2014—2015学年江苏省扬州中学高一数学期中考试试题试卷及答案
江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。
3.考试结束后,请将答题卡交监考人员。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每题给出的四个选项中只有一项是最符合题意的。
1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。
扬州市邗江区2014-2015高一下学期高一数学期中试卷答案

由 an 0 an 1 0
11 2n 0
……………………………… 10 分
11 2(n 1) 0
4.5 n 5.5 ……………………………… 12 分
又n N
故 n 5 ……………………………… 14 分
16.(本小题14分)
已知
, cos(α﹣ β)= , sin(α+β)=
.求 sin2α的值.
( a1
17
7
,d
, a12 =15)
4
4
4.设 θ为第二象限角,若
,则 sinθ+cosθ=
.( )
2
.
解:∵tan( θ+ ) =
=,
∴tanθ=﹣ , ∵θ为第二象限角,
∴cosθ= ﹣
=﹣
, sinθ=
=,
则 sinθ+cosθ= ﹣
=﹣ .
故答案为:﹣
5. △ABC 中,∠B=120 °, AC=7 , AB=5 ,则 △ABC 的面积为
7. sin15 s°in75 的°值是
.
解:∵sin15 °sin75 °
=sin15 °cos15°
= sin30°
1
=.
8.在 △ABC 中, AB=5 , AC=7 , BC=8 ,则 BC 边上的中线 AD 的长等于
.
( 21 )
9. 已知 { an } 是等差数列, a1 =1,公差 d≠0,Sn 为其前 n 项和, 若 a1 , a2 , a5 成等比数列,
则 S8=
.
解:∵{a n} 是等差数列, a1, a2,a5 成等比数列,
∴
=a1?( a1+4d),又 a1=1,
2014-2015学年江苏省扬州中学高二(下)期中数学考试卷(文科)

2014-2015学年省中学高二(下)期中数学试卷(文科)一、填空题(本大题共14小题,每小题5分,计70分)1.(2015•高邮市校级模拟)若全集U=R,集合M={x|x2﹣x≥0},则集合∁U M=(0,1).考点:补集及其运算.专题:计算题.分析:把集合M化简,由实数集中不在集合M中的元素构成的集合就是M的补集.解答:解:M={x|x2﹣x≥0}={x|x≤0或x≥1},又全集U=R,所以,∁U M={x|0<x<1}.故答案为(0,1).点评:本题考查了补集及其运算,注意借助于数轴解答,是基础题.2.(2015春•校级期中)已知幂函数f(x)过点(2,),则f(4)的值为.考点:函数的值.专题:计算题;函数的性质及应用.分析:设幂函数f(x)=x a,由f(x)过点(2,),知,由此能求出f(4).解答:解:设幂函数f(x)=x a,∵f(x)过点(2,),∴,∴f(4)=x4=(x2)2==,故答案为:.点评:本题考查函数值的求法,是基础题.解题时要认真审题,仔细解答,注意幂函数的性质和应用.3.(2015春•校级期中)若函数f(x+1)=x2﹣2x+1,则函数f(x)的解析式为f(x)=(x﹣2)2.考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:将f(x+1)=x2﹣2x+1变形,令x=x+1替换即可.解答:解:∵f(x+1)=x2﹣2x+1=x2+2x+1﹣4(x+1)+4=(x+1)2﹣4(x+1)+4,∴f(x)=x2﹣4x+4=(x﹣2)2.点评:本题考查了求函数的解析式问题,考查转化思想,是一道基础题.4.(2013•淇县校级一模)已知函数若f(f(0))=4a,则实数a=2.考点:函数与方程的综合运用.专题:计算题.分析:给出的是分段函数,根据所给变量的围确定选用具体的解析式,从而得方程,故可解.解答:解:由题意,f(0)=20+1=2,∴f(2)=4+2a=4a,∴a=2故答案为2.点评:本题的考点是函数与方程的综合运用,主要考查分段函数的定义,考查求函数值,有一定的综合性5.(2014春•海安县校级期末)函数的值域为(0,1).考点:函数的值域.分析:将函数变形为,因为2x>0,用观察分析法求值域即可.解答:解:,∵2x>0,∴,∴0<y<1故答案为:(0,1)点评:本题考查函数的值域问题,属基本题型、基本方法的考查.6.(2013•一模)由下列各式:,…,归纳第n个式子应是.考点:归纳推理.专题:探究型.分析:本题考查的知识点是归纳推理,我们可以根据已知条件中:,观察分析不等式两边的项数及右边数的大小,我们归纳分析得,左边累加连续2n﹣1个正整数倒数的集大于,由此易得到第n个式子.解答:解:∵,,,=…∴第n个式子应是:故答案为:点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).7.(2015春•校级期中)设z=,则z的共轭复数是1﹣3i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的分母实数化后,求解共轭复数即可.解答:解:z===1+3i.z=,则z的共轭复数是1﹣3i.故答案为:1﹣3i.点评:本题考查复数的除法运算法则的应用,共轭复数的求法,基本知识的考查.8.(2015春•校级期中)函数y=2x+log2x﹣6的零点所在的区间是(,),则正整数k的值为4.考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数零点的判定定理,即可求得结论解答:解:∵函数f(x)=log2x+2x﹣6,∴f′(x)=2+>0,∴函数f(x)在(0,+∞)单调递增,∵f()=﹣4<0,f(3)=log23>0,∴f()•f(3)<0,且函数f(x)=log2x+2x﹣6在区间(,3)上是连续的,故函数f(x)=log2x+2x﹣6的零点所在的区间为(,3),∴,解得:3<k<5,∴k=4,故答案为:4.点评:本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.9.(2015春•校级期中)定义在R上的函数f(x)为最小正周期是6的周期函数,当﹣3≤x <﹣1时,f(x)=﹣(x+2)2;当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2014)=337.考点:函数的值.专题:函数的性质及应用.分析:由已知得f(﹣3)=﹣1,f(﹣2)=0,f(﹣1)=﹣1,f(0)=0,f(1)=1,f(2)=2,再由定义在R上的函数f(x)为最小正周期是6的周期函数,能求出f(1)+f(2)+f(3)+…+f (2014)的值.解答:解:由已知得f(﹣3)=﹣1,f(﹣2)=0,f(﹣1)=﹣1,f(0)=0,f(1)=1,f (2)=2,定义在R上的函数f(x)为最小正周期是6的周期函数,∴f(1)+f(2)+f(3)+…+f(2014)=335(﹣1+0﹣1+0+1+2)+f(1)+f(2)+f(3)+f(4)=335+1+2﹣1+0=337.故答案为:337.点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数的周期性的合理运用.10.(2015春•校级期中)已知a=log510,b=log36,c=log714,则a,b,c按照由小到大的顺序排列为c<a<b.考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数的运算性质把三个数转化为1加一个对数式的形式,然后由换底公式可比较大.解答:解:a=log510=1+log52,b=log36=1+log32,c=log714=1+log72,因为log32>log52>log72,所以c<a<b.故答案为:c<a<b.点评:本题考查了对数值的大小比较,考查了对数式的运算性质,是基础题.11.(2015春•校级期末)已知f(x)是定义在R上的奇函数,且f(x)=x2﹣4x(x>0),则不等式f(x)>x的解集是(﹣5,0)∪(5,+∞).考点:函数奇偶性的性质.专题:函数的性质及应用.分析:设x<0则﹣x>0,根据题意和奇函数的性质求出x<0时函数的解析式,再用分段函数的形式表示出来,对x进行分类讨论列出不等式组,求出不等式的解集.