测量平差中条件方程的建立

合集下载

测量平差——精选推荐

测量平差——精选推荐

测量平差一.测量平差基本知识 1.测量平差定义及目的在设法消除系统误差、粗差影响下,其基本任务是求待定量的最优估量和评定其精度。

人们把这一数据处理的整个过程叫测量平差。

测量平差的目的:一是通过数据处理求待定量的最优估值;二是评定观测成果的质量。

2.协方差传播律及协方差传播律是观测值(向量)与其函数(向量)之间精度传递的规律。

①观测值线性函数的方差: 函数向量:Y=F(X) Z=K(X)其误差向量为:ΔY=F ΔX ΔZ=K ΔX则随机向量与其函数向量间的方差传递公式为⎪⎪⎪⎭⎪⎪⎪⎬⎫====F D K D K D F D K D K D F D F D TXZYTXYZTXZTXY②多个观测值线性函数的协方差阵t×n×n ×t×n T n XX t t ZZ K D K D =③非线性的协方差传播T XX ZZ K KD D =3.权及常用的定权方法①权表示比例关系的数字特征称之为权,也就是权是表征精度的相对指标。

权的意义不在于它们本身数值的大小,而在于它们之间所存在的比例关系。

()n i iiP ,...,2,1220==σσ i P 为观测值i L 的权,20σ是可以任意选定的比例常数。

②单位权方差权的作用是衡量观测值的相对精度,称其为相对精度指标。

确定一组权时,只能用同一个0σ,令0σσ=i ,则得:iiP ===02202021σσσσ上式说明20σ是单位权(权为1)观测值的方差,简称为单位权方差。

凡是方差等于20σ的观测值,其权必等于1。

权为1的观测值,称为单位权观测值。

无论2σ取何值,权之间的比例关系不变。

③测量中常用的定权方法 ⅰ.水准测量的权NC P h =式中,N 为测站数。

SC P h =式中,S 为水准路线的长度。

ⅱ.距离量测的权ii S C P =式中,i S 为丈量距离。

ⅲ.等精度观测算术平均值的权CP ii N=式中,i N 为i 次时同精度观测值的平均值。

附合导线平差步骤

附合导线平差步骤

附合导线平差步骤一、数据处理1.数据输入:将测站、观测角度、观测距离等原始数据输入计算机或平差软件。

2.数据质检:对输入的数据进行初步的质检,检查是否存在错误数据、异常数据等,发现并剔除异常数据。

3.角度数据处理:将观测角度转换为弧度,便于后续计算。

4.距离数据处理:对观测距离进行单位转换,通常将其转换为米或千米。

5.数据配对:将同一测站观测到的角度和距离数据做配对,构成观测组。

6.编点编号:对测站进行编号,便于后续计算。

二、导线控制要素计算1.导线连杆长度计算:根据测站坐标计算导线连杆的几何长度。

2.导线初始点坐标计算:根据导线方位角、连杆长度和已知控制点的坐标计算导线初始点的坐标。

3.导线朝向角计算:根据已知控制点的坐标和导线的方位角,计算导线的朝向角。

三、平差计算1.平差模型确定:选择适当的平差模型,常用的有单位权平差模型、具有不等权的平差模型等。

2.条件方程建立:根据平差模型和导线控制要素的计算结果,建立条件方程组。

3.条件方程系数矩阵确定:根据条件方程组,将其转化为系数矩阵形式。

4.闭合差计算:根据条件方程和系数矩阵,利用最小二乘法计算闭合差,并评估其精度。

5.参数平差:利用闭合差和条件方程系数矩阵,通过参数平差法计算出导线的平差结果。

6.残差计算:根据平差结果和原始观测数据,计算各个观测量的平差残差,并评估其精度。

四、结果分析和判断1.平差结果分析:对平差结果进行查验和分析,判断平差是否满足要求,是否符合实际测量误差的范围。

2.误差判断:根据平差结果和平差残差,判断是否存在异常误差,如超限误差、粗大误差等。

