X射线粉末衍射法物相定性分析

合集下载

X-射线粉末衍射法物相定性分析

X-射线粉末衍射法物相定性分析

X 射线粉末衍射法物相定性分析粉末衍射也称为多晶体衍射,是相对于单晶体衍射来命名的,在单晶体衍射中,被分析试样是一粒单晶体,而在多晶体衍射中被分析试样是一堆细小的单晶体(粉末)。

每一种结晶物质都有各自独特的化学组成和晶体结构。

当X 射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样。

利用X 射线衍射仪实验测定待测结晶物质的衍射谱,并与已知标准物质的衍射谱比对,从而判定待测的化学组成和晶体结构这就是X 射线粉末衍射法物相定性分析方法。

一.实验目的及要求(1)学习了解X 射线衍射仪的结构和工作原理;(2)掌握利用X 射线粉末衍射进行物相定性分析的原理;(3)练习用计算机自动检索程序检索PDF(ASTM)卡片库,对多相物质进行相定性分析。

二. 实验原理通过晶体的布喇菲点阵中任意3个不共线的格点作一平面,会形成一个包含无限多个格点的二维点阵,通常称为晶面。

相互平行的诸晶面叫做一晶面族。

一晶面族中所有晶面既平行且各晶面上的格点具有完全相同的周期分布。

因此,它们的特征可通过这些晶面的空间方位来表示。

要标示一晶面族,需说明它的空间方位。

晶面的方位(法向)可以通过该面在3个基矢上的截距来确定。

对于固体物理学原胞,基矢为1a ,2a ,3a ,设一晶面族中某一晶面在3基矢上的交点的位矢分别为1r a ,2s a ,3t a ,其中r ,s ,t 叫截距,则晶面在3基矢上的截距的倒数之比为123111::::r s th h h = 其中123,,h h h 为互质整数,可用于表示晶面的法向,就称123h h h 为该晶面族的面指数,记为123()h h h 。

最靠近原点的晶面在坐标轴上的截距为11/a h ,22/a h ,33/a h 。

同族的其他晶面的截距为这组最小截距的整数倍。

在实际工作中,常以结晶学原胞的基矢a ,b ,c 为坐标轴表示面指数。

此时,晶面在3坐标轴上的截距的倒数比记为111::::r s th k l =整数,,h k l 用于表示晶面的法向,称hkl 为该晶面族的密勒指数,记为()hkl 。

第五章 X射线衍射仪及物相定性分析

第五章  X射线衍射仪及物相定性分析

图1-21
闪烁计数器示意图
(2) 锂漂移硅检测器 锂漂移硅检测器是一种固体探测器,通常表示为Si(Li)检 锂漂移硅检测器是一种固体探测器,通常表示为Si(Li)检 Si(Li) 测器。它也和气体计数器一样,借助于电离效应来检测X射线, 测器。它也和气体计数器一样,借助于电离效应来检测X射线, 但这种电离效应不是发生在气体介质而是发生在固体介质之中。 但这种电离效应不是发生在气体介质而是发生在固体介质之中。 当一个外来的X射线光子进入之后, 当一个外来的X射线光子进入之后,它把价带中的部分电 子激发到导带,于是在价带中产生一些空穴, 子激发到导带,于是在价带中产生一些空穴,在电场的作用下 这些电子和空穴都可以形成电流,故把它们称为载流子。 这些电子和空穴都可以形成电流,故把它们称为载流子。在温 度和电压一定时,载流子的数目和入射的x 度和电压一定时,载流子的数目和入射的x射线光子能量成比 例。 在半导体中产生一个电子—空穴对所需要的能量等于禁带 在半导体中产生一个电子 空穴对所需要的能量等于禁带 的宽度,对硅而言,其值为1.14电子伏特。 1.14电子伏特 的宽度,对硅而言,其值为1.14电子伏特。但是在激发的过程 中还要有部分能量消耗于晶格振动,因此,在硅中激发一个电 中还要有部分能量消耗于晶格振动,因此, 空穴对实侧的平均能量为3.8电子伏特。 子—空穴对实侧的平均能量为3.8电子伏特。一般的X射线光子 空穴对实侧的平均能量为3.8电子伏特 一般的X 能量为数千电子伏特,因此, 个 能量为数千电子伏特,因此,—个X射线光子可激发大量的电 空穴对, 子—空穴对,这个过程只要几分之一微秒即可完成。所以,当 空穴对 这个过程只要几分之一微秒即可完成。所以, 一个X射线光子进入检测电路时,就产生一个电脉冲, 一个X射线光子进入检测电路时,就产生一个电脉冲,我们可 以通过这些电脉冲来检测X射线的能量和强度。 以通过这些电脉冲来检测X射线的能量和强度。

