七年级数学上册知识点大全

合集下载

七年级上册数学所有知识点

七年级上册数学所有知识点

七年级上册数学所有知识点七年级上册数学知识点概述一、数与代数1. 自然数和整数- 自然数的定义与性质- 整数的定义与性质- 正数、负数和零的概念- 整数 operations (加法、减法、乘法、除法)2. 有理数- 有理数的定义- 有理数的分类(正有理数、负有理数、零)- 有理数的加法、减法、乘法和除法规则- 有理数的比较大小3. 代数表达式- 代数表达式的构成- 单项式与多项式的定义- 同类项与合并同类项- 代数式简化4. 一元一次方程- 方程与方程解的概念- 一元一次方程的标准形式- 解一元一次方程的方法(移项、合并同类项、系数化为1)5. 线性不等式- 不等式的基本性质- 线性不等式的解集表示- 不等式的解法(加减法、乘除法)二、几何1. 点、线、面- 点的位置关系- 直线、射线、线段的定义与性质- 平面的基本性质2. 角- 角的定义与度量- 角的分类(锐角、直角、钝角、平角、周角) - 角的比较与运算3. 三角形- 三角形的定义与分类- 三角形的性质(边长关系、内角和定理)- 等腰三角形与等边三角形的性质4. 四边形- 四边形的定义与分类- 矩形、正方形、平行四边形的性质- 四边形的内角和定理5. 圆- 圆的定义与性质- 圆的半径、直径、弦、弧、切线的概念- 圆周角与圆心角的关系三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 条形图、折线图、饼图的绘制与解读2. 概率- 随机事件的概念- 概率的初步认识- 简单事件的概率计算四、综合应用1. 数学问题解决策略- 问题的理解与分析- 数学建模与解决步骤- 结果的检验与评价2. 数学在生活中的应用- 数学与日常生活的联系- 数学在其他学科中的应用请注意,以上内容仅为七年级上册数学知识点的概述,具体的教学内容和顺序可能会根据不同地区的教学大纲和教材有所差异。

教师和学生应参考具体的教材和课程标准来安排教学和学习计划。

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全2)异号两数相加,取绝对值大的符号,并把绝对值相减;3)加数与被加数的顺序可以交换,即满足交换律;4)加法结合律成立,即(a+b)+c=a+(b+c);5)0是加法的零元素,即a+0=a;6)有理数加法满足可逆律,即对于任意有理数a,都有相反数-b,使得a+b=0.8.有理数减法法则:1)a-b=a+(-b);2)减数与被减数的顺序不能交换,即不满足交换律;3)减法不满足结合律,即(a-b)-c≠a-(b-c);4)减法没有零元素;5)有理数减法也满足可逆律,即对于任意有理数a,都有相反数-b,使得a-b=a+(-b)=0.9.有理数乘法法则:1)同号两数相乘,积为正数;2)异号两数相乘,积为负数;3)0乘以任何数都等于0;4)1是乘法的单位元素,即a×1=a;5)乘法满足交换律,即a×b=b×a;6)乘法满足结合律,即(a×b)×c=a×(b×c);7)有理数乘法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.10.有理数除法法则:1)a÷b=a×1/b;2)被除数为0时,无法进行除法运算;3)除数为0时,无意义;4)除法不满足交换律,即a÷b≠b÷a;5)除法不满足结合律,即(a÷b)÷c≠a÷(b÷c);6)有理数除法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.11.分数:1)分数由分子和分母组成,分母不能为0;2)分数可以化为最简分数,即分子和分母没有公因数;3)分数可以比大小,比较分数大小时,可以通分,然后比较分子大小;4)分数可以加减乘除,加减法通分后再进行运算,乘法直接将分子和分母相乘,除法将除数取倒数后再乘以被除数.12.小数:1)小数是有理数的一种表示形式;2)小数可以化为分数,分母为10的正整数的分数;3)小数的加减乘除法与分数的运算法则相同;4)小数可以用数轴表示,小数点左边的数表示整数部分,右边的数表示小数部分;5)小数可以化为百分数,即乘以100,化为千分数即乘以1000等.1.有理数的基本概念:有理数包括正有理数、负有理数和零,可以表示成分数形式,分母不为零。