解答:解:设x<0,则﹣x>0,∵f(x)是定义在R上的奇函数,且f(x)=x2﹣4x(x>0),∴f(x)=﹣f(﹣x)=﹣=﹣x2﹣4x,则f(x)=,∵f(x)>x,∴或,解得﹣5<x<0或x>5,∴不等式的解集是(﹣5,0)∪(5,+∞),故答案为:(﹣5,0)∪(5,+∞).点评:本题考查函数的奇偶性的应用:求函数的解析式,一元二次不等式的解法,以及分类讨论思想,属于中档题.12.(2015春•校级期中)下列命题正确的序号是①③①命题“若a>b,则2a>2b”的否命题是真命题;②若命题p:“>0”,则;¬p:“≤0”;③若p是q的充分不必要条件,则¬p是¬q的必要不充分条件;④方程ax2+x+a=0有唯一解的充要条件是a=±.考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①根据指数函数的性质判断即可;②写出p的否命题即可;③根据充分必要条件的定义判断即可;④通过讨论a=0,a≠0判断即可.解答:解:①命题“若a>b,则2a>2b”的否命题是:“若a≤b,则2a≤2b”是真命题,故①正确;②若命题p:“>0”,则;¬p:“<0”,故②错误;③若p是q的充分不必要条件,则¬p是¬q的必要不充分条件,故③正确;④方程ax2+x+a=0,当a=0时,方程也有唯一解,故④错误;故答案为:①③.点评:本题考查了充分必要条件,考查命题之间的关系,考查方程思想,本题综合性强,属于中档题.13.(2015春•校级期中)已知函数f(x)=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4∈R,且a0≠0)的四个零点构成公差为d的等差数列,则f′(x)的所有零点中最大值与最小值之差为|d|.考点:函数零点的判定定理.专题:函数的性质及应用.分析:先设出函数f(x)的4个零点,求出f(x)的导数,得到f′(x)的零点,从而求出答案.解答:解:设函数f(x)的四个零点构成公差为d的等差数列为:t+3,t+1,t﹣1,t﹣3,公差d=2,f(x)=(x﹣t﹣3)(x﹣t﹣1)(x﹣t+1)(x﹣t+3),用平方差公式:f(x)=,令g(x)=(x﹣t)2﹣1,h(x)=(x﹣t)2﹣9,f′(x)=g′(x)h(x)+g(x)h′(x),整理得:f′(x)=4(x﹣t)(x2﹣2tx+t2﹣5),令f′(x)=0,解得:x=t﹣,t,t+,∴零点的最大值与最小值的差是;2=|d|,故答案为:|d|.点评:本题考查了函数零点问题,等差数列,导数的应用,是一道中档题.14.(2015春•校级期中)已知λ(x)=ax3+x2﹣ax(a≠0),若存在实数a∈(﹣∞,﹣],使得函数μ(x)=λ(x)+λ′(x),x∈在x=﹣1处取得最小值,则实数b的最大值为.考点:利用导数求闭区间上函数的最值.专题:导数的综合应用;不等式的解法及应用.分析:由μ(x)=ax3+(3a+1)x2+(2﹣a)x﹣a,知μ(x)≥μ(﹣1)在区间上恒成立,令ϕ(x)=ax2+(2a+1)x+(1﹣3a),由a∈(﹣∞,﹣]知其图象是开口向下的抛物线,故它在闭区间的最小值必在区间端点处取得,从而可得ϕ(b)≥0,由此能求出b的最大值.解答:解:由题意,λ(x)=ax3+x2﹣ax的导数λ′(x)=3ax2+2x﹣a,μ(x)=ax3+(3a+1)x2+(2﹣a)x﹣a,据题知,μ(x)≥μ(﹣1)在区间上恒成立,即:(x+1)(ax2+(2a+1)x+(1﹣3a))≥0…①当x=﹣1时,不等式①成立;当﹣1<x≤b时,不等式①可化为ax2+(2a+1)x+(1﹣3a)≥0…②令ϕ(x)=ax2+(2a+1)x+(1﹣3a),由a∈(﹣∞,﹣]知其图象是开口向下的抛物线,故它在闭区间的最小值必在区间端点处取得.又ϕ(﹣)=﹣a>0,故不等式②成立的充要条件是ϕ(b)≥0,整理得:≤﹣在a∈(﹣∞,﹣]上有解,∴≤2,解得﹣1<b≤.b的最大值为.故答案为:.点评:本题考查了有关不等式恒成立的问题,对于恒成立问题,一般选用参变量分离法、最值法、数形结合法求解,属于中档题.二、解答题(本大题共6小题,计90分)15.(2015春•校级期中)记函数f(x)=的定义域为A,函数g(x)=lg(a<1)的定义域为B(1)求A、B;(2)若B⊆A,数a的取值围.考点:集合的包含关系判断及应用;函数的定义域及其求法.专题:集合.分析:(1)要使函数f(x)=有意义,则(x+1)(x﹣1)≥0,解出即可.要使函数g(x)=lg(a<1)有意义,则(x﹣a﹣1)(2a﹣x)>0,解出即可.(2)由B⊆A,可得2a≥1或a+1≤﹣1,解出即可.解答:解:(1)由题意得:(x+1)(x﹣1)≥0,解得x≥1或x≤﹣1,即A=(﹣∞,﹣1]∪∪.点评:本题考查了根式函数与对数函数的定义域、一元二次不等式的解法、集合之间的关系,考查了推理能力与计算能力,属于中档题.16.(2010•兴化市校级模拟)设命题p:函数f(x)=lg的定义域是R;命题q:不等式3x ﹣9x<a对一切正实数x均成立.(1)如果p是真命题,数a的取值围;(2)如果“p或q”为真命题,命题“p且q”为假命题,数a的取值围.考点:命题的真假判断与应用.专题:综合题.分析:(1)由题意,若p是真命题,则对任意实数都成立,由此能够求出p是真命题时,实数a的取值围.(2)若命题q为真命题时,则3x﹣9x<a对一切正实数x均成立.由∈(﹣∞,0),知q是真命题时,a≥0.再由p或q为真命题,命题p且q为假命题,知或,能求出实数a的取值围.解答:解:(1)由题意,若p是真命题,则对任意实数都成立,若a=0,显然不成立;若a≠0,解得a>2故如果p是真命题时,实数a的取值围是(2,+∞)(2)若命题q为真命题时,则3x﹣9x<a对一切正实数x均成立.∵x>0∴3x>1∴3x﹣9x∈(﹣∞,0)所以如果q是真命题时,a≥0.又p或q为真命题,命题p且q为假命题所以命题p与q一真一假∴或解得0≤a≤2综上所述,实数a的取值围是点评:本题考查命题的真假判断和应用,解题时要注意公式的灵活运用.17.(2015春•校级期中)如图,有一块四边形BCED绿化区域,其中∠C=∠D=90°,,CE=DE=1,现准备经过DB上一点P和EC上一点Q铺设水管PQ,且PQ将四边形BCED分成面积相等的两部分,设DP=x,EQ=y.(1)求x,y的关系式;(2)求水管PQ的长的最小值.考点:解三角形的实际应用.分析:(1)延长BD、CE交于A,利用S△ADE=S△BDE=S△BCE=,S△APQ=可建立x,y的关系式;(2)利用余弦定理表示出PQ,再借助于基本不等式求出水管PQ的长的最小值.解答:解:(1)延长BD、CE交于A,则AD=,AE=2 则S△ADE=S△BDE=S△BCE=∵S△APQ=,∴∴x,y的关系式为:(2)PQ2=AP2+AQ2﹣2AP•AQcos30°=•当,即,,∴水管PQ的长的最小值为.点评:本题主要考查变量关系,考查余弦定理及基本不等式的运用,有一定的综合性.18.(16分)(2015春•校级期中)已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,使得对任意的实数x,有f(x+T)=Tf(x)成立.(1)证明:f(x)=x2不属于集合M;(2)设f(x)∈M,且T=2.已知当1<x<2时,f(x)=x+lnx,求当﹣3<x<﹣2时,f(x)的解析式.考点:抽象函数及其应用.专题:函数的性质及应用.分析:(1)利用反证法,假设f(x)∈M,则f(x+T)=Tf(x),即(x+T)2=Tx2对任意的x恒成立,推出T无解,即假设不成立,肯定结论.(2)将﹣3<x<﹣2转化为1<x+4<2,利用当1<x<2时,f(x)=x+lnx,即可求得f(x+4)的解析式,再利用f(x+T)=Tf(x),即可求得f(x)的解析式解答:(1)证明:假设f(x)∈M,则f(x+T)=Tf(x),即(x+T)2=Tx2对任意的x恒成立,即(1﹣T)x2+2Tx+T2=0对任意的x恒成立.∴.∴T∈∅.假设错误,所以f(x)=x2不属于集合M.(2)∵﹣3<x<﹣2,∴1<x+4<2,∴f(x+4)=x+4+ln(x+4),∵存在非零常数T,使得对任意x∈R,有f(x+T)=Tf(x)成立,∴令T=2,∴f(x+4)=f=2f(x+2)=4f(x),∴f(x)=,∴当﹣3<x<﹣2时,f(x)的解析式是f(x)=.点评:本题考查了抽象函数及其应用,反证法,函数解析式的求解及常用方法,求函数解析式常见的方法有:待定系数法,换元法,凑配法,消元法等.属于中档题19.