
1
O
Eij
0
0L M 1L
1 M 0
O
0 第i行 第j行
1
1
M
O
Ei
(k
)
0
M
0
1
M
O
0
Eij
(k
)
M
0 L M
0
k O
1 MO kL M 0L
0
0 第i行
1
1 MO 0
0 第i行 第j行
1
这样,初等矩阵共有三类: Eij , Ei (k ), Eij (k )。
1r3r2
0
1
1
3r2 r3
0
1
1
2r3 r1
1r3r2
0
1
0
0 3 2
0 0 1
0 0 1
0 0 1
E2 (1)E32 (1)E31 (2)E23 (3)E21 (2)E32 (1)E12 (2) AE13 E
A
E 1 12
(2)
E32
1
(1)
E 1 21
(2)
E 1 23
(3)
E 1 31
(2)
E 1 32
(1)
E2
1

《线性代数》课件-第3章 矩阵

《线性代数》课件-第3章 矩阵

§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。

线性代数-逆矩阵

线性代数-逆矩阵

=
6
2 0 0
0 4 0
0 1 0 −0 7 0
0 1 0
0 0 1
−1
=
6
1 0 0
0 3 0
0 −1
0 6
1 0 0−1 1 0 = 6 0 3 0 = 6 0 1 3
0 6 0 0 0 = 0 2 0.
0 0 6 0 0 1 6 0 0 1
1 0 0 0 0
0 2 0 0 0
证明 由A2 − A − 2E = 0,
A−1
得A(A − E ) = 2E ⇒ A A − E = E
2 ⇒ A A − E = 1 ⇒ A ≠ 0, 故A可逆.
2
∴ A−1 = 1 (A − E ).
2
又由A2 − A − 2E = 0
⇒ (A + 2E )(A − 3E ) + 4E = 0
1 5 − 11
123 1 2 3

A = 2 1 2= 0 −3 −4
133 0 1 0
12 3 = 0 − 3 − 4 = − 3 − 4 = 4≠ 0, 所以A可逆.
01 0 1 0
A11
=
1 3
2 = −3, 3
A12
=

2 1
2 = −4, 3
A13
=
2 1
1 = 5, 3
同理可求得 A21 = 3, A22 = 0, A23 = −1, A31 = 1, A32 = 4, A33 = −3.
1 1
−1 1
1 1 0X1
−1 1
1 4 0 = 0
2 −1
3 5
2 1 1 3 2 1 2 1 1

初等矩阵与逆矩阵的求法

初等矩阵与逆矩阵的求法

阵。于是存在优先多个初等矩阵P1 Pr,Q1 Qt
使得 P1 Pr AQ1 Qt =E,从而
A=( P1
Pr)-1E(Q1
Q
)-1
t
=Pr-1
P1-1 • Qt-1
Q1-1 .
推论1方阵A可逆旳充分必要条件是存在有 限个初等方阵 P1, P2 ,, Pl ,使A P1P2 Pl .
19
推论2 方阵A可逆旳充分必要条件是A可经过有限屡 次初等行变换化为单位阵E.
等 矩阵 P(i(k))
1
P(i(k))
1 k 1
第 i 行
1
6
(3)以数 k 0 乘某行(列)加到另一行(列)上去
以 k 乘 E 的第 j 行加到第 i 行上 (ri krj )
或以 k 乘 E 的第 i 列加到第 j 列上 (c j kci )
得到初等矩阵 P(i, j(k))
20
5、利用初等行变换求逆阵旳措施:
当 A 0时,由 A P1P2 Pl,有
Pl1Pl11P11 A E, 及 Pl1Pl11P11E A1,
Pl1Pl11 P11 A , E Pl1Pl11 P11 A , Pl1Pl11 P11E E , A1
即对 n 2n 矩阵 ( A , E) 施行初等行变换 ,
P(i, j)1 P(i, j)
P(i(k ))1 P(i( 1 )) k
P(i, j(k))1 P(i, j(k))
9
初等矩阵旳应用
定理1 设 A 是一种 m n 矩阵 , 对 A 施行一次初等行变换,相当于在 A 旳 左边乘以相应旳 m 阶初等矩阵;对 A 施行一次初等列变换 , 相当于在 A 旳 右边乘以相应旳 n 阶初等矩阵.

线性代数课件-逆矩阵与矩阵的初等变换

线性代数课件-逆矩阵与矩阵的初等变换
所以
0 1 A . 1 2
1
定理1 矩阵 A 可逆的充要条件是 A 0 ,且 1 1 A A, A
其中A为矩阵A的伴随矩阵.
证明 若 A 可逆,即有A1使AA 1 E .
故 A A1 E 1,
所以 A 0.
当 A 0时,
当 A 0时,
2a c 1, 2b d 0 , a 0, b 1,
又因为
a 0, b 1, c 1, d 2.
AB
BA
2 1 0 1 0 1 2 1 1 0 , 1 0 1 2 1 2 1 0 0 1
1 A 则矩阵 称为 A 的可逆矩阵或逆阵.
二、逆矩阵的概念和性质
定义
,使得
对于 n 阶矩阵 A ,如果有一个n 阶矩阵 B
AB BA E ,
1
则说矩阵A是可逆的,并把矩阵 B 称为 A 的逆矩阵.
A的逆矩阵记作 A .