3.解释和修正:对异常误差进行解释和修正,如重新检查测量数据、进行补充观测等。

以上就是附合导线平差步骤的主要内容,通过这些步骤可以得到导线的最佳平差值,为后续的工程测量提供准确的基础数据。

在实际应用中,还需根据具体情况对平差步骤进行调整和优化,以满足实际工程测量的需求。

平差原理和方法的使用与分析

平差原理和方法的使用与分析

平差原理和方法的使用与分析一、引言平差作为一种测量数据处理的方法,广泛应用于测绘、空间定位、工程测量等领域。

平差的目的是通过处理观测数据,获得更为准确的测量结果。

在实际应用中,平差原理和方法的正确使用与分析将直接影响测量成果的质量。

二、平差原理的理解与应用平差的基本原理是通过最小二乘法,将观测数据的误差最小化。

在平差过程中,需要定义观测量、未知量和条件方程。

观测量是指通过测量得到的待确定的量,未知量是指需要求解的量,而条件方程则是将观测数据与未知量联系起来的等式。

在实际应用中,我们常用的平差方法有最小二乘平差、加权最小二乘平差和限差平差等。

最小二乘平差是指通过最小化观测数据的加权残差平方和,来获得最优的未知量组合。

加权最小二乘平差则是在最小二乘平差的基础上,考虑观测数据的精度权重,以提高平差结果的准确性。

限差平差是将观测数据的精度限制在一定范围内,以排除异常值的影响。

三、平差方法的适用性分析在选择平差方法时,我们需要根据实际情况进行适用性分析。

首先,应考虑观测数据的误差特点,如观测数据是否服从正态分布、是否存在系统误差等。

对于服从正态分布的数据,最小二乘平差是一种较为合适的方法。

对于存在系统误差的数据,可以考虑加权最小二乘平差来降低系统误差对结果的影响。

其次,应考虑观测数据的精度要求,以及所求未知量的敏感度。

如果精度要求较高或者所求未知量对结果较为敏感,可以采用限差平差来排除异常值的影响。

四、平差方法的误差分析在平差过程中,误差分析是至关重要的。

常见的误差包括观测误差、建模误差和未知量的估计误差。

观测误差是指测量仪器、环境等因素引起的误差,可以通过观测数据的重复测量来进行估计。

建模误差则是由于条件方程的建立不完善或者模型假设不准确而导致的误差。

未知量的估计误差是未知量的真值与估计值之间的差异。

误差分析的结果可用于判断平差结果的可靠性。

如果误差分析结果较小,说明平差结果较为可靠;如果误差分析结果较大,则需要重新考虑观测数据的准确性和建模的合理性。

条件平差的基本原理

条件平差的基本原理
r1v1 r2v2 rnvn wr 0
v1
V
n ,1
v2
vn
wa F1L1, L2 ,, Ln
wb F2 L1, L2 ,, Ln
wr Fr L1, L2 ,, Ln
则相应方程的矩阵表达式分别为
F Lˆ 0
AV W 0 W FL
3. 基础方程
按求函数极值的拉格朗日乘数法,设乘数
5)求观测值的平差值; Lˆ L V
6)检核。 F (Lˆ) 0
7)检核。
3. 实例分析 例6-1水准网如右图:观测值及其权矩阵如下:
L 0.023 1.114 1.142 0.078 0.099 1.216 T m
P diag1 1 1 2.5 2.5 2.5
求各水准路线的最或然值。
解: 1)列出条件方程

v1 v2 v3 v2
0 0 v4 4 0
v1
1 0
1 1
1 0
0 1
v2 vv43
0 4
0 0
令c=1,则由定权公式
,有 pi
C Si
1 Si
P 1
1 p1
0
0
0
0
1 p2
0
0
0
0
1 p3
0
0 s1 0 0 0 2 0 0 0
0 0
0 0
1 p4
0
K
r ,1
ka
kb
kr T
,称为联系数向量。组成函数
V T PV 2K T AV W
将 φ 对V 求一阶导数,并令其为零,得
d dV
2V T P
2KT
A
0
两边转置,得

