3.5 X射线物相定性分析
现代材料测试技术测试方法1精选全文

4.1差热分析
4.1.1差热分析的基本原理
2、差热分析的基本理论
ΔH=KS
差热曲线的峰谷面积S和 反应热效应△H成正比, 反应热效应越大,峰谷 面积越大。
具有相同热效应的反应, 传热系数K越小,峰谷面 积越大,灵敏度越高。
4.1差热分析
4.1.2差热分析曲线
1、DTA曲线的特征 DTA曲线是将试样和参比物置于
2、DTA曲线的温度测定及标定:外推法(反应起点、转变点、 终点) 外延起始温度——表示反应的起始温度
3、DTA曲线的影响因素 差热分析是一种热动态技术,在测试过程中体系的温度不断变 化,引起物质热性能变化。因此,许多因素都可影响DTA曲 线的基线、峰形和温度。归纳起来,影响DTA曲线的主要因 素有下列几方面:
用相同质量的试样和升温速度对不同粒度的胆矾进 行研究(如图)。说明颗粒大小影响反应产物的扩散 速度,过大的颗粒和过小的颗粒都可能导致反应温 度改变,相邻峰谷合并,分辨率下降。
4.1差热分析
4.1.2差热分析曲线
试样用量的多少与颗粒大 小对DTA曲线有着类似的 影响,试样用量多,放热 效应大,峰顶温度滞后, 容易掩盖邻近小峰谷,特 别是对在反应过程中有气 体放出的热分解反应。
(1)仪器方面的因素:包括加热炉的形状和尺寸,坩埚材料及大 小,热电偶的位置等。
(2)试样因素:包括试样的热容量、热导率和试样的纯度、结晶 度或离子取代以及试样的颗粒度、用量及装填密度等。
(3)实验条件:包括加热速度、气氛、压力和量程、纸速等。
4.1差热分析
4.1.2差热分析曲线
(1)热容和热导率的变化: 试样的热容和热导率的变化会引起 差热曲线的基线变化,一台性能良 好的差热仪的基线应是一条水平直 线,但试样差热曲线的基线在反应 的前后往往不会停留在同一水平上, 这是由于试样在反应前后热容或热 导率变化的缘故。
物相定性分析的基本原理

物相定性分析的基本原理
物相定性分析是指通过对物质的性质、形态、结构等方面的观察和研究,来确定其物相的性质。
其基本原理可以总结为以下几点:
1. 形态特征分析:通过对样品的观察和描述,了解其形态特征。
包括物质的颜色、透明度、晶体外形等方面的观察。
2. 热学特性分析:通过测量样品的熔点、沸点、熔化热、蒸发热等热学性质,来确定物质的物相。
3. 表面性状分析:通过对样品的表面形貌进行观察和分析,包括颗粒形状、表面结构等方面的特征,来确定物质的物相。
4. 光学特性分析:通过测量样品的折射率、透射率、吸收谱等光学性质,来确定物质的物相。
5. 结构特征分析:通过使用X射线衍射、电子显微镜等分析
方法,来研究样品的晶体结构、分子结构等方面的特征,从而确定物质的物相。
通过以上的分析方法,结合物质的物理化学性质,可以较为准确地确定物质的物相,为后续的性质研究和应用提供基础数据和相关信息。
X射线衍射物相定性分析实验简介

布 喇 菲 十 四 种 空 间 格 子
立方 四方 六方 三方 正交 单斜 三斜
a = b = c, , α =β = γ = 90° a = b≠c, , α =β = γ = 90° a = b≠c, γ =120° ,α =β = 90° a = b = c, , α =β = γ ≠90° a≠b≠c, , α =β = γ = 90° a≠b≠c, α ≠90° β = γ =90° a≠b≠c, α ≠β ≠γ ≠ 90°
山西大学物电学院Leabharlann X射线衍射物相定性分析
X-Ray Differaction (XRD)
Phase Qualitative Analysis QualitativeAnalysis
山西大学物理电子工程学院
——屈晓田 屈晓田
1/48
山西大学物电学院
