线性代数---第三章 矩阵的运算 3.1 矩阵的运算

合集下载

数学矩阵的基本运算

数学矩阵的基本运算

数学矩阵的基本运算引言:在数学中,矩阵是一种非常重要的工具,它在多个学科和领域都有广泛的应用。

矩阵不仅可以表示线性方程组,还可以描述向量空间的变换。

矩阵的基本运算是我们学习矩阵的第一步,掌握了这些基本运算,我们才能在后续的学习中更好地应用矩阵解决问题。

本次教案将系统地介绍数学矩阵的基本运算,包括加法、减法、数乘和乘法,并结合具体的例子进行解释和演示。

第一节加法运算1.1 矩阵加法的定义矩阵加法是指将两个具有相同行数和列数的矩阵对应位置上的元素相加,得到一个新的矩阵。

例如,对于两个3行2列的矩阵A和B,它们的加法运算可以表示为:C=A+B。

C矩阵中的每个元素c(i,j)等于矩阵A中元素a(i,j)和矩阵B中元素b(i,j)的和。

1.2 矩阵加法的性质矩阵加法具有以下性质:- 结合律:(A+B)+C=A+(B+C),即矩阵加法满足结合律。

- 交换律:A+B=B+A,即矩阵加法满足交换律。

- 零矩阵:对于任意的矩阵A,都有A+O=A,其中O是全零矩阵。

1.3 矩阵加法的例子考虑以下两个矩阵:A = [1 2 34 5 6]B = [7 8 910 11 12]它们的加法运算为:C = A + B = [8 10 1214 16 18]解释:C矩阵中的第一个元素c(1,1)等于矩阵A中元素a(1,1)和矩阵B中元素b(1,1)的和,即1+7=8,以此类推。

第二节减法运算2.1 矩阵减法的定义矩阵减法是指将两个具有相同行数和列数的矩阵对应位置上的元素相减,得到一个新的矩阵。

例如,对于两个3行2列的矩阵A和B,它们的减法运算可以表示为:C=A-B。

C矩阵中的每个元素c(i,j)等于矩阵A中元素a(i,j)和矩阵B中元素b(i,j)的差。

2.2 矩阵减法的性质矩阵减法具有以下性质:- 结合律:(A-B)-C=A-(B-C),即矩阵减法满足结合律。

- 零矩阵:对于任意的矩阵A,都有A-O=A,其中O是全零矩阵。

线性代数的矩阵运算

线性代数的矩阵运算

线性代数的矩阵运算矩阵是线性代数中一种重要的数学工具,矩阵运算是线性代数的核心内容之一。

通过矩阵运算,我们可以解决各种线性方程组,研究向量空间的性质,以及进行线性变换等。

本文将介绍线性代数中的矩阵运算,包括矩阵的加法、减法、乘法、转置以及求逆运算等。

1. 矩阵的加法和减法矩阵的加法和减法是相似的运算。

对于两个具有相同维度的矩阵A 和B,它们的加法运算定义为将相同位置的元素相加得到一个新的矩阵C,即C = A + B。

而矩阵的减法运算定义为将相同位置的元素相减得到一个新的矩阵D,即D = A - B。

例如,对于如下两个矩阵:A = [1 2 3]B = [4 5 6][7 8 9] [10 11 12]它们的加法运算结果为:C = A + B = [1+4 2+5 3+6] = [5 7 9][7+10 8+11 9+12] [17 19 21]而减法运算结果为:D = A - B = [1-4 2-5 3-6] = [-3 -3 -3][7-10 8-11 9-12] [-3 -3 -3]这样,我们可以通过矩阵的加法和减法运算来对矩阵进行融合、分解和控制等操作。

2. 矩阵的乘法矩阵的乘法是矩阵运算中的关键操作,它可以将两个矩阵相乘得到一个新的矩阵。

对于两个矩阵A和B,若A的列数等于B的行数,则它们可以进行乘法运算。

设A是一个m×n的矩阵,B是一个n×p的矩阵,它们的乘法运算定义为两个矩阵对应元素的乘积之和。

新的矩阵C的行数等于A的行数,列数等于B的列数。

记作C = A × B。

例如,对于如下两个矩阵:A = [1 2 3]B = [4 5][6 7 8] [9 10][11 12]它们的乘法运算结果为:C = A × B = [1×4+2×9+3×11 1×5+2×10+3×12][6×4+7×9+8×11 6×5+7×10+8×12]= [59 64][149 163]矩阵的乘法可以应用于很多实际的问题中,比如线性方程组的求解、向量空间的转换等。