(2011秋•期末)已知函数f(x)=log2(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设函数,其中a>0.若函数f(x)与g(x)的图象有且只有一个交点,求a的取值围.考点:函数与方程的综合运用;偶函数.专题:计算题.分析:(1)由已知中函数f(x)=log2(4x+1)+kx(k∈R)是偶函数.由偶函数的定义,构造一个关于k的方程,解方程即可求出k的值;(2)函数f(x)与g(x)的图象有且只有一个交点,即方程log2(4x+1)﹣x=在(,+∞)有且只有一解,即方程在上只有一解,利用换元法,将方程转化为整式方程后,分类讨论后,即可得到a的取值围.解答:解:(1)∵函数f(x)=log2(4x+1)+kx(k∈R)是偶函数∴f(﹣x)=log2(4﹣x+1)﹣kx=f(x)=log2(4x+1)+kx恒成立即log2(4x+1)﹣2x﹣kx=log2(4x+1)+kx恒成立解得k=﹣1(2)∵a>0∴函数的定义域为(,+∞)即满足函数f(x)与g(x)的图象有且只有一个交点,∴方程log2(4x+1)﹣x=在(,+∞)有且只有一解即:方程在上只有一解令2x=t,则,因而等价于关于t的方程(*)在上只有一解当a=1时,解得,不合题意;当0<a<1时,记,其图象的对称轴∴函数在(0,+∞)上递减,而h(0)=﹣1∴方程(*)在无解当a>1时,记,其图象的对称轴所以,只需,即,此恒成立∴此时a的围为a>1综上所述,所求a的取值围为a>1.点评:本题考查的知识点是函数与方程的综合运用,偶函数,其中根据偶函数的定义求出k 值,进而得到函数f(x)的解析式,是解答的关键.20.(16分)(2014•一模)已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性;(3)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2),(x1<x2),证明:.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;不等式的证明.专题:导数的综合应用.分析:(1)利用导数的几何意义即可得出;(2)通过求导得到g′(x),通过对a分类讨论即可得出其单调性;(3)证法一:利用斜率计算公式,令(t>1),即证(t>1),令(t>1),通过求导利用函数的单调性即可得出;证法二:利用斜率计算公式,令h(x)=lnx﹣kx,通过求导,利用导数研究其单调性即可得出;证法三::令,同理,令,通过求导即可证明;证法四:利用斜率计算公式,令h(x)=x﹣x1lnx+x1lnx1﹣x1,及令m(x)=x﹣x2lnx+x2lnx2﹣x2,通过求导得到其单调性即可证明.解答:解:(1)依题意得g(x)=lnx+ax2+bx,则,由函数g(x)的图象在点(1,g(1))处的切线平行于x轴得:g'(1)=1+2a+b=0,∴b=﹣2a﹣1.(2)由(1)得=.∵函数g(x)的定义域为(0,+∞),∴当a=0时,,由g'(x)>0得0<x<1,由g'(x)<0得x>1,即函数g(x)在(0,1)上单调递增,在(1,+∞)单调递减;当a>0时,令g'(x)=0得x=1或,若,即时,由g'(x)>0得x>1或,由g'(x)<0得,即函数g(x)在,(1,+∞)上单调递增,在单调递减;若,即时,由g'(x)>0得或0<x<1,由g'(x)<0得,即函数g(x)在(0,1),上单调递增,在单调递减;若,即时,在(0,+∞)上恒有g'(x)≥0,即函数g(x)在(0,+∞)上单调递增,综上得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)单调递减;当时,函数g(x)在(0,1)单调递增,在单调递减;在上单调递增;当时,函数g(x)在(0,+∞)上单调递增,当时,函数g(x)在上单调递增,在单调递减;在(1,+∞)上单调递增.(3)证法一:依题意得,证,即证,因x2﹣x1>0,即证,令(t>1),即证(t>1)①,令(t>1),则>0,∴h(t)在(1,+∞)上单调递增,∴h(t)>h(1)=0,即(t>1)②综合①②得(t>1),即.证法二:依题意得,令h(x)=lnx﹣kx,则,由h'(x)=0得,当时,h'(x)<0,当时,h'(x)>0,∴h(x)在单调递增,在单调递减,又h(x1)=h(x2),∴,即.证法三:令,则,当x>x1时,h'(x)<0,∴函数h(x)在(x1,+∞)单调递减,∴当x2>x1时,,即;同理,令,可证得.证法四:依题意得,令h(x)=x﹣x1lnx+x1lnx1﹣x1,则,当x>x1时,h'(x)>0,∴函数h(x)在(x1,+∞)单调递增,∴当x2>x1时,h(x2)>h(x1)=0,即x1lnx2﹣x1lnx1<x2﹣x1令m(x)=x﹣x2lnx+x2lnx2﹣x2,则,当x<x2时,m'(x)<0,∴函数m(x)在(0,x2)单调递减,∴当x1<x2时,m(x1)>h(x2)=0,即x2﹣x1<x2lnx2﹣x2lnx1;所以命题得证.点评:熟练掌握利用导数研究函数的单调性、导数的几何意义、分类讨论思想方法、根据所证明的结论恰当的构造函数、一题多解等是解题的关键.。
2014江苏省扬州中学高一上数学综合试题(7)

高一上数学试题(7)一、填空题(本大题共14小题,每小题5分,共70分) 1.函数)32sin()(π+=x x f 的最小正周期是__________.2.函数x x f 2sin 2)(=的最小正周期是_____________3.若22παπ≤≤-,πβ≤≤0,R m ∈,如果有0sin 3=++m αα,0cos )2(3=++-m ββπ,则)cos(βα+值为_______4.在ABC ∆中,120,5,7A AB BC ∠===,则sin sin BC的值为___________. 5.已知),2(ππα∈,53sin =α,则)4tan(πα-的值等于________ .6.设ABC ∆的三个内角A B C 、、所对的边长依次为a b c 、、,若ABC ∆的面积为S ,且22()S a b c =--,则sin 1cos AA=- .7.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、,若41cos ,7,2-==+=B c b a ,则=b .8.若53sin =θ且02sin <θ,则=2tan θ. 9.已知(,0)2πα∈-,且4cos 5α=,则tan 2α=___________.10.函数)02(sin 2<<-=x x y π的反函数为 .11.已知135sin ,53)cos(-==-ββα,且)0,2(),2,0(πβπα-∈∈,则______sin =α.12.已知4cos25θ=,且sin 0θ<,则tan θ的值为_________ 13.设函数()|s i n |c o s 2,,22f x x x x ππ⎡⎤=+∈-⎢⎥⎣⎦,则函数()f x 的最小值是_________.14.函数2sin 2cos y x x =+的定义域为2,3πα⎡⎤-⎢⎥⎣⎦,值域为]2,41[-,则α的取值范围是 .二、解答题(本大题共六小题,共计90分,解答时应写出文字说明、证明过程或演算步骤。
江苏省扬州中学2013-2014学年高一下学期期中考试数学试卷(带解析)