目的:鉴别待测样品是由哪种或哪几种物相组成的, 目的 : 鉴别待测样品是由哪种或哪几种物相组成的 , 即确 试样中是由某几种元素形成的哪些具有固定结构的化合物(其 定试样中是由某几种元素形成的哪些具有固定结构的化合物 其 中包括单质、固溶体和化合物 。 中包括单质、固溶体和化合物)。 单质 方法:利用晶态物质对X射线的衍射。 方法:利用晶态物质对X射线的衍射。 依据: 依据: 1)每一种晶态物质都有各自独特的化学组成 和特定的 结构 每一种晶态物质都有各自独特的化学组成和特定的结构 每一种晶态物质都有各自独特的 化学组成和特定的 参数(包括晶体结构类型 晶胞大小,晶胞中原子 离子或 参数 包括晶体结构类型,晶胞大小,晶胞中原子、离子或分子 原子、 包括晶体结构类型, 的位置和数目等 ,不会存在两种结晶物质的晶胞大小、原子种 的位置和数目等),不会存在两种结晶物质的晶胞大小、原子种 类和原子在晶胞中的排列方式完全一致的物质; 原子在晶胞中的排列方式完全一致的物质 类和原子在晶胞中的排列方式完全一致的物质; 2)每种晶态物质有自己独特的衍射花样:2θ 和 I; 每种晶态物质有自己独特的衍射花样: 每种晶态物质有自己独特的衍射花样 3)多种晶态物质混合时 , 它们的衍射花样也只是 简单叠加 , 多种晶态物质混合时 它们的衍射花样也只是简单叠加 多种晶态物质混合 衍射花样也只是简单叠加, 互不干扰,相互独立 混合物物相分析 混合物物相分析) 互不干扰,相互独立(混合物物相分析 。
实验:X射线衍射法进行物相定性分析1

X射线衍射法进行物相定性分析实验目的及要求⏹了解X射线衍射仪的结构和工作原理;⏹掌握无机非金属材料X射线衍射分析的制样方法;⏹掌握X射线衍射物相定性分析的方法和步骤。
物相定性分析的基本原理2dsinθ=λ晶胞中原子种类、数量、排列方式(1) 任何一种物相都有其特征的衍射谱;任何两种物相的衍射谱不可能完全相同;多相样品的衍射峰是各物相衍射峰的机械叠加。
(2)制备标准单相物质的衍射花样:PDF卡片待分析物质(样品)的衍射花样与之对照,从而确定物质的组成相实验设备与结构D/max-RB型X射线衍射仪D/Max-RB型X射线衍射仪构造示意图主要组成部分有X射线发生器、测角仪、探测器、计算机控制处理系统等。
一、X射线管1、X-ray产生原理凡是高速运动的电子流或其它高能辐射流(如γ射线,X射线,中子流等)被突然减速时均能产生X射线。
热能 + 电磁波2、X射线机X射线管是X射线机的核心部件。
封闭式热阴极X射线管:热阴极、阳极、窗口、聚焦座、管座等滤波片可以获得近似的纯的kα辐射源为避免样品强烈吸收入射X射线产生荧光幅射,对分析结果产生干扰。
必须根据所测样品的化学成分选用不同靶材的X 射线管。
原则是:靶材的Kα谱应位于试样元素K吸收限的右近邻或左面远离试样元素K吸收限的低质量吸收系数处。
二、测角仪测角仪是X射线衍射仪的核心部件梭拉光栏梭拉光栏防散射光栏衍射仪的光路图X射线经线状焦点S发出,经发散狭缝DS后,成为扇形光束照射在平板试样上,产生衍射,衍射线经接收狭缝RS进入探测器(即计数管)后被转换成电信号记录下来。
为了限制X射线的发散,在照射路径中加入S1梭拉光栏限制X射线在高度方向的发散,加入DS发散狭缝光栏限制X射线的照射宽度。
试样产生的衍射线也会发散,同样在试样到探测器的光路中也设置防散射光栏SS、梭拉光栏S2和接收狭缝光栏RS,这样限制后仅让聚焦照向探测器的衍射线进入探测器,其余杂散射线均被光栏遮挡。
◆工作时,试样与探测器同时转动,但转动的角速度为1 : 2的比例关系。
第五章 X射线衍射仪及物相定性分析

图1-21
闪烁计数器示意图
(2) 锂漂移硅检测器 锂漂移硅检测器是一种固体探测器,通常表示为Si(Li)检 锂漂移硅检测器是一种固体探测器,通常表示为Si(Li)检 Si(Li) 测器。它也和气体计数器一样,借助于电离效应来检测X射线, 测器。它也和气体计数器一样,借助于电离效应来检测X射线, 但这种电离效应不是发生在气体介质而是发生在固体介质之中。 但这种电离效应不是发生在气体介质而是发生在固体介质之中。 当一个外来的X射线光子进入之后, 当一个外来的X射线光子进入之后,它把价带中的部分电 子激发到导带,于是在价带中产生一些空穴, 子激发到导带,于是在价带中产生一些空穴,在电场的作用下 这些电子和空穴都可以形成电流,故把它们称为载流子。 