X-射线粉末衍射法物相分析

X-射线粉末衍射法物相分析
la、1b、1c为低角度区(2(<90()中三根最强线的d值, 1d为最大面间距。
2a、2b、2c、2d为对应上述各线条的相对强度(一般以最强线的强度作为100)。
第3栏为所用的实验条件。其中Rad为辐射种类。(CuK(,Mo K(等)。3A为辐射波长,单位用埃;Filer为滤波片名称。
第4栏为物质的晶体学数据。其中Sys为晶系;S.G.为 “三维空间群符号”a0, b0, c0为晶胞在三个轴上的长度;A=a0/b0,C=c0/b0为轴比;(、?、?为晶胞轴间夹角;z为单位晶胞中化学式单位的数目。
第5栏为物质的光学及其它物理性质数据。
第6栏列出试样的来源、制备方法及化学分析实验数据。
第7栏为物质的化学式及英文名称。
第8栏为物质的矿物学名称或普遍名称。本栏中若有五角星号表明卡片数据高度可靠;若有“o”号则表明其可靠程度较低;无标号者表示一般。
第9栏为晶面间距、相对强度及衍射指标。在这一拦中可能用到下列符号:b表示宽、模糊或漫散线;d表示双线;n表示并非所有资料上都有的线;nc表示并非该晶胞的线;np表示对给出的单胞所不能标定的线;ni表示不为给出的空间群所允许的指数;?表示由于?线的出现或重叠而使强度不确定。
X-射线粉末衍射法物相分析
一、X-射线粉末衍射法物相分析原理
X-射线衍射法物相分析,可分为定性分析和定量分析,本文主要介绍定性分析方法。所谓X射线物相定性分析就是根据x射线对不同种晶体衍射而获得的衍射角、衍射强度数据,对晶体物相进行鉴定的方法。
晶体是由质点(原子、离子、分子)在空间周期地排列而构成的固体物质。在粉末晶体或多晶样品中含有千千万万个小晶粒,它们杂乱无章、取向机遇地聚集在一起。当一束单色x射线照射到某一个小晶粒上,由于晶体具有周期性的结构,当点阵面距d与X射线入射角(之间应符合布拉格(Bragg)方程: 2 d(hkl)Sin(=( 时,就会产生衍射现象。

X射线衍射技术之四-物相分析

X射线衍射技术之四-物相分析
一.原理与方法
什么是物相?
物相是从结构角度对某一物质种类的描述. 化学组成相同但结构类型不同的物质视为不 同的物相,如方解石和文石.化学组成不同但结 构类似的物质也属不同的物相,因为二者在结 构参数方面存在差别.
物相分析分为定性分析和定量分析。定性分 析目的是确定待测物质成分及结构类型;定 量分析不仅确定物质成分及结构类型,而且 确定各物相质量分数。因此定性分析是定量 分析的基础和前提。
1.粉末衍射卡
粉未衍射卡(Power Diffraction File, 简称 PDF卡)是1941年美国道氏化学(Dow Chemical)公司从1938年起由哈那瓦尔物(J. D. Hanawalt)等人首创的标准衍射数据,在 美国材料试验协会(ASTM)的赞助下,以3 inch×5 inch (76.2 mm×127 mm)的卡片形 式发行,故也称ASTM卡。
I j Cj
Vj

Cj
fj

式中Cj──样品中与第j相有关的常数; μ ──混合样品的线吸收系数.
fj W j m m m Ij C 将 代入 V x j 变换为以xj和µ m表示的形式如下
fj
j

Ij
Cj xj
j m
Cj
'
xj
m
此式是X射线物相定量分析的基本公式。µm不是j相 的质量吸收系数,而是整个待测试样总的质量吸收 系数. n
第2节 XRD物相定量分析
一.定量分析法原理
X射线定量相分析方法是在完成了样品 的物相定性分析工作的基础上,利用衍射 花样中待测相衍射强度,分析每个相在样 品中的重量百分含量的技术。
XRD粉末衍射强度公式:
3 4 2 I e 1 c o s 2 1 2 2 2 M 0 I ( 2 ) ( ) ( F P N ) (2 ) ( e) () V h k l h k l h k l 4 3 2 m c R s i n c o s 2