线性代数-矩阵的运算

线性代数-矩阵的运算

线性代数-矩阵的运算1、矩阵的加减法定义A = (a ij)mxn 、B = (b ij)mxn;是两个同型矩阵(⾏数和列数分别相等),则矩阵A、B和定义为:只有同型矩阵才能进⾏加法计算运算定律交换律:A + B = B + A结合律:(A + B)+ C = A + (B + C)A + O = A = O + A (O为零矩阵)A + (-A) = O (矩阵减法的定义)设:则:2、矩阵的数乘定义数k与矩阵A乘法定义为:记作:kA = (ka ij)mxn;矩阵的加法和数乘运算,称为矩阵的线性运算。

运算定律结合律:(kl)A = k(lA)分配律:k(A+B) = kA + kB;(k + l)A = kA + lA;1A = A;0A = O3、乘法运算定义设A = (aij)mxs、B=(bij)sxn AB的乘发定义为注意:只有当A矩阵的列数等于B矩阵的⾏数,矩阵乘积AB才有意义;且乘积C矩阵的⾏数等于A矩阵的⾏数、C矩阵的列数等于B矩阵的列数。

如:A是(2x3)矩阵,B是(3x4)矩阵,则AB为(2x4)矩阵,BA⽆意义。

运算定律矩阵乘法不满⾜交换律:⼀般AB不等于BA,如果AB = BA,即记作A、B可交换AB = 0 未必 A = O或者 B = O不满⾜消除律,即AB = AC 未必B = C矩阵乘法满⾜下⾯运算律:结合律:(AB)C = A(BC)左分配律:A(B+C) = AB+AC右分配律:(B+C)A = BA+CAk(AB) = (kA)B = A(kB)设A为mxs矩阵,则 I m A = A ,AI s = A(I为单位矩阵)AO=O OA=OA k A l = A k+l (A k)l = A kl (kl皆为⾮负整数)矩阵乘法中,单位矩阵与零矩阵,有类似于数字乘法1,0的作⽤。

4、矩阵的转置定义mxn的矩阵A,⾏列交换后得到nxm的矩阵,称为A的转置矩阵,记作A'。

矩阵的运算及其运算规则

矩阵的运算及其运算规则

矩阵的运算及其运算规则矩阵是代数中一种重要的数学工具,它由数个数按照规定的行列顺序排列而成。

矩阵的运算包括加法、减法、数乘、乘法以及转置等,这些运算规则在代数中有着重要的应用。

一、矩阵的加法和减法矩阵的加法和减法规则相同,对应位置的元素进行相加或相减。

具体来说,如果有两个m×n(m行n列)的矩阵A和B,它们的和为C,则A和B之间的加法运算可以表示为:C = A + B。

其中,C的元素cij就是A和B相对应位置元素之和。

同样,矩阵的减法也是对应位置的元素进行相减操作。

例如,对于如下两个矩阵:A=[[1,2],[3,4]]B=[[5,6],[7,8]]则A和B的和、差分别为:A+B=[[1+5,2+6],[3+7,4+8]]=[[6,8],[10,12]]A-B=[[1-5,2-6],[3-7,4-8]]=[[-4,-4],[-4,-4]]二、矩阵的数乘矩阵的数乘是指将矩阵的每个元素都与一个常数k相乘。

具体来说,如果有一个m×n的矩阵A和一个实数k,则矩阵A乘以k的结果为B,可表示为:B = kA。

其中,B的元素bij等于k与A相对应位置元素的乘积。

例如,对于如下矩阵:A=[[1,2],[3,4]]k=2则A乘以k的结果为:B=kA=2A=[[2,4],[6,8]]三、矩阵的乘法矩阵的乘法是指给定两个矩阵A和B,如果A的列数等于B的行数,则可以将它们相乘得到一个新的矩阵C。