这些电子和空穴都可以形成电流,故把它们称为载流子。在温 度和电压一定时,载流子的数目和入射的x 度和电压一定时,载流子的数目和入射的x射线光子能量成比 例。 在半导体中产生一个电子—空穴对所需要的能量等于禁带 在半导体中产生一个电子 空穴对所需要的能量等于禁带 的宽度,对硅而言,其值为1.14电子伏特。 1.14电子伏特 的宽度,对硅而言,其值为1.14电子伏特。但是在激发的过程 中还要有部分能量消耗于晶格振动,因此,在硅中激发一个电 中还要有部分能量消耗于晶格振动,因此, 空穴对实侧的平均能量为3.8电子伏特。 子—空穴对实侧的平均能量为3.8电子伏特。一般的X射线光子 空穴对实侧的平均能量为3.8电子伏特 一般的X 能量为数千电子伏特,因此, 个 能量为数千电子伏特,因此,—个X射线光子可激发大量的电 空穴对, 子—空穴对,这个过程只要几分之一微秒即可完成。所以,当 空穴对 这个过程只要几分之一微秒即可完成。所以, 一个X射线光子进入检测电路时,就产生一个电脉冲, 一个X射线光子进入检测电路时,就产生一个电脉冲,我们可 以通过这些电脉冲来检测X射线的能量和强度。 以通过这些电脉冲来检测X射线的能量和强度。
关于XRD物相定量分析

关于XRD物相定量分析X射线衍射(XRD)是一种常用的分析技术,用于确定材料的物相组成,结构和晶体学信息。
XRD物相定量分析是通过测量样品对入射X射线的散射模式来分析样品中各组分的含量。
本文将详细介绍XRD物相定量分析的原理、方法和应用。
原理:XRD物相定量分析的原理基于布拉格方程:nλ = 2d sinθ,其中n 为整数,λ为入射X射线的波长,d为晶面间距,θ为散射角。
当X射线照射到晶体上时,会与晶体内的晶面相互作用,并产生散射。
不同晶面的晶面间距会导致不同散射角和散射强度的出现。
通过测量样品的散射模式,可以确定样品中的物相组成。
方法:XRD物相定量分析的方法主要有两种:定性分析和定量分析。
1.定性分析:通过比对实验测得的散射模式与已知标准样本的散射模式,可以确定样品中的物相种类。
这种方法常用于未知样品的初步分析和相的鉴定。
2.定量分析:通过测量散射峰的强度和位置,可以确定样品中各组分的含量。
定量分析需要建立标准曲线或参考曲线,以确定散射峰的位置和强度与物相含量之间的关系。
常用的定量分析方法有内标法、峰面积法和相对比例法等。
常用仪器:进行XRD物相定量分析需要使用X射线衍射仪。
X射线衍射仪由X射线源、样品台、衍射角度测量器和X射线探测器组成。
X射线源通常使用钴、铜或铬等发射入射X射线的金属。
应用:XRD物相定量分析在材料科学、地质学、矿物学、纺织业等领域具有广泛的应用。
1.材料科学:XRD物相定量分析可以用于研究材料的结构性质,例如晶胞参数、晶体结构和晶格畸变等。
它可以用于分析晶体中的杂质、晶形和晶轴取向等信息,并对材料的性能和性质进行评估和改善。
2.地质学和矿物学:XRD物相定量分析可用于矿石和岩石中矿物的鉴定和定量分析。
它可以确定矿物的种类、含量和分布情况,进而研究地质历史和矿床形成机制。
3.纺织业:XRD物相定量分析在纺织品中的应用主要用于分析纤维结构和纤维取向。
它可以评估纤维材料的质量和性能,并优化纺织工艺。
物相定性分析原理

物相定性分析原理物相定性分析是一种常用的材料分析方法,其主要原理是通过观察和分析材料在特定条件下的各种物相,来确定材料的组成、结构、性质和变化规律。
物相指的是材料在固相、液相和气相之间的状态变化,通过观察和分析物相变化的特征,可以确定材料的晶体结构、晶体形貌、晶格常数、元素组成、晶格缺陷和晶体性质等信息。
物相定性分析的主要方法包括X射线衍射、电子衍射、红外光谱、拉曼光谱、扫描电镜和透射电镜等。
这些技术能够提供关于晶体结构、成分和形貌的详细信息,从而揭示材料的内在性质和性能。
X射线衍射是物相定性分析中最常用的方法之一。
它利用X射线的特性和物质的晶体结构之间的相互作用,通过测量衍射图案来确定材料的晶体结构、晶格常数和晶面间距。