人教七年级数学上知识点

人教七年级数学上知识点

人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。

二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。

三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。

四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。

五、解方程
一元一次方程的概念和性质,基本解法和应用。

六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。

七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。

八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。

九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。

十、几何变换
平移、旋转、翻折及其组合。

以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。

希望本文对广大师生有所帮助,祝大家学习进步!。

七年级上册数学知识点总结

七年级上册数学知识点总结

七年级上册数学知识点总结七年级上册数学知识点总结在年少学习的日子里,相信大家一定都接触过知识点吧!知识点就是掌握某个问题/知识的学习要点。

掌握知识点是我们提高成绩的关键!下面是小编收集整理的七年级上册数学知识点总结,欢迎大家分享。

七年级上册数学知识点总结篇1第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整数之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,取相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5. ab = a +(b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

2024版七年级数学上册知识点归纳

2024版七年级数学上册知识点归纳
- 点的坐标表示:在平面直角坐标系中,每一个点都有一个唯一的坐标与之对应
第八章 二元一次方程组
- 二元一次方程组的概念:含有两个未知数,且未知数的次数都为1的方程组
- 二元一次方程组的解法:代入法、消元法
第九章 不等式与不等式组
- 不等式的概念:用不等号表示大小关系的式子
- 不等式的性质:不等式的加法、减法、乘法、除法性质
2024版七年级数学上册知识点归纳
章节/知识点
具体内容
第一章 有理数
- 有理数的概念:可以写成分数形式的数称为有理数
- 数轴:规定了原点、正方向、单位长度的直线
- 相反数:只有符号不同的两个数叫做互为相反数
- 绝对值:数轴上某个数与原点的距离
- 有理数的性质与运算:包括有理数的加法、减法、乘法、除法以及混合运算
第二章 整式的加减
- 整式的概念:单项式和多项式的统称
- 整式的加减法则:同Байду номын сангаас项合并
第三章 一元一次方程
- 一元一次方程的概念:含有一个未知数,且未知数的次数为1的方程
- 一元一次方程的解法:去分母、去括号、移项、合并同类项、系数化为1
第四章 几何图形初步
- 基本几何图形的认识:点、线、面、角
- 几何图形的性质:如线段、射线的性质
第五章 相交线与平行线
- 相交线的性质:对顶角相等、邻补角互补
- 平行线的性质:平行线间的距离相等、平行线被第三条直线所截形成的同位角相等
第六章 实数
- 实数的概念:有理数和无理数的统称
- 实数的性质:实数具有封闭性、有序性、稠密性等
第七章 平面直角坐标系
- 平面直角坐标系的建立:由两条互相垂直且有公共原点的数轴组成

七年级上册数学知识点归纳(必备7篇)

七年级上册数学知识点归纳(必备7篇)

七年级上册数学知识点归纳(必备7篇)七年级上册数学知识点归纳第1篇(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。

⑵一些固定模型中的等量关系:①数字问题:表示一个三位数,则有=101a+10b+c(数位上的数字×位数)②行程问题:基本公式:路程=时间×速度甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程甲走的时间=乙走的时间;甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间距离③工程问题(整体1):基本公式:工作量=工作时间×工作效率各部分工作量之和=总工作量;④储蓄问题:本息和=本金+利息;利息=本金×利率×时间⑤商品销售问题:商品利润=售价-进价(成本价)商品利润率=(售价-进价)/进价⑥等积变形问题:面积或体积不变⑦和、差、倍、分问题:多、少、几倍、几分之几⑧按比例分配问题:一般设每份为x如:2:3:4为2x、3x、4x⑨资源调配问题:资源、人员的调配(有时要间接设未知数)(二)、思想方法(本单元常用到的数学思想方法小结)⑴模型思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想(如:按比例分配、线段的长、角的大小等)就是方程思想.⑶转化(归纳)思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式.体现了化“未知”为“已知”的化归思想.⑷数形结合思想:如:数轴问题、在列方程解决行程问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.⑸分类(整体)思想:如:绝对值、偶次方、点在线段上(延长线上、线段外)、角在角内(外)在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.七年级上册数学知识点归纳第2篇一几何图形几何学:数学中以空间形式为研究对象的分支叫做几何学。

七年级数学上册:全册各章知识点总结

第一章有理数一、有理数:1.定义:凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.有理数的分类:3.注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

4.自然数Û0和正整数a>0 Ûa是正数;a<0 Ûa是负数;a≥0 Ûa是正数或0 Ûa是非负数;a≤0 Ûa是负数或0 Ûa是非正数.二、数轴1.定义:数轴是规定了原点、正方向、单位长度的一条直线。

三、相反数1.只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。

2.注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3.相反数的和为0 Ûa+b=0 Ûa、b互为相反数。