具体来说,如果A是一个m×n 的矩阵,B是一个n×p的矩阵,则矩阵C的大小为m×p。

C的元素cij 可以通过计算A的第i行与B的第j列对应位置元素的乘积之和得到。

例如,对于如下两个矩阵:A=[[1,2],[3,4]]B=[[5,6],[7,8]]则A和B的乘积为:C=AB=[[1×5+2×7,1×6+2×8],[3×5+4×7,3×6+4×8]]=[[19,22], [43,50]]注意,在矩阵乘法中,矩阵的位置很重要,即AB一般不等于BA。

线性代数矩阵运算法则

线性代数矩阵运算法则

线性代数矩阵运算法则线性代数是数学的一个重要分支,它研究的是向量空间和线性映射。

在线性代数中,矩阵是一种非常重要的数学工具,它可以用来表示线性变换和解线性方程组。

矩阵运算是线性代数中的重要内容,它包括矩阵的加法、减法、数乘、矩阵乘法等运算法则。

本文将详细介绍矩阵运算的各种法则,以及它们的应用。

1. 矩阵的加法。

设A和B是两个m×n的矩阵,它们的和记作C=A+B,其中C中的每个元素都等于A和B对应位置的元素之和。

即C的第i行第j 列的元素等于A的第i行第j列的元素加上B的第i行第j列的元素。

例如,如果。

A=[1 2 3。

4 5 6]B=[7 8 9。

10 11 12]则A+B=[8 10 12。

14 16 18]。

2. 矩阵的减法。

矩阵的减法与矩阵的加法类似,设A和B是两个m×n的矩阵,它们的差记作C=A-B,其中C中的每个元素都等于A和B对应位置的元素之差。

即C的第i行第j列的元素等于A的第i行第j列的元素减去B的第i行第j列的元素。

3. 矩阵的数乘。

设A是一个m×n的矩阵,k是一个实数,则kA记作B,其中B 中的每个元素都等于k乘以A对应位置的元素。

即B的第i行第j 列的元素等于k乘以A的第i行第j列的元素。

4. 矩阵的乘法。

设A是一个m×n的矩阵,B是一个n×p的矩阵,则它们的乘积记作C=AB,其中C是一个m×p的矩阵,C的第i行第j列的元素等于A的第i行与B的第j列对应元素的乘积之和。

即C的第i行第j列的元素等于A的第i行的每个元素与B的第j列的对应元素的乘积之和。

矩阵的乘法是线性代数中最重要的运算之一,它在解线性方程组和表示线性变换等方面有着重要的应用。

5. 矩阵的转置。

设A是一个m×n的矩阵,则A的转置记作AT,AT是一个n×m的矩阵,AT的第i行第j列的元素等于A的第j行第i列的元素。

即AT的第i行第j列的元素等于A的第j行第i列的元素。

线性代数中的矩阵运算

线性代数中的矩阵运算

线性代数中的矩阵运算矩阵运算,在线性代数中是一个十分重要的概念,我们通常用矩阵来表示线性映射,这些矩阵之间的加、减、乘等运算,是我们学习矩阵的基础。

本文将从矩阵的定义、矩阵的加减、矩阵的乘法、矩阵的转置和逆等方面详细介绍矩阵运算。

一、矩阵的定义矩阵是一个由m行、n列元素排列成的矩形表格,其中每个元素都是一个数字(标量),通常用 A = [aij]表示。

其中,i表示行号,j表示列号, aij表示第i行、第j列的元素,矩阵的大小写成m×n表示,其中m表示行数,n表示列数。

二、矩阵的加减对于两个具有相同大小的矩阵A和B,它们的和C可以通过将每个对应的元素相加得到,即Ci,j = ai,j + bi,j,也可以用向量的形式表示C = A+B。

矩阵的差同理,Ci,j = ai,j - bi,j,用向量的形式表示C = A - B。

加减运算的性质:1.交换律:A + B = B + A,A - B ≠ B - A;2.结合律:(A + B) + C = A + (B + C), (A - B) - C ≠ A - (B - C);3.分配律:a(A + B) = aA + aB,(a + b)A= aA + bA。

三、矩阵的乘法对于两个矩阵A和B,只有满足A的列数等于B的行数时,A和B才能相乘。

设A为m行n列的矩阵,B是一个n行p列的矩阵,它们相乘得到的结果C是一个m行p列的矩阵。

在矩阵乘法中,相乘的行列数相等的两个矩阵必须一一对应进行相乘,并将所有乘积相加。

矩阵乘法的表达式:Cij = ∑ akj ᠖ bj i,其中k=1,2,,....,nC = AB,A的第i行乘以B的第j列,它们的乘积之和就是C的第i行第j列元素。