江苏省扬州中学2013-2014学年高一下学期期中考试数学试卷(带解析)1.不等式23xx -+>0的解集为___________. 【答案】(-3,2) 【解析】试题分析:由23xx -+>0得:20,323x x x -<-<<+,所以原不等式的解集为(-3,2). 解简单分式不等式,需注意不能轻易去分母. 考点:解简单分式不等式2.若x >0、y >0,且x +y =1,则x ·y 的最大值为______. 【答案】14【解析】试题分析:因为1()24x y xy +≤=,当且仅当12x y ==时取等号,所以x ·y 的最大值为14.运用基本不等式求最值需满足:“一正二定三相等”. 考点:基本不等式3.sin15º·sin30º·sin75º的值等于___________.【答案】18【解析】试题分析:11sin15sin30sin75sin15sin30cos15sin30sin30.28===给角求值问题,需注意角之间倍角或互余关系. 考点:二倍角公式,诱导公式4.在等差数列{a n }中,a 3+a 6+3a 7=20,则2a 7―a 8的值为_________. 【答案】4 【解析】试题分析:等差数列性质:若,,,,,m n p q m n p q N +=+∈则m n p q a a a a +=+,所以367663520, 4.a a a a a ++===因此7862 4.a a a -==考点:等差数列性质5.函数y +cosx ,x ∈[―6π,6π]的值域是_________.【答案】【解析】试题分析:因为s i nc o s2s i n (),6y x x x π+=+又[0,]63x ππ+∈,所以s i n ([0],[0,3].6x y π+∈∈研究三角函数性质首先化为基本三角函数形式.考点:三角函数性质6.若不等式ax 2+bx +2>0的解集为11,23⎛⎫- ⎪⎝⎭,则a -b =________. 【答案】-10【解析】试题分析:由题意得:11,23-为方程220ax bx ++=的两根,且0.a <由韦达定理得:11112,,12,2,10.2323b a b a b a a-+=--⨯==-=--=- 考点:一元二次不等式解集与一元二次方程根的关系 7.函数y =sin 2x π⎛⎫+ ⎪⎝⎭cos 6x π⎛⎫- ⎪⎝⎭的最小正周期为________. 【答案】π 【解析】 试题分析:因为1sin 21sin()cos()cos sin )cos 2)sin(2)262423x y x x x x x x x πππ=+-=+=++=++,所以最小正周期为2.2ππ= 考点:三角函数周期8.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 12=_____ 【答案】16 【解析】试题分析:由韦达定理得11916a a =,由等比数列性质:若,,,,,m n p qm n p q N +=+∈则m n p q a a a a ⋅=⋅得81211916a a a a == 考点:等比数列性质9.在△ABC 中,已知A =45°,AB BC =2,则C =___________. 【答案】30°【解析】试题分析:由正弦定理得:sin sin AB BCC A=,21,sin .sin 452C ==因为AB BC <,所以角C 必为锐角,因此C =30°. 考点:正弦定理10.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取最大值时,n 的值为____________. 【答案】6 【解析】试题分析:由题意得,等差数列为单调递减数列,因此其前n 项的和为Sn 为开口向下的二次函数,对称轴为48,62n n +==,所以当Sn 取最大值时,n 的值为6. 考点:等差数列前n 项的和性质11.已知等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为_________. 【答案】25 【解析】试题分析:因为等差数列{an}的前20项的和为100,所以12012071420()100,10,10.2a a a a a a +=+=+=因此2714714()252a a a a +≤=,即a 7·a 14的最大值为25.考点:等差数列性质,基本不等式12.已知等差数列{a n }的前n 项和为S n =(a +1)n 2+a ,某三角形三边之比为a 2∶a 3∶a 4,则该三角形的最大角为________. 【答案】23π 【解析】试题分析:因为{a n }为等差数列,所以前n 项和中常数项为零,即212340,,1,3,5,7.n a S n a a a a ======三角形的最大角的余弦为22235712352+-=-⨯⨯,因此最大角为23π考点:等差数列前n 项和性质,余弦定理 13.若f (x)=x +1ax -在x ≥3时有最小值4,则a =_________. 【答案】2 【解析】试题分析:当0a >时()111111a a f x x x x x =+=-++≥=--,当且仅当1x =时取等号.由14=得:95,342a x ==<,舍去;因此()1af x x x =+-在[3,)+∞上单调增函数,所以min ()(3)34,22a f x f a ==+==,当0a ≤时()1af x x x =+-为单调增函数,所以min ()(3)34,22af x f a ==+==,舍去. 考点:基本不等式14.已知△ABC 中,角A,B,C 所对的边分别为a,b,c ,且BC 边上的高为a ,则b c +cb的取值范围为______.【答案】【解析】试题分析:由三角形面积公式得:2211sin ,sin 22a bc A a bc A==,由余弦定理得:2222cos b c a bc A+=+,所以2222cos sin 2cossin 2cos b c b c a bc A bc A bc AA A c b bc bc bc++++====+≤,又2b c c b +≥,所以bc +cb的取值范围为 考点:三角形面积公式,余弦定理,基本不等式15.已知a 、b 、c 分别是△ABC 三个内角A 、B 、C 的对边.(1)若△ABC ,c =2,A =60º,求a ,b 的值; (2)若acosA =bcosB ,试判断△ABC 的形状,证明你的结论.【答案】(1)a b =1,(2)直角三角形或等腰三角形 【解析】试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化.=12bcsinA =bsin60º,∴b =1.再由余弦定理a 2=b 2+c 2-2bccosA =3,∴a (2)由正弦定理得2RsinA =a ,2RsinB =b ,∴2RsinAcosA =2RsinBcosB ,即sin2A =sin2B ,由已知A 、B 为三角形内角,∴A +B =90º或A =B .∴△ABC 为直角三角形或等腰三角形.本题也可从余弦定理出发:222222222222222222222,()(),()()(),22b c a a c b a b a b c a b a c b a b c a b a b bc ac+-+-=+-=+--=+-所以222c a b =+或220a b -=.解:(112bcsinA =bsin60º,∴b =1.由余弦定理a 2=b 2+c 2-2bccosA =3,∴a(2)由正弦定理得2RsinA =a ,2RsinB =b ,∴2RsinAcosA =2RsinBcosB ,即sin2A =sin2B ,由已知A 、B 为三角形内角, ∴A +B =90º或A =B .∴△ABC 为直角三角形或等腰三角形 考点:正余弦定理16.设函数f (x)=cos(2x +3π)+2a (1)求函数f (x)的单调递增区间(2)当0≤x ≤4π时,f (x)的最小值为0,求a 的值. 【答案】(1)[,]()36k k k Z ππππ-+∈,(2)a =-14.【解析】试题分析:(1)研究三角函数性质首先化为基本三角函数形式.即sin()y A x B ωϕ=++. f (x)=12cos2x +2a =sin(2x +6π)+2a .再根据基本三角函数性质列不等关系:由222262k x k πππππ-≤+≤+得f (x)的单调递增区间为[,]()36k k k Z ππππ-+∈(2)由0≤x≤4π,得22663x πππ≤+≤,故12≤sin(2x +6π)≤1.由f (x)的最小值为0,得12+2a =0.解得a =-14.解:(1)f (x)=12cos2x +2a =sin(2x +6π)+2a . 由222262k x k πππππ-≤+≤+,得k -3π≤x ≤k +6π(k ∈Z ). 所以,f (x)的单调递增区间为[,]()36k k k Z ππππ-+∈. (2)由0≤x ≤4π,得22663x πππ≤+≤,故12≤sin(2x +6π)≤1.由f (x)的最小值为0,得12+2a =0.解得a =-14.考点:三角函数性质17.已知圆的内接四边形ABCD 的边长分别为AB =2,BC =6, CD =DA =4, (1)求角A 的大小;(2)求四边形ABCD 的面积.【答案】(1)A =120º(2)【解析】 试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化. 由面积公式有四边形ABCD 的面积S =S △ABD +S △BCD =12AB ·AD ·sinA +12BC ·CD ·sinC ,∵A +C =180º∴sinA =sinC ∴S =16sinA .