测绘技术中的坐标平差和校正方法

测绘技术中的坐标平差和校正方法

测绘技术中的坐标平差和校正方法测绘技术是现代社会中不可或缺的一部分,它对于土地规划、城市建设、工业生产等方面起到了重要的作用。

在测绘过程中,坐标平差和校正方法是非常重要的环节。

本文将介绍测绘技术中的坐标平差和校正方法的基本概念和应用。

一、坐标平差的基本概念坐标平差是指通过一系列的测量观测值,对已知或未知的点坐标进行精确计算的一种方法。

在测绘中,我们通常使用全站仪、电子经纬仪等测量仪器来获得待测点的坐标观测值。

然而,由于测量仪器本身的误差以及环境条件的影响,观测值往往存在一定的误差。

通过坐标平差的方法,可以将这些误差进行处理,得到更为准确的坐标结果。

坐标平差的基本原理是基于最小二乘法。

最小二乘法是一种数学工具,它通过定义一个目标函数,使得观测值与计算值的差异最小化。

在坐标平差中,目标函数通常为观测值与计算值之间的平方和的最小化。

通过最小化目标函数,可以得到最优的坐标平差结果。

二、坐标平差的常用方法在坐标平差中,常用的方法包括条件方程法、最小二乘法、变权方差法等。

条件方程法是一种基于条件方程组的平差方法。

在条件方程法中,通过建立条件方程组来描述待测点的位置关系,然后将观测值代入条件方程中进行计算。

最小二乘法是一种通过最小化观测值与计算值的平方和来进行坐标平差的方法。

变权方差法是一种根据每个观测值的精度不同,对其进行加权处理的方法。

这些方法在实际应用中各有优缺点,可以根据实际情况选择合适的方法进行坐标平差。

三、校正方法的基本概念校正方法是指通过对已有数据进行处理,使其达到规定的精度和准确度的一种方法。

在测绘中,校正方法通常用于处理控制点和基准点的坐标。

控制点是用于确定测量网中其他点坐标的已知点,而基准点是作为参考的固定点。

通过对控制点和基准点的坐标进行校正,可以提高整个测绘网络的精度和准确度。

校正方法主要包括绝对校正和相对校正两种。

绝对校正是通过对控制点和基准点进行具体的观测和测量,来获得它们的准确坐标。

测量程序设计_条件平差和间接平差

测量程序设计_条件平差和间接平差

程序代码如下:
disp(‘-------水准网间接平差示例-------------’) disp(‘已知高程’) Ha = 5.015 % 已知点高程,单位m Hb = 6.016 % 已知点高程,单位m
A h2 D h1
C h6 E h7 B h4
h5
h3
disp(‘观测高差,单位m’)
L = [1.359; 2.009; 0.363; 1.012; 0.657; -0.357] disp(‘系数矩阵B’)
则: PV AT K
V P A K QA K
T
1 T
4、法方程: 将条件方程 AV+W=0代入到改正数方程V=QATK 中,则得到:
AQAT K W 0
r1 r1 r1
记作: 由于
N aa K W 0
rr
R( Naa ) R( AQAT ) R( A) r
Naa为满秩方阵, K Naa1W ( AQAT )1 ( AL A0 )
if H(1,1)+H(2,1)-H(3,1)+HA-HB==0 && H(2,1)H(4,1)==0 disp(‘检核正确') else disp(‘检核错误') end disp(‘平差后的高程值') HC = HA + H(1,1) HD = HA + H(1,1) + H(4,1)
二、间接平差的基本原理
其中l=L-d.
ˆ 设误差Δ和参数X的估计值分别为V 和 X
则有
ˆ V AX l
X0 为了便于计算,通常给参数估计一个充分接近的近似值
ˆ ˆ X X0 x
则误差方程表示为