1 1 1 2 1 2 , B , 设 A 1 1 1 2 1 2
对n阶单位矩阵E分别施行上述三种初等变换后,所 得之矩阵称为初等矩阵.相应的三种初等矩阵分别是
(1) 互换E的 i,j 两行(两列)所得之矩阵
(2) 用( 0)乘E的第i行(列)所得之矩阵
将E的j行(i列)的倍加到i行(j列)上去( i j)所得之矩阵 (3)
引理:对矩阵 A (aij )mn 施行某一初等行(列)变换,其结果等于对A左 (右)乘一个相应的m阶(n阶)初等矩阵。
例3
1 2 3 1 3 2 1 , C 2 0 , 设 A 2 2 1 , B 5 3 3 4 3 3 1

免费第3章课件 线性代数 矩阵的初等变换与线性方程组

免费第3章课件 线性代数 矩阵的初等变换与线性方程组
中的一个等价关系? Gauss消元法的思想又可表述为, 在与方程组增
广矩阵行相抵的矩阵中,找一个最简单的,然后求解 这个最简单的矩阵所对应的方程组.
以后我们把这个最简单的矩阵叫做(行)最简阶 梯形矩阵.
-9-
下面形状的矩阵称为(行)阶梯形矩阵 定义 …
1 1 2 0
0
2
1
2
0 0 0 1
0 0 0 0
O O
-15-
第三章
矩阵的初等变换与线性方程组的解
§3.1 矩阵的初等变换 §3.2 初等矩阵 §3.3 矩阵的秩 §3.4 线性方程组的解
§3.2 初等矩阵
矩阵初等变换前后两个矩阵之间的关系是 什么?
A B, 如何把它们用等号联系起来?
-17-
回顾 eiTA? Aje?
a11 A a21
a12 a22
a13 a23
r1r3
a31 a32 a33
a31 a32 a21 a22 a11 a12
a33 a23 B a13
B
e e
T 3 T 2
A
A
e e
T 3 T 2
A
0 0
0 1
1a11 0a21
a12 a22
a13 a23
e
T 1
A
e
T 1
1 0 0a31 a32 a33
把单位矩阵作同样变换得 到的矩阵放在A的左边!
4 1 4 2
4 1 4 2
这个矩阵所对应的方程组与原 方程组同解吗?逆变换是什么? 以后每一步都思考同样的问题.
-3-
1 1 2 1 2 1 2 4
r22r1 r34r1
1 0
1 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
另:利用初等行变换求逆矩阵的方法,还可用于求矩阵 A1B. A1( A B) (E A1B)
即 (A B)
初等行变换
2020/3/4
E A1B
25
例3:求矩阵 X ,使 AX B,其中
1 2 3
2 5
A 2 2 1, B 3 1.
3 4 3

0
1
0

0 0 1

2
1
2

0 0 1


1
2
2

0 1 0
1
12
c2 ( 110)

0
2


1
0
0 1 0 0.1 0.2 0.1
0
1
19 c1 c2 12 0
1
c3 c2 19
Ps L P2P1 A E, 等号两边右乘 A1,
(Ps L P2P1 )E A1
即, A, E 初等行变换 E,A1
又AA1 E , A Ps L P2P1 E,
E Ps L P2P1 A1,
2020/3/4
即,

相 当 于 在A的 左 边 乘 一 个 相 应 的m阶 初 等 矩 阵 ; 对A施 行 一 次 初 等 列 变 换 ,相 当 于 在A的 右 边 乘 一 个 相 应 的n阶 初 等 矩 阵 。
证明:
设A按行分块,对A施行倍加变换,将A的第j行 k倍加到第i行上,即
2020/3/4
14
A

1
2020/3/4
16
必要性: n 阶可逆矩阵
a11 a12 L
A

a21 M
a22 M
L O
an1 an2 L
a1n a2n
M ann
的行列式|A|0, 所以它的第一列元素不全为零. 不妨假设a110(如a11=0, 必存在ai10, 此时先把 第1行与第i行交换), 先将第一行乘1/a11, 再将变 换后的第一行乘(-ai1)加至第i行(i=2,3,...,n)得