由余弦定理得:BD 2=AB 2+AD 2-2AB ·AD ·cosA=20-16cosA ,BD 2=CB 2+CD 2-2CB ·CD ·cosC=52-48cosC ,∴20-16cosA =52-48cosC 解之:cosA =-12, 又0º<A <180º, ∴A =120º,(2)由(1)有四边形ABCD 的面积S =16sin a ,所以S =16sin120º=解:四边形ABCD 的面积S =S △ABD +S △BCD =12AB ·AD ·sinA +12BC ·CD ·sinC ∵A +C =180º∴sinA =sinC ∴S =16sinA .由余弦定理得:BD 2=AB 2+AD 2-2AB ·AD ·cosA=20-16cosA , BD 2=CB 2+CD 2-2CB ·CD ·cosC=52-48cosC , ∴20-16cosA =52-48cosC 解之:cosA =-12, 又0º<A <180º, ∴A =120º,S =16sin120º=考点:正余弦定理,三角形面积公式18.已知{a n }是公比为q 的等比数列,且a m 、a m+2、a m+1成等差数列. (1)求q 的值;(2)设数列{a n }的前n 项和为S n ,试判断S m 、S m+2、S m+1是否成等差数列?并说明理由. 【答案】(1)q =1或-12.(2)当q =1时,S m , S m+2 , S m+1不成等差数列;q =-12时,S m , S m+2 , S m+1成等差数列.【解析】试题分析:(1)根据三数成等差数列,列出等量关系:2a m+2=a m+1+a m ∴2a 1q m+1=a 1q m +a 1qm –1,在等比数列{a n }中,a 1≠0,q ≠0,∴2q 2=q +1,解得q =1或-12.(2)根据等比数列前n 项和公式11,1(1),11n n na q S q a q q=⎧⎪=-⎨≠⎪-⎩分类讨论:若q =1,S m +S m+1=ma 1+(m +1)a 1=(2m +1)a 1,S m+2=(m +2)a 1∵a 1≠0,∴2S m+2≠S m +S m+1若q =-12 ,S m+2=2112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=211362m ⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1 ,S m +S m+1=112112m⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1+1112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=142113322m m +⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫-⋅-+-⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭·a 1=411332m ⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1,∴2 S m+2=S m +S m+1解:(1)依题意,得2a m+2=a m+1+a m ∴2a 1q m+1=a 1q m +a 1qm – 1在等比数列{a n }中,a 1≠0,q ≠0,∴2q 2=q +1,解得q =1或-12. (2)若q =1,S m +S m+1=ma 1+(m +1)a 1=(2m +1)a 1,S m+2=(m +2)a 1 ∵a 1≠0,∴2S m+2≠S m +S m+1若q =-12,S m+2=2112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=211362m⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1S m +S m+1=112112m⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1+1112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=142113322m m +⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫-⋅-+-⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭·a 1=411332m ⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1 ∴2 S m+2=S m +S m+1 故当q =1时,S m , S m+2 , S m+1不成等差数列;q =-12时,S m , S m+2 , S m+1成等差数列. 考点:等比数列前n 项和公式19.某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S 平方米.(1)分别写出用x 表示y 和S 的函数关系式(写出函数定义域); (2)怎样设计能使S 取得最大值,最大值为多少?【答案】(1)y =3000x (6<x <500).S=3030-150006x x ⎛⎫+ ⎪⎝⎭,6<x <500. (2)x =50 m ,y =60 m 时,最大面积是2430 m 2.【解析】 试题分析:(1)解实际问题应用题,关键正确理解题意,列出函数关系式,注意交代定义域.由已知xy =3000,2a +6=y ∴x >6,y >6,故y =3000x ,由y >6,解得x <500,∴y =3000x(6<x <500).S =(x -4)a +(x -6)a =(2x -10)a ,根据2a +6=y ,得a =2y -3=1500x-3,∴S =(2x -10)15003x ⎛⎫-⎪⎝⎭=3030-150006x x ⎛⎫+ ⎪⎝⎭,6<x <500.(2)由基本不等式求最值,注意等于号取值情况.S =3030-150006x x ⎛⎫+⎪⎝⎭≤3030-3030-2×300=2430,当且仅当6x =15000x,即x =50时等号成立,此时y =60. 解:(1)由已知xy =3000,2a +6=y ∴x >6,y >6,故y =3000x,由y >6,解得x <500,∴y =3000x(6<x <500).S =(x -4)a +(x -6)a =(2x -10)a , 根据2a +6=y ,得a =2y -3=1500x-3, ∴S =(2x -10)15003x ⎛⎫-⎪⎝⎭=3030-150006x x ⎛⎫+ ⎪⎝⎭,6<x <500.(2)S =3030-150006x x ⎛⎫+ ⎪⎝⎭≤3030-3030-2×300=2430, 当且仅当6x =15000x,即x =50时等号成立,此时y =60. 所以,矩形场地x =50 m ,y =60 m 时,运动场的面积最大,最大面积是2430 m 2. 考点:函数应用题,基本不等式求最值20.已知数列{a n }是等差数列,数列{b n }是等比数列,且对任意的n ∈N*,都有a 1b 1+a 2b 2+a 3b 3+···+a n b n =n ·2n+3.(1)若{b n }的首项为4,公比为2,求数列{a n +b n }的前n 项和S n ; (2)若a 1=8.①求数列{a n }与{b n }的通项公式;②试探究:数列{b n }中是否存在某一项,它可以表示为该数列中其它r (r ∈N ,r ≥2)项的和?若存在,请求出该项;若不存在,请说明理由.【答案】(1)S n =2n+2+n 2+3n -4(2)①a n =4n +4,b n =2,②不存在 【解析】试题分析:(1)条件“a 1b 1+a 2b 2+a 3b 3+···+a n b n ”实质为数列{}n n a b 前n 项的和,所以按已知n S 求n a 方法进行化简. ∵a 1b 1+a 2b 2+a 3b 3+···+a n b n =n ·2n+3∴a 1b 1+a 2b 2+a 3b 3+···+a n -1b n -1=(n -1)·2n+2(n ≥2) 两式相减得:a n b n =n ·2n+3-(n -1)·2n+2=(n +1)·2n+2 (n ≥2) 而当n =1时,a 1b 1=24适合上式,∴a n b n =(n +1)·2n+2(n ∈N*)∵{b n }是首项为4、公比为2的等比数列 ∴b n =2n+1∴a n =2n +2,∴{a n +b n }的前n 项和S n =()4222n n +++()41212n--=2n+2+n 2+3n -4(2)①由(1)有a n b n =(n +1)·2n+2,设a n =kn +b ,则b n=()212n n kn b++⋅+∴b n -1=12n n kn k b +⋅-+ (n ≥2) 设{b n }的公比为q ,则1n n bb -=()()()21n kn k b kn b n+⋅-++=q 对任意的n ≥2恒成立,即k(2-q)n 2+b(2-q)n +2(b -k)=0对任意的n ≥2恒成立,∴2k b q =⎧⎨=⎩又∵a 1=8,∴k +b =8∴k =b =4,∴a n =4n +4,b n =2n②存在性问题,一般从假设存在出发,有解就存在,无解就不存在.