4.相反数的商为-1。

5.相反数的绝对值相等。

四、绝对值1.正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2、绝对值可表示为:4.|a|是重要的非负数,即|a|≥0;五、有理数比大小1.正数永远比0大,负数永远比0小;2.正数大于一切负数;3.两个负数比较,绝对值大的反而小;4.数轴上的两个数,右边的数总比左边的数大;5.-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

六、倒数1.定义:乘积为1的两个数互为倒数;2.注意:(1)0没有倒数(2)若ab=1Ûa、b互为倒数(3)若ab=-1Ûa、b互为负倒数2.等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.七、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。

初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级上册数学上册知识点大全

七年级上册数学上册知识点大全一、整数1. 整数的概念:表示物体个数的数,包括正整数、负整数和零。

2. 整数的运算:加法、减法、乘法、除法和取余数。

3. 绝对值的概念:一个数距离0的距离,用绝对值表示。

4. 相反数的概念:两个数的和为0,这两个数互为相反数。

5. 有理数的概念:可以表示为两个整数之比的数。

二、分数1. 分数的概念:表示部分的数,由两部分组成,分子和分母。

2. 分数的性质:分数的大小与分子、分母的大小有关,分子越大,分数越大;分母越大,分数越小。

3. 分数的运算:加法、减法、乘法、除法。

4. 最简分数:分子和分母没有公因数的分数。

5. 分数与小数的关系:分数可以转化为小数,小数也可以转化为分数。

三、代数式1. 代数式的概念:用字母表示数的式子。

2. 代数式的运算:加法、减法、乘法、除法。

3. 代数式的简化:合并同类项、提取公因式等方法简化代数式。

4. 代数式的值:将代数式中的字母代入数值后得到的数。

四、方程与不等式1. 方程的概念:含有未知数的等式。

2. 方程的解:使方程成立的未知数的值。

3. 一元一次方程的解法:移项、合并同类项、系数化为1等方法。

4. 一元一次不等式的解法:移项、合并同类项、系数化为1等方法。

5. 二元一次方程组的解法:消元法、代入法等方法。

6. 二元一次不等式组的解法:交集法、并集法等方法。

五、几何图形1. 点、线、面的概念。

2. 直线、射线、线段的概念及性质。

3. 角的概念:两条射线的公共端点所夹的部分。

4. 角的分类:锐角、直角、钝角、平角、周角等。

5. 三角形的概念:由三条边和三个内角组成的图形。

6. 三角形的性质:等边三角形、等腰三角形、直角三角形等。

7. 四边形的概念:由四条边和四个内角组成的图形。

8. 四边形的性质:平行四边形、矩形、正方形等。

七年级上册的数学知识点

七年级上册数学知识点一、有理数1.有理数的分类:-整数:正整数、0、负整数统称为整数。

例如:5,0,-3 等。

-分数:正分数、负分数统称为分数。

例如:1/2,-3/4 等。

-有理数:整数和分数统称为有理数。

2.数轴:-规定了原点、正方向和单位长度的直线叫做数轴。

-任何一个有理数都可以用数轴上的一个点来表示。

例如:表示3 的点在原点右边3 个单位长度处。

3.相反数:-只有符号不同的两个数叫做互为相反数。

例如:3 和-3 互为相反数,0 的相反数是0。

-互为相反数的两个数在数轴上位于原点两侧且到原点的距离相等。

4.绝对值:-正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0。

例如:|5| = 5,|-3| = 3,|0| = 0。

-绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点与原点的距离。

二、有理数的运算1.加法法则:-同号两数相加,取相同的符号,并把绝对值相加。

例如:3 + 5 = 8,(-3)+(-5)=-8。

-异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如:3+(-5)=-2,5+(-3)=2。

-一个数同0 相加,仍得这个数。

2.减法法则:减去一个数,等于加上这个数的相反数。

例如:5 - 3 = 5+(-3)=2。

3.乘法法则:-两数相乘,同号得正,异号得负,并把绝对值相乘。

例如:3×5 = 15,(-3)×(-5)=15,3×(-5)=-15。

-任何数与0 相乘都得0。

4.除法法则:-除以一个不等于0 的数,等于乘这个数的倒数。

例如:6÷3 = 6×1/3 = 2。

-两数相除,同号得正,异号得负,并把绝对值相除。

0 除以任何一个不等于0 的数都得0。

5.乘方:-求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

例如:a×a×a = a³,其中a 叫做底数,3 叫做指数,a³叫做幂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册知识点大全七年级数学上册知识点大全第一章有理数1.1正数和负数①把0以外的数分为正数和负数。

0是正数与负数的分界。

②负数:比0小的数正数:比0大的数0既不是正数,也不是负数1.2有理数1.2.1有理数①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