1 1
2 0
3 c3 c1 3

1
0
0
1 2
0

c3 (1)
3

0
1
0

0
1
0

0 0 1
0 0 1
2 1 2
5 12 14

1
0
0

1 2 3

0
1
0

0 0 1
以数kC 0乘单位矩阵的第i行(ri k),得初等 矩阵EP (i(kC)).
1 P(i(c))
1 c 1






i




1
2020/3/4
11
(3) 以数 k 0 乘某行(列)加到另一行(列)上, 得初等倍加矩阵。
以 k 乘 E 的第 j 行加到第 i 行上 (ri krj ) 或以 k 乘 E 的第 i 列加到第 j 列上 (c j kci ),
2020/3/4
17
1 a12 L a1n
P1m L
P12
P11
A

0 M
a22 M
L O
a2 n

M
0 an1 L ann

1 0

A

B,
其中P11,P12,...,P1m是对A所作初等行变换所对应的 初等矩阵. 由于|A1|=|P1m...P12P11A|0, 故对B中 A1继续作如对A所作的初等变换, 直至把B化为主对


0
3
0.8
2


1.4
0
1.2
0 1 0 0.1 0.2 0.1
0
0
1

1.1
1.8 1.9
A-1
2020/3/4
24
注: 1. 求逆时,若用初等行变换必须坚持始 终,不能夹杂 任何列变换.(作列变换时也一样)
2. 若作初等行变换时,出现全行为0,则矩阵的行列式 等于0。结论:矩阵不可逆!
2020/3/4
2
用矩阵形式来表示此线性方程组:
a11

a21
M
a12 L a1n x1 b1
a22 L
a2n


x2



b2

M M M M M

am1
am 2
L
amn


xn


bm

令 A aij mn
由于三种变换都是可逆的,所以变换前的方程组与变 换后的方程组是同解的.故这三种变换是同解变换.
2020/3/4
4
因为在上述变换过程中,仅仅只对方程组的系数和常数 进行运算,未知量并未参与运算.
若记
a11 a12 L a1n b1
B

(A
b)


a21
a22 L
a2n
b2

M M M M M
4 3
解: 若 A 可逆,则 X A1B.
方法1:先求出 A1,再计算 A1B 。 方法2:直接求 A1B 。
( A B)初等行变换 (E A1B)

am1
am 2
L
amn
bm

则对方程组的变换完全可以转换为
对矩阵B(方程组的增广矩阵)的行的变换.
2020/3/4
5
即,求解线性方程组实质上是对增广矩阵
施行3种初等运算:
统称为矩阵的初
等行变换,对矩
阵而言同样可以
(1) 对调矩阵的两行。
作列变换
(2) 用非零常数k乘矩阵的某一行的所有元素。
同理可定义矩阵的初等列变换 (把“r”换成
“c”).
初等行、列变换统称初等变换。
2020/3/4
7
矩阵的等价
对矩阵A实行有限次初等变换得到矩阵B,则称矩
阵A与B等价,记作 A B.
等价矩阵具有自反性、对称性、传递性。 故是一种等价关系。即:
A A;
A BB A;
A B,BC AC
角元为1的上三角矩阵, 即
2020/3/4
18
1 a12 L

P2l L
P22 P21B


1L O

a1n
a2n


C.
M
1
再将C中第n,n-1,...,2行依次分别乘某些常数加到前 面的第n-1,n-2,...,1行, 就可使C化为单位矩阵, 即
P3k...P32P31C=I.
(3) 将矩阵的某一行所有元素乘以非零常数k后
加到另一行对应元素上。
2020/3/4
6
定义:下面三种变换称为矩阵的初等行变换:
1 对调两行(对调i, j两行,记作ri rj); 2 以数 k 0 乘以某一行的所有元素; 3 把某一行所有元素的k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上 记作ri krj).

M
i

M


j

M
m
r i kr j

i

1
M
k j
M
j
M
m

1
1


P(i, j(k))A
9
(1) 对调两行或两列,得初等对换矩阵。
对调 E 中第 i, j 两行,即(ri rj ),得初等方阵
1




1

0 1




i


1

P(i, j)





1


1 0
第 j 行

1



1
2020/3/4
10
(2) 以数 kC 0 乘某行或某列,得初等倍乘矩阵。
A E

初等列 变换
E A1

20
1 2 3
例1:

A 2
2
1 ,求 A1.
3 4 3
1 2 3 1 0 0
解:
A
E



2
2
1
0
1
0
3 4 3 0 0 1
r2 2r1 r3 3r1
1 0 0
2 2 2
3 5 6
1 2 3
0 1 0
0 0 1
r1r2 r3 r2
能否
写成
“=”?
2020/3/4
21
1 0 2 1 1 0
1 0 0 1 3 2
0 0
2 0
5 1
2 1
1 1

0 1
r1 2 r3 r2 5r3

k
的 逆 变 换 为 ri

1, k
则 EP (i(k ))1 EP (i( 1 )); k
变换 ri krj 的逆变换为ri (k )rj,
则 EP (ij(k))1 PE(ij(k)) .
相关文档
最新文档