本题从范围角度说明解不存在.解:(1)∵a 1b 1+a 2b 2+a 3b 3+···+a n b n =n ·2n+3∴a 1b 1+a 2b 2+a 3b 3+···+a n -1b n -1=(n -1)·2n+2(n ≥2)两式相减得:a n b n =n ·2n+3-(n -1)·2n+2=(n +1)·2n+2(n ≥2)而当n =1时,a 1b 1=24适合上式,∴a n b n =(n +1)·2n+2(n ∈N*)∵{b n }是首项为4、公比为2的等比数列 ∴b n =2n+1∴a n =2n +2,∴{a n +b n }的前n 项和S n =()4222n n +++()41212n--=2n+2+n 2+3n -4(2)①设a n=kn +b ,则b n=()212n n kn b++⋅+,∴bn -1=12n n kn k b+⋅-+(n ≥2) 设{b n }的公比为q ,则1nn b b -=()()()21n kn k b kn b n +⋅-++=q 对任意的n ≥2恒成立, 即k(2-q)n 2+b(2-q)n +2(b -k)=0对任意的n ≥2恒成立,∴()()()202020k q b q b k -=⎧⎪-=⎨⎪-=⎩ ∴2k b q =⎧⎨=⎩ 又∵a 1=8,∴k +b =8∴k =b =4,∴a n =4n +4,b n =2n②假设数列{b n }中第k 项可以表示为该数列中其它r 项1212,,,()r t t t r b b b t t t ⋅⋅⋅<<⋅⋅⋅<的和,即12r k t t t b b b b =++⋅⋅⋅+,从而122222r t t tk =++⋅⋅⋅+,易知k ≥t r +111121232(12)2222222222212r t t r r rrt t t t t k++-=++⋅⋅⋅+≤+++⋅⋅⋅+==-<-∴k <t r +1,此与k ≥t r +1矛盾,从而这样的项不存在. 考点:已知n S 求n a ,等差数列与等比数列基本性质。
江苏省扬州中学高一下学期期中考试数学含答案

江苏省扬州中学2012-2013学年度第二学期期中考试高一数学试卷 2013.4(本试卷满分160分,考试时间120分钟)一.填空题:(本大题共14小题,每题5分,共70分) 1.一元二次不等式031<--))((x x 的解集为 ▲ .2.数列1,34,59,716,…的一个通项公式是=n a ▲ . 3.在等差数列51、47、43,……中,第一个负数项为第 ▲ 项.4. 在等比数列{}n a 中,已知23=a ,166=a ,则公比=q ▲ .5.求cos174cos156sin174sin156-o o o o 的值为__ ▲ __.6.在ABC ∆中,4:3:2sin :sin :sin =C B A ,那么=C cos ▲ .7.在ABC ∆中,若45,60A a B =︒==︒,则b = ▲ .8.在ABC ∆中,若,sin sin cos 2C A B =若则ABC ∆的形状一定是 ▲ 三角形. 9.已知点(-3,-1)和(4,-6)在直线3x -2y -a=0的同侧,则a 的取值范围为 __▲_____. 10.已知等差数列}{n a 中,,10131=+a a 则=++++119753a a a a a ▲ .11.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = ▲ . 12.数列{}n a 满足2)1(+=n n a n (*N n ∈),则201321111a a a +++Λ等于 ▲ . 13.已知函数),()(2R b a b ax x x f ∈++=的值域为),0[+∞,若关于x 的不等式c x f <)(的解集为)8,(+m m ,则实数c 的值为 ▲ .14.对于*∈N k ,)(k g 表示k 的最大奇数因子,如:,3)3(=g 5)20(=g ,设)2()3()2()1(n n g g g g S ++++=Λ,则=n S ▲ .二.解答题(本大题共6小题,共90分。
江苏省扬州中学2015-2016学年高一下学期期中考试 数学 含答案

扬州中学2015—2016第二学期期中检测高一数学2016。
4一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1. cos105︒= .2。
2tan 22.51tan 22.5︒-︒= .3.在ABC ∆中,若30A =︒,3a =sin sin sin a b cA B C++++= 。
4. 已知等差数列{}na 的前n 项和为nS ,若36a =,316S =,则公差d 等于 .5. 已知ABC ∆中,3AB 1BC =30A =︒ ,则AC = .6.已知等比数列{}n a 的各项均为正数,33a=,619a=,则45aa +=.7. 在ABC ∆中,若2cos cos cos c bc A ca B ab C =++,则ABC ∆的形状是 三角形. 8.已知数列{}na 是等差数列,nS 是其前n 项和,且12130,0S S ><,则使0na <成立的 最小值n 是 。
9.若钝角三角形ABC 三边长分别是,1,2()a a a a N ++∈,则a = .10。
已知1sin cos 2αα=+,且(0,)2πα∈,则cos 2sin()4απα+的值为 .11。
设数列{}na 的前n 项和为nS ,关于数列{}na ,下列命题正确的序号是 。
① 若数列{}n a 既是等差数列又是等比数列,则1n n a a +=; ② 若()2,n S an bn a b R =+∈,则数列{}na 是等差数列; ③ 若()11nn S =+-,则数列{}na 是等比数列.12.在等差数列{}n a 中,已知33152,,22n n a a S =-==-,则1a = .13。
ABC ∆中,90C ∠=︒,点M 在边BC 上,且满足3BC BM =,若1sin 5BAM ∠=,则sin BAC∠= 。
14.已知数列{}na 为等差数列,满足12232241231a a a a ≤+≤⎧⎨-≤+≤⎩,则当4a 取最大值时,数列{}na 的通项公式为na = 。
江苏省扬州中学2015-2016学年高一上学期期中考试数学试题(有答案)AwPKMw

江苏省扬州中学2015-2016学年第一学期期中考试高一数学试卷2015.11一、填空题:本大题共14小题,每小题5分,共70分.1.若{}224,x x x ∈++,则x = ▲2.函数2log (3)y x =-的定义域为 ▲3. 已知1249a =(a >0) ,则23log a = ▲ 4.二次函数y =3x 2+2(m -1)x +n 在区间(),1-∞上是减函数,在区间[)1,+∞上是增函数,则实数m = ▲5. 在平面直角坐标系xOy 中,将函数1x y e +=的图像沿着x 轴的正方向平移1个单位长度,再作关于y 轴的对称变换,得到函数f (x )的图像,则函数f (x )的解析式为f (x )= ▲6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是 ▲ (用a ,b ,c 表示)7. 已知函数()()3,10,5,10.n n f n f f n n -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩则()8f = ▲ 8. 已知函数()f x 是偶函数,且当0x >时,3()1f x x x =++,则当0x <时,()f x 的解析式为 ▲9.若方程062ln =-+x x 在Z n n n ∈+),1,(内有一解,则n = ▲ 10.