②所有正整数组成正整数集合,所有负整数组成负整数集合。

正整数,0,负整数统称整数。

1.2.2数轴①具有原点,正方向,单位长度的直线叫数轴。

1.2.3相反数①只有符号不同的数叫相反数。

②0的相反数是0 正数的相反数是负数负数的相反数是正数1.2.4绝对值①绝对值|a|②性质:正数的绝对值是它的本身负数的绝对值的它的相反数0的绝对值的01.2.5数的大小比较①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

②正数大于0,0大于负数,正数大于负数。

两个负数,绝对值大的反而小。

1.3有理数的加减法1.3.1有理数的加法①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

③一个数同0相加,仍得这个数。

④加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

(a+b)+c=(a+c)+b1.3.2有理数的减法①减去一个数,等于加这个数的相反数。

a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法①两数相乘,同号得正,异号的负,并把绝对值相乘。

②任何数同0相乘,都得0。

③乘积是1的两个数互为倒数。

④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。

⑤乘法交换律:两个数相乘,交换因数的位置,积相等。

ab=ba⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

(ab)c=(ac)b⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a(b+c)=ab+ac1.4.2有理数的除法①除以一个不等0的数,等于乘以这个数的倒数。

②两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

1.5有理数的乘方1.5.1乘方①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

a叫做底数,n 叫做指数。

②负数的奇次幂是负数,负数的偶次幂的正数。

③正数的任何次幂都是正数,0的任何正整数次幂都是0。

④做有理数的混合运算时,应注意以下运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

1.5.2科学记数法。

①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

1.5.3近似数①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。

②近似数与准确数的接近程度,可以用精确度表示。

③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。

第二章整式的加减2.1整式①单项式:表示数或字母积的式子②单项式的系数:单项式中的数字因数③单项式的次数:一个单项式中,所有字母的指数和④几个单项式的和叫做多项式。

每个单项式叫做多项式的项,不含字母的项叫做常数项。

⑤多项式里次数最高项的次数,叫做这个多项式的次数。

⑥单项式与多项式统称整式。

2.2 整式的加减①同类项:所含字母相同,而且相同字母的次数相同的单项式。

②把多项式中的同类项合并成一项,叫做合并同类项。

③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

第三章一元一次方程3.1从算式到方程3.1.1一元一次方程①方程:含有未知数的等式②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。

③方程的解:使方程中等号左右两边相等的未知数的值④求方程解的过程叫做解方程。

⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

3.1.2等式的性质①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

3.2解一元一次方程(—)合并同类项与移项①把等式一边的某项变号后移到另一边,叫做移项。

3.3解一元一次方程(二) 去括号与去分母①一般步骤:1.去分母2.去括号3.移项4.合并同类项5.系数化为一3.4实际问题与一元一次方程利用方程不仅能求具体数值,而且可以进行推理判断。

第四章图形认识初步4.1多姿多彩的图形4.1.1几何图形①把实物中抽象出的各种图形统称为几何图形。

②几何图形的各部分不都在同一平面内,是立体图形。

③有些几何图形的各部分都在同一平面内,它们是平面图形。

④常常用从不同方向看到的平面图形来表示立体图形。

(主视图,俯视图,左视图)。

⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

4.1.2点,线,面,体①几何体也简称体。

②包围着体的是面。

面有平的面和曲的面两种。

③面和面相交的地方形成线。

(线有直线和曲线)④线和线相交的地方是点。

(点无大小之分)⑤点动成线,线动成面,面动成体。

⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。

⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。

⑧线段的比较:1.目测法2.叠合法3.度量法4.2 直线,射线,线①经过两点有一条直线,并且只有一条直线。

②两点确定一条直线。

③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。

④射线和线段都是直线的一部分。

⑤把线段分成相等的两部分的点叫做中点。

⑥两点的所有连线中,线段最短。

(两点之间,线段最短)⑦连接两点间的线段的长度,叫做这两点的距离。

4.3 角4.3.1角①角也是一种基本的几何图形。

②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。

角可以看作由一条射线绕着它的端点旋转而形成的图形。

③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1〃。

④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。

⑤以度,分,秒为单位的角的度量制,叫做角度制。

4.3.2角的比较与运算①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

4.3.3余角和补角①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。

②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

③等角的补角相等。

④等角的余角相等。

等差数列的性质(1)任意两项am,an的关系为:an=am+(n-m)d,它可以看作等差数列广义的通项公式。

(2)从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_。

(3)若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq。

(4)对任意的k∈N_,有Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

初中数学知识点加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

相关文档
最新文档