X射线衍射技术对晶体的要求比较高,只有具有一定程度的结晶性的材料才能通过X射线衍射进行分析。
通过X射线衍射分析,可以确定材料的晶体结构类型、晶胞参数和晶体取向。
电子衍射是一种通过电子束照射材料表面或薄片,利用电子与物质的相互作用来进行分析的方法。
电子衍射技术对样品的要求较低,可以分析非晶态材料或粉末材料的晶体结构。
通过电子衍射,可以确定材料的晶体结构、晶胞参数、相对晶格常数和晶体的取向。
红外光谱是一种通过测量物质在红外辐射下吸收和散射的光谱来进行分析的方法。
红外光谱可以用来研究物质的分子结构和化学键,通过分析红外光谱图谱,可以确定物质的官能团和化学组成。
拉曼光谱是一种通过测量物质在受到激发光照射时发生的光散射来进行分析的方法。
拉曼光谱对样品的要求较低,可以分析固态、液态和气态材料。
通过分析拉曼光谱图谱,可以确定物质的化学成分、结构和分子相互作用。
扫描电镜和透射电镜是通过利用电子束与样品相互作用,测量样品表面和内部结构的显微镜分析方法。
扫描电镜可以观察样品表面的形貌和结构特征,透射电镜可以观察样品的晶体结构、晶体形貌和晶格缺陷。
这两种电子显微镜技术对样品的要求较高,需要制备良好的样品。
X射线物相定性定量分析共56页文档

c0
A
C
Αβ
γ
Z
Ref.
4
εα
nωβ
2V D mp
eγ Sign Color
Ref.
5
d Å I/I1 hkl d Å I/I1 hkl
9
9
6
(1)1a,1b,1c区域为从衍射图的透射区(2θ <90º=中选出的三条最强线的面间距。1d为衍 射图中出现的最大面间距。(1)1a,1b,1c区 域为从衍射图的透射区(2θ<90º=中选出的三 条最强线的面间距。1d为衍射图中出现的最大 面间距。
3 粉末衍射卡片索引及检索方法
Fink Index
当被测物质含有多种物相时(往往都为多种物 相),由于各物相的衍射线会产生重叠,强度数 据不可靠,而且,由于试样对X射线的吸收及晶 粒的择优取向,导致衍射线强度改变,从而采用 字母索引和哈那瓦尔特索引检索卡片会比较困难, 为克服这些困难,芬克索引以八根最强线的d值为 分析依据,将强度作为次要依据进行排列。
(S-P),分解温度(D-T),转变点(TP),按处理条件以及获得衍射数据时的 温度等。
(7)第7区间是该物相的化学式及英文名称 有时在化学式后附有阿拉伯数字及英文
大写字母,其阿拉伯数表示该物相晶胞中原 子数,而大写英文字母则代表16种布拉维点 阵:
C—简单立方;B—体心立方;F—面心立方; T—简单四方;U—体心四方;R—简单三方; H—简单六方;O—简单正交;P—体心正 交;Q—底心正交;S—面心正交;M—简 单单斜;N—底心单斜;E—简单正斜。
与结构有关的信息都会在衍射花样中得到 体现,首先表现在衍射线条数目、位置及其强 度上,如同指纹,反应每种物质的特征。
物相分析根据衍射线条位置(一定,2角 就一定,它决定于结构的点阵面的d 值)和强
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020为卡片编号 若某一物相需两张卡片才能列出所有数据,
则在两张卡片的序号后加字母A标记。
2020/8/26
材料研究方法
19
3. PDF 卡片索引及检索方法
PDF 卡片的索引: Alphabetical Index Hanawalt Index Fink Index
2020/8/26
材料研究方法
31
3 粉末衍射卡片索引及检索方法
5 物相定性分析所应注意问题 (3)由于试样为多物相化合物,为尽可能地避 免衍射线的重叠,应提高粉末照相或衍射仪的分 辨率。 (4)对于数据 d 值,由于检索主要利用该数据, 因此处理时精度要求高,而且在检索时,只允许 小数点后第二位才能出现偏差。
P),分解温度(D-T),转变点(T-P),按处 理条件以及获得衍射数据时的温度等。
2020/8/26
材料研究方法
15
(7)第7区间是该物相的化学式及英文名称 有时在化学式后附有阿拉伯数字及英文大写字母,