实验二讲义 X射线粉末衍射法物相分析

实验二讲义  X射线粉末衍射法物相分析

实验四 X射线粉末衍射法物相分析(p236实验40)一、目的要求1.掌握X射线粉末衍射法的实验原理和技术2.学会根据X射线粉末衍射图,分析粉晶试样的物相组成二、X射线粉末法原理X射线粉末衍射法自从德拜和谢乐首创以来,已经有了很大的发展,其应用范围非常广泛,可用来鉴别矿物的物相,测定点阵常数和晶胞大小,对固溶体进行相的定性与定量分析,还可研究晶粒的大小以及晶体中的残余应力和点阵畸变等,因此X射线粉末衍射法已成为催化、材料科学及矿物研究中常用的实验手段。

由结晶学知道,晶体具有周期性结构。

一个立体的晶体结构,可看成是一些完全相同的原子平面网按一定距离d平行排列而成,同时也可以看成是另一些原子平面网按另一距离d’平行排列而成。

所以一个晶体必然存在着一组特定的d值(d, d’, d’’, d’’’ )。

结构不同的晶体其d值组绝不相同,所以可用它来表示晶体特征。

下面介绍如何用X射线粉末法来测定d值。

假定晶体中某一方向上原子网面之间的距离为d,X射线以夹角θ入射晶体,如1所示,从原子网面1和2上产生的两条衍射线a’和b’,其光程差为BD+DC,而BD=DC=dSinθ,故BD+DC=2dSinθ。

我们知道,只有当光程差等于入射光波长λ的整数倍n时,亦即d与θ之间应符合布拉格(Bragg)方程时,才能产生被加强了的衍射线。

(参见谢有畅、邵美成编《结构化学》下册,P49)2dSinθ= nλ(8-1)图1 原子网面对X射线的衍射多晶X射线衍射仪器的类型多种多样,但按其设计所采用的衍射几何特点的不同,可分为平行光束型和聚焦型两大类;按X射线的检测记录手段来分也可分为两大类:感光胶片法(照相法)和衍射仪法。

本实验所采用的仪器为聚焦型衍射仪。

应用聚焦原理来设计粉末衍射装置,实验时可以使用大发散的点发散X射线束,样品受照射的表面可以很大,大大增加参与衍射的晶粒数目;而由于聚焦作用,样品表层中取向凑巧的晶粒产生的同一衍射却能同时聚焦集中在同一位置上,得到强度高得多的衍射线,有利于测量。

X射线衍射定性相分析

X射线衍射定性相分析

X射线衍射定性相分析1 引言生产和科研中,常使用钢铁、有色金属和各种有机和无机材料,往往需要用X射线衍射技术分析它们属何种物质和属哪种晶体结构,得出分子式,这是定性相分析的主要内容。

通常的化学分析法如容量法、重量法、比色法、光谱法等,给出的是组成物体的元素及其含量,难于确定它们是晶体还是非晶体,单相还是多相,原子间如何结合,化学式或结构式是什么,有无同素异构物相存在等。

而这些信息对工艺的控制和物质使用性能则颇为重要。

X射线相分析方法恰恰在解决这些问题方面有独到之处,且所用试样量少,不改变物体化学性质,因而成为相分析的重要手段。

它与化学分析等方法联合运用,能较完满地解决相分析问题,因而X射线衍射方法是经常应用的不可或缺的重要综合分析手段之一。

2 定性相分析的理论基础多晶体物质其结构和组成元素各不相同,它们的衍射花样在线条数目、角度位置、强度上就显现出差异,衍射花样与多晶体的结构和组成 (如原子或离子的种类和位置分布,晶胞形状和大小等) 有关。

一种物相有自己独特的一组衍射线条 (衍射谱),反之,不同的衍射谱代表着不同的物相,若多种物相混合成一个试样,则其衍射谱就是其中各个物相衍射谱叠加而成的复合衍射谱,从衍射谱中可直接算得面间距d值和测量得到强度I值。