测绘技术中的平差计算方法详解

测绘技术中的平差计算方法详解

测绘技术中的平差计算方法详解测绘技术是一个复杂而多样化的领域,涉及到测量和计算等多个方面。

其中,平差计算是测绘技术中的一个重要环节,用于处理测量数据的误差,并确定准确的测量结果。

本文将详细介绍测绘技术中的平差计算方法,包括主要的几种方法以及其原理和应用。

一、最小二乘法平差最小二乘法平差是测绘技术中常用的一种平差方法,其原理是通过最小化测量数据的残差平方和,找到最优的平差结果。

具体而言,最小二乘法平差可以分为两个步骤,即观测方程的建立和最小二乘平差计算。

观测方程的建立是最小二乘法平差的首要步骤。

观测方程是通过观测数据和控制点坐标之间的关系建立的,通常采用线性模型,分为多余观测方程和未知数观测方程。

多余观测方程用于约束未知数之间的关系,而未知数观测方程用于计算未知数的值。

最小二乘平差计算是基于观测方程的误差理论和最小二乘法原理进行的。

具体而言,最小二乘平差计算首先确定观测方程的权阵,即观测误差的方差-协方差矩阵的逆阵。

然后,通过迭代计算的方式,不断更新未知数的值,直到满足平差条件为止。

最终,得到的平差结果可以用于控制点坐标的计算和精度评定等。

最小二乘法平差在测绘技术中有广泛的应用。

例如,地理信息系统(GIS)中的空间数据处理和地图制图,常常需要进行最小二乘法平差来获得准确的空间坐标。

此外,最小二乘法平差还在大地测量、工程测量和海洋测绘等领域中得到广泛的应用。

二、权值平差除了最小二乘法平差外,权值平差也是测绘技术中常用的一种平差方法。

它通过给予不同观测量不同的权值,来提高平差结果的准确性。

具体而言,权值平差可以分为权值设计和平差计算两个步骤。

权值设计是权值平差的首要步骤。

权值设计是通过评定每个观测量的精度,为观测方程赋予权值。

通常情况下,权值可以根据观测量的可靠性、测量仪器的准确性和操作员的经验等因素来确定。

平差计算是基于观测方程的权值进行的。

权值平差首先通过测量原始数据的残差和权阵,确定观测方程的权阵。

地形测量附合水准路线的平差计算步骤

地形测量附合水准路线的平差计算步骤

地形测量附合水准路线的平差计算步骤附合水准路线的平差计算步骤可以分为以下几个步骤:1.高程观测数据的准备:首先,需要准备高程观测数据,包括各测站观测的高程数值、观测时刻、观测仪器的基准高程等。

同时,还需要检查数据的准确性和完整性。

2.初始近似值的计算:根据高程观测数据,可以计算出初始近似的高程差值。

常用的初始近似值计算方法有重心化和里程法等。

重心化法是以平均高程为起点,将每个测站的高差逐步累加得到各标准差与组合因子之积的增量,而里程法是利用水准路线里程计算高程差。

3.条件方程的建立:根据观测数据和几何关系,可以建立附合水准路线的条件方程。

条件方程是高程平差问题的数学表达式,用来描述各观测值与未知数之间的关系。

常用的条件方程有平差方程、高差闭合差方程和封闭差方程等。

4.约束方程的引入:为了减小结果的误差,需要引入一定的约束条件。

约束方程是对观测值和未知数之间的约束关系的数学表达式,可以是已知高程值的约束、已知高程差值的约束或者其他几何约束。

5.平差计算的求解:根据条件方程和约束方程,可以将高程观测数据进行平差计算。

常用的平差方法有最小二乘法、最小二乘平差法等。

最终得到的结果是各个测站的高程值或者改正数,以及相应的精度估计。

6.检查和平差报告的编制:平差计算完成后,需要对结果进行检查,包括检查平差较验数、残差等。

如果结果符合要求,则可以编制平差报告,对计算过程和结果进行总结和描述,并进行精度评定和检验。

需要注意的是,以上步骤仅是附合水准路线的平差计算的基本步骤,具体的计算方法和步骤可能会因实际情况而有所不同。

此外,平差计算还需要考虑误差的传播和控制,以及精度要求等因素,以确保结果的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3-4 三角网条件平差计算2学时三角网测量的目的,是通过观测三角形的各角度或边长,计算三角网中各未知点的坐标、边的长度及方位角等。

三角网按条件平差计算时,首要的问题是列出条件方程。

因此了解三角网的构成,总结其条件方程的种类及各种条件方程的组成规律是十分重要的。

三角网的种类比较多,网的布设形式也比较复杂。

根据观测内容的不同,有测角网、测边网、边角同测网等;根据网中起始数据的多少,有自由三角网和非自由三角网。

自由三角网是指仅具有必要起算数据的三角网,网中没有多余的已知数据。

如果测角三角网中,只有两个已知点(或者已知一个已知点的坐标、一条已知边的长度和一个已知的方位角),根据数学理论,以这两个已知点为起算数据,再结合必要的角度测量值,就能够解算出网中所有未知点的坐标。