其阿拉伯数表示该物相晶胞中原子数,而大写英文字 母则代表16种布拉维点阵:
C—简单立方;B—体心立方;F—面心立方;T—简 单四方;U—体心四方;R—简单三方;H—简单六方; O—简单正交;P—体心正交;Q—底心正交;S—面 心正交;M—简单单斜;N—底心单斜;E—简单正斜。
2020/8/26
材料研究方法
22
2020/8/26
材料研究方法
23
3 粉末衍射卡片索引及检索方法
Fink Index
当被测物质含有多种物相时(往往都为多种物 相),由于各物相的衍射线会产生重叠,强度数据不 可靠,而且,由于试样对X射线的吸收及晶粒的择优 取向,导致衍射线强度改变,从而采用字母索引和哈 那瓦尔特索引检索卡片会比较困难,为克服这些困难, 芬克索引以八根最强线的d值为分析依据,将强度作 为次要依据进行排列。
2020/8/26
材料研究方法
33
3 粉末衍射卡片索引及检索方法
(7)在物相定性分析过程中,尽可能地与其它的
相分析结合起来,互相配合,互相印证。 从目前所应用的粉末衍射仪看,绝大部分仪器
,n,, e 晶体折射率;
sign.
晶体光性正负;
2V.
晶体光轴夹角;
D.
物相密度;
MP.
物相的熔点;
Color.
物相的颜色,有时还会给出
光泽及硬度;
Ref.
第5区间数据的出处。
2020/8/26
材料研究方法
14
(6)第 6 区间为物相的其他资料和数据。 包括试样来源,化学分析数据,升华点(S-
2007-3-22
材料研究方法
8
3)1969年,粉末衍射标准联合委员会(The Joint Committee on Powder Diffraction Standards, JCPDS),专门负责收集、校订各种物质的衍射数据, 并将这些数据统一分类和编号,编制成卡片出版。即 被称为PDF卡(The Powder Diffraction File)。
(衍射仪法-Diffractometer,测微光度计法-Microphotometer, 目测法-Visual); dcorr abs? 所测d值的吸收矫正(No未矫正,Yes矫正); Ref. 说明3,9区域中所列资源的出处。
2020/8/26
材料研究方法
12
(4)第4 区间为被测物相晶体学数据:
(混合物物相分析)
2007-3-22
材料研究方法
3
3.5 X射线物相定性分析
每一种结晶物质都有其特定的结构参数: (1)点阵类型 (2)晶胞大小 (3)晶胞形状 (4)晶胞中原子种类及位置等
2007-3-22
材料研究方法
4
3.5 X射线物相定性分析
与结构有关的信息都会在衍射花样中得到体 现,首先表现在衍射线条数目、位置及其强度上, 如同指纹,反映每种物质的特征。
3.5 X射线物相定性分析
3.5 X射线物相定性分析 物相分析 —— 确定待测样品的结构状态,同时也确定了
物质的种类。 定量分析 —— 多相共存时,组成相含量是多少。
2007-3-22
材料研究方法
1
3.5 X射线物相定性分析
粉末晶体X 射线物相定性分析是根据晶体对X射线
的衍射特征即衍射线的方向及强度来达到鉴定结晶物
目前,这些 PDF 卡已有好几万张之多,而且,为 便于查找,还出版了集中检索手册。
2007-3-22
材料研究方法
9
2. PDF卡片 10
PDF卡片形式
d 1a 1b 1c 1d 7
8
I/I1
Rad. Dia. I/I1
2a 2b
λ Cut off
2c 2d
Filter Coll.
d corr.abs.?
2020/8/26
材料研究方法
25
4. 物相定性分析过程
常规物相定性分析的步骤如下: (1)实验
用粉末照相法或粉末衍射仪法获取被测试样物 相的衍射花样或图谱。
2020/8/26
材料研究方法
26
常规物相定性分析的步骤: (2)通过对所获衍射图谱或花样的分析和计算,获
得各衍射线条的 2θ,d 及相对强度大小 I/I1。在这 几个数据中,要求对 2θ 和 d 值进行高精度的测量 计算,而 I/I1 相对精度要求不高。
sys.