在实际工作中七个晶系叫法有多种,英文名称也不尽相同。

物相的X射线衍射谱中,各衍射线条的角度位置及衍射强度会随所用辐射波长不同而变,直接使用衍射图谱对比分析并不方便。

故而总是将衍射线的角按转换成d值,而d值与相应晶面指数hkl则巧妙地用已知晶体结构的标准数据文件卡片关联起来。

强度I也不需用强度公式直接计算,而是巧妙地转换成百分强度,即衍射谱线中最强线的强度,其他线条强度则为,这样,d值及便成为定性相分析中常用的两个主要参数。

上面提到的标准数据文件卡片,以前称为ASTM卡片,现在称为粉末衍射文件PDF,是用X射线衍射法准确测定晶体结构已知物相的d值和I值,将d值和及其他有关资料汇集成该物相的标准数据卡片。

X射线粉末衍射物相分析

X射线粉末衍射物相分析
四、思考题
1、布拉格方程并未对衍射级数n和晶面间距d作 任何限制,但实际应用中为何只用数量非常有限的 一些衍射线?
2、X射线对人体有什么危害?应如何防护?
结束
6LGi2ksOHxKBxX0og16WDLD D3t0er!8tcRz W4H W3N7M RO%QDPII6r$-0pqw(gNLCN xiuop#hX0aIU 2PeJtk#VOf)F N**nR Wbtfe-ey xU3%-% mY7QqKcIFNG% koO+#(HgSF1zo(M$)jd4jddJ!nnhwngC!M(oz2FThICH yUbfG% XAC7EkJ+PdUYS$Il dzPAz mG*1wZ#8hFXlr vY(bW k( mbOFtYz ++6* k3c2+uOcgh**#r6KMU WHtGCF8B9a) wg *eKC W0z KWrQl nyrM-* k9wG* YWLX( MHqXxq$unC UEzf7* 5&Xbe$3ki!FMAy*gMAr$Q0PhCh3Drj!iTWTHX3CspT x+ )-MSU hyHM YR wdmco!E1EL6k6x13flLWTnnLzepVi5MqA1Z9-* FhakdQaXp3r y+NL2+!xsnx1G5MkFq%&TR(VH R!A!527ipbzihp1(bS5WfLJM QaFOl %ESLaC m1PrPef6aO6l*#QLTuAKl XS6bw! y-)ebt+8B5b) %J87N NA&g%(S!&r+ vp$- x#v4kupWC#1s KoLUIds$hM m+E) yr DOn1PPq)GDl)CU$aqsI2ypSeszESgIy*qGGZoa8r Gb(!12yRFDnGZJ

粉末衍射实验报告

粉末衍射实验报告

X射线粉末衍射法物相定性分析一、实验目的:1.掌握X 射线粉末衍射的实验原理和方法。

2.了解X 射线粉末衍射仪的使用方法。

3.学会使用X 射线粉末衍射仪和粉末衍射卡片集进行物相分析。

二、实验原理:1.主要依据当一束单色X 射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X 射线波长有相同数量级,故由不同原子散射的X 射线相互干涉,在某些特殊方向上产生强X 射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。

1)衍射线空间方位与晶体结构的关系可用布拉格方程表示:λθn sin d =2式中d 为晶面间距;n 为反射级数;θ为掠射角;λ为X 射线的波长。

布拉格方程是X 射线衍射分析的根本依据。

2)衍射强度表达式为:I = KmPLTA |F|2K 是一个综合因子,对于指定的衍射线,它与实验时的衍射几何条件、试样的形状、吸收性质、温度以及一些物理常数有关。