用向量的形式表示C = A×B。

在矩阵乘法中,乘法不具备交换律,即AB ≠ BA。

(只有在A、B中至少有一个为单位矩阵时,AB=BA)矩阵乘法的性质:1.结合律:A(BC) = (AB)C;2.分配律:A(B+C) = AB + AC;3.结合律:(aA)B = A(aB) = a(AB);4.单位矩阵: AI = IA = A;5.逆矩阵:存在矩阵B满足AB=I,则称矩阵A可逆,矩阵B 就是矩阵A的逆矩阵(A的行列式必须不等于零)。

《线性代数》课件-第3章 矩阵

《线性代数》课件-第3章 矩阵

§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。

3_1矩阵的概念及运算

3_1矩阵的概念及运算
零矩阵, (3)元素全为零的矩阵称为零矩阵, × n 零 )元素全为零的矩阵称为零矩阵 m 矩阵记作 om×n 或 o .
3.同型矩阵与矩阵相等的概念 3.同型矩阵与矩阵相等的概念 (1)两个矩阵的行数相等 列数相等时,称为同型 两个矩阵的行数相等, (1)两个矩阵的行数相等,列数相等时,称为同型 矩阵. 矩阵 1 2 14 3 同型矩阵. 例如 5 6 与 8 4 为同型矩阵 3 7 3 9 同型矩阵, (2) 两个矩阵 A = aij 与B = bij 为同型矩阵 并且对应元素相等,即 并且对应元素相等 即
a11 a21 M am 1
a12 a22 M
L a1n L a2 n M
am 2 L amn
称为m行 列矩阵 列矩阵. 矩阵. 称为 行n列矩阵.简称 m × n 矩阵. 记作
a11 a 21 A= L a m1
简记为 A,
a12 a22 L am 1
ij
L a1n L a2 n L L L amn
A A B C D
0 1 1 0
1
B
C
D
1 1
0 0 1
0 0
0 0 1 0
这个数表反映了四城市间交通联接情况. 这个数表反映了四城市间交通联接情况
用矩阵表示
0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0
二、矩阵的概念
1. 定义 由 m × n 个数 aij (i = 1,2,L, m; j = 1,2,L, n ) 排成的 m行 n 列的数表
的解取决于 系数
aij (i, j = 1,2,L, n),
常数项 bi (i = 1,2,L,n)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. ( )A A A
3. ( A B) A B 4. 1A A 5. 0A O 6. (1)A A
第三章 矩阵的运算
例2
设A
2 1
0 2
1 2 ,
B
1
2
1 0
3
1
,
C
3 12
6 6
3 9
,求2A
B
1 3
C.
解:
2A
B
1 3
C
4 2
11 24
01 2 432
2 0 1 4 1 3
一、矩阵加法 (i 1,, m; j 1,, n)
定义3.1.1 设矩阵A (aij )mn , B (bij )mn,称矩阵
C (aij bij )mn
为矩阵A与矩阵B的和,记作C A B.
零矩阵:元素全是零的矩阵称为零矩阵.记作: O.
设矩阵A
(aij
)m
,称矩阵
n
(aij
)
m

0 4 5 10
4 4
第三章 矩阵的运算
a1
例4
设A
a2 ,Βιβλιοθήκη B b1, b2 ,, bn ,则
二、矩阵的数乘
第三章 矩阵的运算
定义3.1.2 设矩阵A (aij )mn , 是一个数,矩阵
(aij )mn 称为数与矩阵A的乘积,记作 A或A,