化简:1022292(lg8lg125)316--⎛⎫⎛⎫+⨯++ ⎪ ⎪⎝⎭⎝⎭= ▲11.由等式3232123123(1)(1)(1)x x x x x x λλλμμμ+++=++++++定义映射123123:(,,)(,,)f λλλμμμ=,则=)3,2,1(f ▲12.若关于x 的方程0122=++x mx 至少有一个负根,则实数m 的取值范围是 ▲13.如图,在平面直角坐标系xOy 中,过原点O 的直线与函数3x y =的图象交于A ,B两点,过B 作y 轴的垂线交函数9x y =的图象于点C ,若AC 平行于y 轴,则点A 的坐标是 ▲14. 已知函数()(),11+=+x f x f 当[]1,0∈x 时,().113--=x x f 若对任意实数x ,都有()()f x t f x +<成立,则实数t 的取值范围 ▲二、解答题:本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.15.(本题14分)设,{|13},{|24},{|1}U R A x x B x x C x a x a ==≤≤=<<=≤≤+,a 为实数,(第13题)(1)分别求,()U AB AC B ; (2)若BC C =,求a 的取值范围.16.(本题14分)已知函数()12()51m h x m m x+=-+为幂函数,且为奇函数.(1)求m 的值;(2)求函数()()g x h x =在10,2x ∈⎡⎤⎢⎥⎣⎦的值域.17.(本题14分)已知函数f (x )=2ax +1x(a ∈R ). (1)当12a =时,试判断f (x )在]1,0(上的单调性并用定义证明你的结论; (2)对于任意的(0,1]x ∈,使得f (x )≥6恒成立,求实数a 的取值范围.18.(本题16分)如图,在长为10千米的河流OC 的一侧有一条观光带,观光带的前一部分为曲线段OAB ,设曲线段OAB 为函数2(0)y ax bx c a =++≠,[0,6]x ∈(单位:千米)的图象,且图象的最高点为(4,4)A ;观光带的后一部分为线段BC .(1)求函数为曲线段OABC 的函数(),[0,10]y f x x =∈的解析式;(2)若计划在河流O C 和观光带OABC 之间新建一个如图所示的矩形绿化带MNPQ ,绿化带由线段MQ ,QP ,PN 构成,其中点P 在线段BC 上.当OM 长为多少时,绿化带的总长度最长?19.(本题16分)已知函数)1,0(11log )(≠>--=a a x mx x f a是奇函数. (1)求实数m 的值; (2)是否存在实数a p ,,当)2,(-∈a p x 时,函数()f x 的值域是(1,)+∞.若存在,求出实数a p ,;若不存在,说明理由;(3)令函数2()()6(1)5f x g x ax x a =-+--,当]5,4[∈x 时,求函数()g x 的最大值.20.(本题16分)已知函数()c bx x x f ++=22为偶函数,关于x 的方程()()21+=x a x f 的构成集合{}1, (1)求,a c b ,的值;(2)若[]2,2-∈x ,求证:()1215+-≤x x f ;(3)设()g x =[]2,0,21∈x x 使得()()m x g x g ≥-21,求实数m 的取值范围.命题、校对、审核:高二数学备课组高一期中数学试卷答案 2015.11一、填空题1.1 2.(3,)+∞ 3.4 4.-2 5.x e -6.c a b << 7.7 8.31x x --+ 9.2 10.133 11.(2,3,1)- 12. ]1,(-∞ 13.3722123389;103sin(2);111293352132,2)y x π=-、; 、-、、; 、; 、-15; 14、(log 14.442(,)(,)333-∞--- 二、解答题15. (1) A ∩B={x |2<x ≤3},…………………………………………3分U B={x |x ≤2或x ≥4} …………………………………………5分A ∪(U B)= {x |x ≤3或x ≥4} …………………………………………8分 (2)∵B ∩C=C ∴C ⊆B …………………………………………10分∴2<a <a +1<4 ∴2<a <3 …………………………………………14分16. 解 (1) ∵函数()12()51m h x m m x +=-+为幂函数 ∴2511m m -+= 解得05m =或 …………………………………3分又 ∵奇函数 ∴0m =…………………………………6分(2) 由(1)可知 ()g x x =10,2x ∈⎡⎤⎢⎥⎣⎦t ,则[0,1]t ∈ …………………………………9分211()22g t t t ⇒=-++ 得值域为1,12⎡⎤⎢⎥⎣⎦…………………………………14分17. 解:(1)∵12a = ∴1()f x x x=+ ()f x 在]1,0(上的单调递减 …………………………………2分证明:取任意的21,x x ,且1021≤<<x x(*))1()(11)()(212121211221221121x x x x x x x x x x x x x x x x x f x f --=-+-=--+=- ∵1021≤<<x x ∴021<-x x ,1021<<x x得 (*)式大于0 ,即0)()(21>-x f x f所以()f x 在]1,0(上的单调递减 …………………………………8分(2)由f (x )≥6在]1,0(上恒成立,得2ax +1x≥6 恒成立 即2)1()1(62x x a -≥ ),1[)1(+∞∈x9))1()1(6(ma x 2=-⇒x x 2992≥≥⇒a a 即 …………………………………14分 注:本题若含参二次函数讨论求解,自行酌情给分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014—2015学年江苏省扬州中学高一数学期中考试试题试卷2014.11一、填空题(每小题5分,共70分)1.已知全集{}4,3,2,1=U ,集合{}{}1,2,2,3A B ==,则()U A C B 等于 ▲ .2.集合{}03x x x Z <<∈且的子集个数为 ▲ . 3.函数()lg(2)f x x =-+定义域为 ▲ .4.若函数2()2f x x ax =-在(],5-∞上递减,在[)5,+∞上递增,则实数a = ▲ .5.下列各组函数中,表示相同函数的是 ▲ .①y x =与y = ② y x =与2x y x=③2y x =与2s t = ④y =与y =6.若函数3log ,(0)()2,(0)x x x f x x >⎧=⎨≤⎩,则1()9f f ⎛⎫= ⎪⎝⎭▲ . 7.已知幂函数的图象经过点,则(4)f = ▲ . 8.如果函数()ln 3f x x x =+-的零点所在的区间是(,1)n n +,则正整数n = ▲ . 9.已知偶函数()f x 在[)0,+∞单调递减,()20f =,若()10f x ->,则实数x 的取值范围是 ▲ .10.如果指数函数xy a =(01)a a >≠且在[0,1]x ∈上的最大值与最小值的差为12,则实数 a = ▲ .11.若2134,1xym x y==+=,则实数m = ▲ . 12.对于函数()f x 定义域中任意的12,x x ,给出如下结论:①()()()2121x f x f x x f +=⋅; ②()()()2121x f x f x x f ⋅=+; ③当12x x ≠时,()[]1212()()0x x f x f x -->; ④当12x x ≠时,()()1212()22f x f x x x f ++<, 那么当()lg f x x =时,上述结论中正确结论的序号是 ▲ .13.已知函数ln ,(05)()10,(5)x e x f x x x ⎧<≤⎪=⎨->⎪⎩,若()()()f a f b f c == (其中a b c <<),则abc 的取值范围是 ▲ .14.已知实数,a b 满足32362a a a ++=,323610b b b ++=-,则a b += ▲ .16.(本小题满分14分)已知函数()f x =(1)当2k =时,求函数()f x 的定义域;(2)若函数()f x 的定义域为R ,求实数k 的取值范围.17.(本小题满分14分) 已知函数1()log 1axf x x-=+ (其中0a >且1a ≠). (1)判断函数()f x 的奇偶性并证明;(2)解不等式()0f x >.18.(本小题满分16分)某商场经调查得知,一种商品的月销售量Q (单位:吨)与销售价格x (单位:万元/吨)的关系可用下图的一条折线表示.