物相所属晶系;
S·G.
物相所属空间群;
a0,b0,c0 物相晶体晶格常数, A= a0/b0 , B= c0/b0 轴率比; α,β,γ 物相晶体的 晶轴夹角;
Z.
晶胞中所含物质化学式的分子数;
Ref.
第四区域数据的出处。
2020/8/26
材料研究方法
13
(5)第五区间是该物相晶体的光学及其他物理常数
质的。
原因:
1)每一种结晶物质都有各自独特的化学组成和晶体结 构,不会存在两种结晶物质的晶胞大小、质点种类和 质点在晶胞中的排列方式完全一致的物质;
2007-3-22
材料研究方法
2
3.5 X射线物相定性分析
2)结晶物质有自己独特的衍射花样。
( d、θ和 I );
3)多种结晶状物质混合或共生,它们的衍射花样也 只是简单叠加,互不干扰,相互独立。
Ref.
3
Sys.
S.G.
a0 b0
c0
A
C
Αβ
γ
Z
Ref.
4
nωβ
2V D mp
eγ Sign Color
Ref.
5
d Å I/I1 hkl d Å I/I1 hkl
9
9
6
2007-3-22
材料研究方法
10
(1)1a,1b,1c区域为从衍射图的透射区(2θ< 90º中选出的三条最强线的面间距。1d 为衍射图中 出现的最大面间距。
目前,一般的衍射仪均由计算机直接给出所测物 相衍射线条的 d 值。
2020/8/26
材料研究方法
27
3 粉末衍射卡片索引及检索方法
(3)使用检索手册,查寻物相 PDF 卡片号 根据需要使用字母检索、Hanawalt 检索或 Fink 检
索手册,查寻物相 PDF 卡片号。一般采用 Hanawalt 检索,用最强线 d 值判定卡片所处的大组,用次强线 d 值判定卡片所在位置,最后用8条强线 d 值检验判 断结果。若8强线 d 值均已基本符合,则可根据手册 提供的物相卡片号在卡片库中取出此PDF卡片。
物相分析根据衍射线条位置( 一定,2 角就一定,它决定于晶面距 d 值)和强度确定
物相。
2007-3-22
材料研究方法
5
3.5 X射线物相定性分析
对于聚合物材料来说,还应考虑整个X射 线衍射曲线,因为聚合物X射线衍射曲线的非 晶态衍射晕环(漫散峰)极大处位置、峰的形 状也是反映材料结构特征的信息,用这个峰位
(2)2a,2b,2c,2d区间中所列的是(1)区域 中四条衍射线的相对强度。最强线为100。
2020/8/26
材料研究方法
11
(3)第三区间列出了所获实验数据时的实验条件。 Rad 所用X射线的种类(CuKα,FeKα…) λ0 X射线的波长(Å) Filter 为滤波片物质名。当用单色器时,注明“Mono” Dia 为照相机镜头直径,当相机为非圆筒形时,注明相机名称 Cut off. 为相机所测得的最大面间距; Coll. 为狭缝或光阑尺寸; I/I1 为测量衍射线相对强度的方法
2020/8/26
材料研究方法
24
3 粉末衍射卡片索引及检索方法
Fink Index
Fink Index中,每一行对应一种物相,按d值 递减列出该物相的八条最强线d值、英文名称, PDF卡片号及微缩胶片号,假若某物相的衍射线 少于八根,则以0.00补足八个d值。
每种物相在Fink Index中至少出现四次。
2020/8/26
材料研究方法
21
3 粉末衍射卡片索引及检索方法
Hanawalt Index 该索引是按强衍射线的d值排列。选择物相八条强
线,用最强三条线 d 值进行组合排列,同时列出其余 五强线 d 值,相对强度、化学式和 PDF 卡号。
整个索引将 d 值第1排列按大小划分为51组,每一 组的 d 值范围均列在索引中。在每一组中其 d 值排 列一般是,第1个 d 值按大小排列后,再按大小排列 第2个 d 值,最后按大小排列第3个 d 值。
2007-3-22
材料研究方法
7
3.5 X射线物相定性分析
1. 物相标准衍射图谱(花样)的获取: 1)1938年,J. D. Hanawalt 等就开始收集并摄取各 种已知物质的衍射花样,将这些衍射数据进行科学 分析整理、分类。 2)1942年,美国材料试验协会(ASTM)整理出版 了最早的一套晶体物质衍射数据标准卡,共计 1300 张,称之为ASTM卡。