A A (aij )mn
注:数乘矩阵与数乘行列式是显然是不同的.
第三章 矩阵的运算
数乘的性质: 设A,B是m n矩阵,, 是数,
1. ( A) ( ) A
y y
(a11b11 a12b21 (a21b 11 a22b21
a13b31 )t1 a23b31 )t1
(a11b12 (a21b12
a12b22 a22b22
a13b32 )t2 , (3 a23b32 )t2 .
3
我们把线性变换(3-3)叫做线性变换(3-1)与(3-2) 的乘积,相应地把(3-3)所对应的矩阵定义为(3-1)与 (3-2)所对应的矩阵的乘积,即
其中系数aij (i 1, 2,, m, j 1, 2,, n)为常数.这种从
变量x1 , x2 ,, xn到变量y1, y2 , ym的变换叫做线性变换.
a11
此线性变换的系数构成的m
n矩阵为
a21
am1
称为线性变换的系数矩阵.
第三章 矩阵的运算
a12 a1n
a22
a2
n
a11 a21
a12 a22
a13 a23
b11 b21 b31
b12
b22
b32
a11b11
a21b11
a12b21 a22b21
a13b31 a23b31
a11b12 a12b22 a13b32
a21b12
a22b22
a23b32
第三章 矩阵的运算
2.矩阵乘法的定义
2 3 1 8 1 2
三、矩阵的乘法
第三章 矩阵的运算
1.线性变换
设变量y1 , y2 , ym能用变量x1, x2 ,, xn线性表示,即:
y1 a11 x1 a12 x2 a1n xn ,
y2 a21 x1 a22 x2 a2n xn ,
ym am1 x1 am2 x2 amn xn ,
定义3.1.3 设A (aij )是一个m s矩阵, B (bij ) 是一个s n矩阵,作m n矩阵C (cij ),其中
s
cij ai1b1 j ai2b2 j aisbsj aikbkj, k 1
矩阵C称为矩阵A与矩阵B的乘积, 记作C AB,即
第三章 矩阵的运算
A B A (B) (aij bij )mn
第三章 矩阵的运算
例1 求矩阵X,使得
1 2 3
2
01
1 1 0
解:
0 1
X 3 0
1 2
1
0 1 2 3
2
X
3
0
1 1
1
1 2 2 0
2 3 1 2 3 1
1
1
2
01
2
2 0 1 1 0 1
1 3 1 4
1
0
0 3
2 1 2 1
第三章 矩阵的运算
Ch3 矩阵的运算
§3.1矩阵的运算 §3.2逆矩阵 §3.3初等矩阵 §3.4分块矩阵
第三章 矩阵的运算
§3.1 矩阵的运算
一、矩阵加法 二、矩阵的数乘 三、矩阵乘法 四、矩阵转置 五、n阶距阵的行列式 六、共轭矩阵
第三章 矩阵的运算
同型矩阵:行数与列数分别相等的矩阵称为同型矩阵. 矩阵相等 A (aij )mn , B (bij )mn ,且aij bij A B
am 2
.
amn
设两个线性变换
y1 y2
a11 x1 a21 x1
a12 x2 a22 x2
a13 x3 , a23 x3 ,
(3 1)
x1 x2
b11t1 b21t1
b12t2 , b22t2 ,
x3 b31t1 b32t2 ,
(3 2)
第三章 矩阵的运算
为求出从t1, t2到y1, y2的线性变换,可将(3 2)代入(3 1)得:
a11 a12 a1s b11 b12 b1n
a21
a22
a2s
b21
b22
b2
n
am1
am 2
ams
bs1
bs 2
bsn
a11b11 a1sbs1
a21b11
a2 s bs1
a11b1n a1sbsn
a21b1n
a2
s
bsn
am1b11 amsbs1
2 8
1 9
1 6
6 0
8 1
不存在.
第三章 矩阵的运算
1 2
1
例3
设A
0
0 1
2 1
1
3
,
B
2
0
1 ,求AB. 3
解:
1 2 0 1
1 4
11 02 2011 12 01 23 14
AB
011210 31
0
2
1
1
1
3
3
4
11 2 2 0 0 11 1 2 21 0 3 1 4
n
A的负矩阵,
记作 A,即 A (aij )mn .
第三章 矩阵的运算
矩阵加法的性质: A, B,C,O均为m n矩阵
1. A B B A 2. ( A B) C A (B C) 3. A O O A A 4. A (A) (A) A O 5. 矩阵减法可定义为
am1b1n
amsbsn
注意(1)矩阵AB的行数等于矩阵A的行数,AB的列数等
于矩阵B的列数且AB的第i行第j列的元素是A的第i行与
B的第j列的对应元素乘积之和.
第三章 矩阵的运算
注意(2)在矩阵乘积的定义中,只有当左边矩阵A的列 数等于右边矩阵B的行数时,乘积AB才有意义,
例如
1 2 3
3 5
相关文档
最新文档