(1)写出月销售量Q 关于销售价格x 的函数关系式;(2)如果该商品的进价为5万元/吨,除去进货成本外,商场销售该商品每月的固定成本为10万元,问该商品每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.19. (本小题满分16分) 已知函数()2af x x x=+, (1)判断()x f 的奇偶性并说明理由;(2)当16a =时,判断()x f 在(]0,2x ∈上的单调性并用定义证明;(3)当16a =时,若对任意(0,)x ∈+∞,不等式()9f x m >+恒成立,求实数m的取值范围.20.(本小题满分16分)已知二次函数()2f x ax bx c =++(其中0a ≠)满足下列3个条件:①()f x 的图象过坐标原点; ②对于任意x R ∈都有11()()22f x f x -+=--成立; ③方程()f x x =有两个相等的实数根, 令()()1g x f x x λ=--(其中0λ>),(1)求函数()f x 的表达式;(2)求函数()g x 的单调区间(直接写出结果即可); (3)研究函数()g x 在区间()0,1上的零点个数.命题、校对:高二数学备课组高一数学试卷答案 2014.11一、填空题1. {1} 2. 4 3. [1,2) 4. 5 5.③ 6.14 7.128. 2 9. ()1,3- 10.32或1211. 36 12. ①③ 13. (5,9) 14. -2 二、解答题15.解:由题意得24613a a --=- ,解得1a =或12a =, 当12a =时,{}{}3,4,3,2,3A B =-=-,满足要求,此时{}2,3,4,3A B =-;当1a =时,{}{}3,4,3,4,3A B =-=-,不满足要求, 综上得:12a =, {}2,3,4,3A B =-。
……………………………14分16.解:(1)当2k =时,由题意得2212100x x -+≥, 即(1)(5)0x x --≥,即51x x ≥≤或∴定义域为{|51}x x x ≥≤或。
……………………………6分 (2)由题意得不等式2680kx kx k -++≥对一切x R ∈都成立当0k =时,()f x = ……………………………9分 当0k ≠时,0k >⎧⎨∆≤⎩,解得01k <≤,综上可得:实数k 的取值范围是[]0,1。
……………………………14分 17.解:(1)由101xx->+得11x -<<,所以定义域为(1,1)-; ……………………3分 11()log log ()11aa x xf x f x x x+--==-=--+ ∴()f x 为奇函数 ……………………7分 (2)1a >时,由1()log 01ax f x x -=>+,得111xx->+,得10x -<< 01a <<时,由1()log 01ax f x x -=>+,得1011x x-<<+,得01x << ……………13分 综上得,1a >时,(1,0)x ∈-;01a <<时,(0,1)x ∈ ……………………14分18. 解:(1)由题设知,当85≤≤x 时,;2525+-=x Q 当128≤<x 时,;13+-=x Q所以⎪⎩⎪⎨⎧≤<+-≤≤+-=.128,13,85,2525x x x x Q ……………………6分(2)月利润为.10)5()(--⋅=x Q x f即525)(5)10,58,(2(13)(5)10,812,x x x f x x x x ⎧-+--≤≤⎪=⎨⎪-+--<≤⎩()2251545()58228(9)6812x x x x ⎧--+≤≤⎪=⎨⎪--+<≤⎩…………10分 所以当]8,5[∈x 时,;最大845)(,215==x f x 当]12,8(∈x 时,.6)(,9==最大x f x 所以当9=x 时,)(x f 取得最大值6.答:每吨定价为9万元时,销售该商品的月利润最大,最大利润为6万元。
…………16分19. 解:(1)当0=a 时,()2,(0)f x x x =≠为偶函数; …………2分当0≠a 时,()11f a =+,()11f a -=-,故()()11f f -≠且()()11f f -≠-,所以()x f 无奇偶性. 综上得:当0=a 时,()x f 为偶函数;当0≠a 时,()x f 无奇偶性. …………5分 (2)()216f x x x=+, 任取1202x x <<≤,则()()221212121616f x f x x x x x -=+--()1212121216x x x x x x x x -=+-⎡⎤⎣⎦, ∵1202x x <<≤∴0,02121><-x x x x ,()121216x x x x +<,∴()()120f x f x ->,所以()x f 在区间(]0,2上递减. …………9分 (3)由题意得()min 9f x m >-,由(2)知()x f 在区间(]0,2上是递减,同理可得()x f 在区间[)2,+∞上递增, 所以()()min 212f x f ==, …………12分所以129m >,即120m --<,,(t 0)t =≥,则220t t --<,解得12t -<<,故02t ≤<,即02≤<,即15m ≤<。
…………16分20.解: (1)由题意得()00f =,即0c =. …………1分 ∵对于任意x ∈R 都有1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭, ∴对称轴为12x =-,即122b a -=-,即a b =. ∴()2f x ax ax =+,∵方程()f x x =仅有一根,即方程()210ax a x +-=仅有一根,∴∆0=,即()210a -=,即1a =.∴()2f x x x =+. …………4分(2) ()()1g x f x x λ=--()()22111,,111,.x x x x x x λλλλ⎧+-+≥⎪⎪=⎨⎪++-<⎪⎩① 当1x λ≥时,函数()()211g x x x λ=+-+的对称轴为12x λ-=,若112λλ-≤,即02λ<≤,函数()g x 在1,λ⎛⎫+∞ ⎪⎝⎭上单调递增; 若112λλ->,即2λ>,函数()g x 在1,2λ-⎛⎫+∞⎪⎝⎭上单调递增,在11,2λλ-⎛⎫⎪⎝⎭上递减.② 当1x λ<时,函数()()211g x x x λ=++-的对称轴为112x λλ+=-<, 则函数()g x 在11,2λλ+⎛⎫- ⎪⎝⎭上单调递增,在1,2λ+⎛⎫-∞- ⎪⎝⎭上单调递减. 综上所述,当02λ<≤时,函数()g x 增区间为1,2λ+⎛⎫-+∞ ⎪⎝⎭,减区间为1,2λ+⎛⎫-∞- ⎪⎝⎭; 当2λ>时,函数()g x 增区间为11,2λλ+⎛⎫-⎪⎝⎭、1,2λ-⎛⎫+∞ ⎪⎝⎭,减区间为 1,2λ+⎛⎫-∞- ⎪⎝⎭、11,2λλ-⎛⎫ ⎪⎝⎭. (9)分(3) ① 当02λ<≤时,由(2)知函数()g x 在区间()0,1上单调递增,又()()010,1210g g λ=-<=-->,故函数()g x 在区间()0,1上只有一个零点. …………12分 ② 当2λ>时,则1112λ<<,而()010,g =-<21110g λλλ⎛⎫=+> ⎪⎝⎭,()121g λ=--,(ⅰ)若23λ<≤,由于1112λλ-<≤,且()211111222g λλλλ---⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭()21104λ-=-+≥, 此时,函数()g x 在区间()0,1上只有一个零点; (ⅱ)若3λ>,由于112λ->且()121g λ=--0<,此时()g x 在区间()0,1上有两个不同的零点. 综上所述,当03λ<≤时,函数()g x 在区间()0,1上只有一个零点;当3λ>时,函数()g x 在区间()0,1上有两个不同的零点. …………16分高一数学试卷答案 2014.11一、填空题1. {1} 2. 4 3. [1,2) 4. 5 5.③ 6.14 7.128. 2 9. ()1,3- 10.32或1211. 36 12. ①③ 13. (5,9) 14. -2 二、解答题15.解:由题意得24613a a --=- ,解得1a =或12a =, 当12a =时,{}{}3,4,3,2,3A B =-=-,满足要求,此时{}2,3,4,3A B =-;当1a =时,{}{}3,4,3,4,3A B =-=-,不满足要求, 综上得:12a =, {}2,3,4,3A B =-。