如果三角网中除了必要的起算数据外还有其它的已知数据,或者说已知数据有冗余,就会增加对网形的约束,从而增强其可靠性,这种三角网称之为非自由三角网。

无论多么复杂的三角网,都是由单三角形、大地四边形和中点多边形组合而成的。

在本节,我们先讨论三角网条件平差中条件方程个数的确定问题,然后主要讨论测角三角网的条件方程的形式问题。

一、网中条件方程的个数三角网平差的目的,是要确定三角点在平面坐标系中的坐标最或然值。

如图3-9所示,根据前面学到的测量基础知识,我们知道,必须事先知道三角网中的四个数据,如两个三角点的4个坐标值,或者一个三角点的2个坐标值、一条边的长度和一个方位角,这4个已知数据我们称之为三角网的必要起算数据。

有了必要起算数据,就可以确定三角网在平面坐标系中的位置、网的大小及其方位,就可以计算三角网中未知点的坐标。

要对三角网进行平差计算,还必须先知道网中的总观测数n、判定必要观测数t,从而确定了多余观测数:r = n - t由条件平差原理知,多余观测数与条件方程数是相等的,有了多余观测数,也就确定出了条件方程的个数。

因此,问题的关键是判定必要观测数t。

1.网中有2个或2个以上已知点的情况三角网中有2个或2 个以上已知三角点,就一定具备了4个必要起算数据。

无论是测角网、测边网还是边角同测网,如果有2个已知点相邻,要确定一个未知点的坐标,需要观测两个观测值(2个角,或者1条边和1个角,或者2条边)。

也就是说,确定1个未知点要有2个必要观测值;那么如果网中有p个未知点,必要观测数应等于未知点个数的两倍。

t = 2 · p (3-4-1)(1) 测角网图3-9所示,三角网中有2个已知点,待定点个数为p = 6。

如果三角网中观测量全部是角度时。

总观测值个数:n = 23必要观测数:t = 2 · p =12则多余观测数,即条件平差条件方程个数:r = n – t = 11(2) 测边网在图3-9中,如果三角网中观测量全部是边的长度时:总观测值个数:n = 14必要观测数:t = 2 · p =12则多余观测数,即条件平差条件方程个数:r = n – t = 2(3) 边角同测网在图3-9中,如果三角网中的所有的角度值和所有的边长值都进行观测时:总观测值个数:n = 37必要观测数:t = 2 · p =12则多余观测数,即条件平差条件方程个数:r = n – t = 252. 网中已知点少于2个的情况有些情况下,三角网中已知点可能少于2个,只有1个已知点、1个已知边和1个已知方位角,或者没有已知点和已知方位角只有1个已知边。

但是,不管怎样说,1条已知边是必须已知的,或者需要进行观测的。

如果没有已知点,可以假定网中的1个未知点;如果没有已知方位角,可以取网中的1个方向的方位角为某一假定值。

这样也就间接地等价于网中有2个相邻点的坐标是已知的。

(1) 测角网三角网中共有p个三角点、1个已知方位角(也可以没有)、1个已知点(也可以没有已知点)和1个已知边长S(或者也是观测得到的),并观测了所有的角度。

如果已知点和已知方位角都没有,就要进行必要的假设。

则在进行条件平差时,必要观测数为:t = 2 · ( p – 2) (3-4-2)如图3-10所示,三角网中观测了所有角度值(如果没有已知边时,也观测1条边长作为起算数据)。

网中三角点个数:p = 6角度观测值个数:n = 12必要观测数:t = 2 · ( p – 2) = 8则多余观测数,即条件平差条件方程个数:r = n – t = 4(2) 测边网或边角同测网若三角网中,共有p个三角点和1个已知点(或者也是假定的),并对所有的边长,或者角度和边长进行了观测,观测值总个数为n。

在进行条件平差时,由于要加上必须的起算边长,则必要观测(边或者边和角)的个数为t = 2 · ( p – 2)+1 (3-4-3)如图3-10所示,网中三角点个数:p = 6如果是测边网,则总观测值个数: n = 9必要观测数: t = 2 · ( p – 2) +1=9多余观测数,即条件平差条件方程个数: r = n – t = 0如果是边角同测网,则总观测值个数: n = 21必要观测数: t = 2 · ( p – 2) +1=9多余观测数,即条件平差条件方程个数: r = n – t = 12以上我们仅对几种三角网,讨论了条件平差时必要观测数及多余观测数和条件平差方程数的确定方法,还有很多情况没有涉及到。