3)F :称结构因子,取决于晶胞内所含存的原子的种类和分布。

2.X 射线衍射物相分析基本方法物相鉴定的依据是衍射方向和衍射强度。

在衍射图谱上就体现为衍射峰的位置及峰高。

分析方法就是把待鉴定样品的衍射图谱与已知物相的标准衍射图谱进行对比来确定物相。

现在应用最为广泛的就是JCPDS 的PDF 数据对比法。

为弥补PDF 的数量有限问题,需多注意文献发表的资料并加以收集。

对某些新和成的化合物尚需自建标准普。

三、仪器和试剂试剂:未知样品3。

仪器:X-射线粉末衍射仪四、实验步骤1、在玛瑙乳钵中将样品细细磨制。

2、把制样框平放在平滑的玻璃片。

将样品粉末尽可能均匀撒入制样框的窗口中3、将粉末用力压紧,把多余的粉末削去4、把制样框从玻璃平面上拿起5、面向玻璃片的一面样品平整光滑6、开启总电源开关。

打开冷却水。

7、开低压。

开低压前,保证此时电压为20KV,电流为5mA 。

正常状态:“电源”键上灯亮,“正常”灯亮,“水冷”灯亮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据衍射图谱,与PDF卡片对比可以发现,所测样品为氯化钠固体。
五、实验思考题
为什么需要将样品磨到340目以下?
答:任何一种粉末衍射技术都要求样品是十分细小的粉末颗粒,使试样在受光照的体积中有足够多数目的晶粒。因为只有这样,才能满足获得正确的粉末衍射图谱数据的条件:即试样受光照体积中晶粒的取向是完全随机的。这样才能保证用照相法获得相片上的衍射环是连续的线条;或者,才能保证用衍射仪法获得的衍射强度值有很好的重现性。此外,将样品制成很细的粉末颗粒,还有利于抑制由于晶癖带来的择优取向;而且在定量解析多相样品的衍射强度时,可以忽略消光和微吸收效应对衍射强度的影响。为了能制得不影响测试结果的平滑粉末样面,粉末颗粒至少需可以通过340目(约45μm)。
化学实验教学中心
实验报告
实验名称:X射线粉末衍射法物相定性分析
学生姓名:学号:
院(系):年级:级班
指导教师:研究生助教:
实验日期:2017.05.交报告日期:2017.05.
一、实-射线粉末衍射仪测试方法;
3.学会使用X-射线粉末衍射仪和粉末衍射卡片集进行物相分析。
三、实验步骤
1.用玛瑙研钵将样品磨细至340目。
2.将铝样品板正面向下放于表面平滑的玻璃板上,样品均匀地撒入样品空框内,并略高于样品板面。用另一玻璃片自上而下轻压样品。使样品足够紧密以致表面光滑平整,附着在空框内不会脱落。
3.将1样品板插入粉末衍射仪的样品台。
4.按操作规程启动X射线发生器,调节管压、管流至合适值(注意:防护系统需正常工作)。
二、实验原理
1.晶体的X射线衍射图象实质上是晶体微观结构形象的一种精细复杂的变换。因此XRD方法是现在在微观结构的深度上对晶态物质进行观察、研究的最有力的实验方法。大多数固态物质都是晶态或准晶态,即便是大颗粒的晶体,一般也不难得到它们的粉末状样品,所以XRD用途广泛。
2.衍射(绕射):光线照射到物体边沿后通过散射继续在空间发射的现象。如果采用单色平行光,则衍射后将产生干涉(相干波在空间某处相遇后,因位相不同,相互之间产生干涉作用,引起相互加强或减弱的物理现象。)
3. Bragg方程/条件(Bragg's law)
布拉格方程:
指标 :晶面与坐标轴截距的倒数
方程含义:当X射线以掠角 入射到某一点阵平面间距为d的原子面上时,若符合布拉格方程,则将在反射方向上得到因叠加而加强的衍射线。布拉格方程联系了晶体的晶面间距与衍射线的方向。不同物相具有不同的晶面间距 数值组;反映在衍射图上就是一套位置不同的衍射峰。
5.根据欲测样品,选择好扫描条件及范围,设定测试程序。
6.开启测试程序,收集衍射图谱。
7.数据处理
(1)计算衍射图上各衍射峰所对应的 值;
(2)计算各衍射峰的相对强度,以最强峰为100%,其他峰均为与最强峰的比值;
(3)利用PDF卡鉴定出待测样品的物相。
8.结束实验,关闭仪器,打扫实验室。
四、数据处理与实验结果
衍射的条件:①相干波(点光源发出的波);②光栅。
衍射的结果是产生明暗相间的衍射花纹,代表着衍射方向(角度)和强度。根据衍射花纹可以反过来推测光源和光珊的情况。为了使光能产生明显的偏向,必须使“光栅间隔”具有与光的波长相同的数量级。用于可见光谱的光栅每毫米要刻有约500到500条线。
劳厄:如果晶体中的原子排列是有规则的,那么晶体可以当作是X 射线的三维衍射光栅。X射线波长的数量级是10—10 m ,这与固体中的原子间距大致相同。果然试验取得了成功——最早的X射线衍射。显然,在X射线一定的情况下,根据衍射的花样可以分析晶体的性质。
相关文档
最新文档