在实际平差计算中,应针对不同情况进行具体分析。

二、条件方程的形式三角网中的条件方程主要有以下几种形式:1. 图形条件方程图形条件,又叫三角形内角和条件,或三角形闭合差条件。

在三角网中,一般对三角形的每个内角都进行了观测。

根据平面几何知识,三角形的三个内角的平差值的和应为180˚,如图3-12中的三角形ABP ,其内角平差值的和应满足下述关系:0180ˆˆˆ321=-++ L L L (3-4-4)此即为三角形内角和条件方程。

由于三角形是组成三角网的最基本的几何图形,因此,通常称三角形内角和条件为图形条件。

因此图形条件也是三角网的最基本、最常见的条件方程形式。

与(3-4-4)式相对应的改正数条件方程为0321=-++w v v v (3-4-5))180(321 -++-=L L L w(3-4-6) 2. 水平条件方程水平条件,又称圆周条件,这种条件方程一般见于中点多边形中。

如图3-12所示,在中点P 上设观测站时,周围的五个角度都要观测。

这五个观测值的平差值之和应等于360˚,即0360ˆˆˆˆˆ1512963=-++++ L L L L L (3-4-7)相应的改正数条件方程为 01512963=-++++w v v v v v (3-4-8))360(1512963 -++++-=L L L L L w(3-4-9)3. 极条件方程极条件是一种边长条件,一般见于中点多边形和大地四边形中。

先看中点多边形的情况。

如图3-12所示,中心P 点为顶点,有五条边,从其中任一条边开始依次推算其它各边的长度,最后又回到起始边,则起始边长度的平差值应与推算值的长度相等。

在图3-12所示的三角网中,我们应用正弦定理,以BP 边为起算边,依次推算AP 、EP 、DP 、CP ,最后回到起算边BP 、,得到下式14131110875421ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆˆL L L L L L L L L L S S BP BP ⋅⋅⋅⋅= 整理得0ˆ1ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin 14118521310741=-L L L L L L L L L L (3-4-10)(3-4-10)式即为平差值的极条件方程。

为得到其改正数条件方程形式,可用泰勒级数对上式左边展开并取至一次项:1sin sin sin sin sin sin sin sin sin sin 1sin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin 1411852131074114118521310741-=-L L L L L L L L L L L L L L L L L L L L ρρ''-''+22141185213107411114118521310741cot sin sin sin sin sin sin sin sin sin sin cot sin sin sin sin sin sin sin sin sin sin v L L L L L L L L L L L v L L L L L L L L L L L ρρ''-''+55141185213107414414118521310741cot sin sin sin sin sin sin sin sin sin sin cot sin sin sin sin sin sin sin sin sin sin v L L L L L L L L L L L v L L L L L L L L L L L ρρ''-''+88141185213107417714118521310741cot sin sin sin sin sin sin sin sin sin sin cot sin sin sin sin sin sin sin sin sin sin v L L L L L L L L L L L v L L L L L L L L L L L ρρ''-''+111114118521310741101014118521310741cot sin sin sin sin sin sin sin sin sin sin cot sin sin sin sin sin sin sin sin sin sin v L L L L L L L L L L L v L L L L L L L L L L L 0cot sin sin sin sin sin sin sin sin sin sin cot sin sin sin sin sin sin sin sin sin sin 141414118521310741131314118521310741=''-''+ρρv L L L L L L L L L L L v L L L L L L L L L L L化简,即得极条件的改正数条件方程:1414131311111010887755442211=--+-+-+-+-w v ctgL v ctgL v ctgL v ctgL v ctgL v ctgL v ctgL v ctgL v ctgL v ctgL (3-4-11) ⎪⎪⎭⎫ ⎝⎛-''-=13107411411852sin sin sin sin sin sin sin sin sin sin 1L L L L L L L L L L w ρ(3-4-12)在大地四边形中的极条件方程与中点多边形稍有不同。

相关文档
最新文档