初一数学一元一次方程应用题-行程问题-追击和相遇
一元一次方程应用题-相遇及追击问题

一船航行于A、B两个码头之间,顺水航行需要3小时,逆水航行需要5小时,已知水流速度是4km/h,求这两个码头之间的距离。
顺水速度=船速+水速 逆水速度=船速-水速
A码头
B码头
水流方向
从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?
甲
乙
A
B
A车路程+B车路程=相距路程
解:设B车行了x小时后与A车相遇,根据题意列方程得 50x+30x=240 解得 x=3 答:设B车行了3小时后与A车相遇。
练 一
例1、 A、B两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (2)若两车同时相向而行,请问B车行了多长时间后两车相距80千米?
1、画出示意图:
3km/h甲
乙2km/h
A
B
2、甲乙相遇时,两人所走的路程与AB两地的距离有什么关系?
时间角度:甲行走的时间=乙行走的时间
3、甲行走的时间与乙行走的时间有什么关系?
甲行走的速度×时间+乙行走的速度×时间=AB的距离
练习1
西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?
慢车先行路程
快车路程
(慢车先行路程+慢车后行路程)+快车路程=总路程
慢车后行路程
相遇问题
慢车后行的时间=快车行驶的时间
例2:甲、乙从一点出发,同向而行,甲每小时走3km,乙每小时走2km,乙先出发3小时,甲再出发追赶乙,问甲要多久才能追上乙?
(完整word版)初一数学一元一次方程应用题各类型经典题

初一数学一元一次方程应用题各类型经典题一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间(三)环形跑道常用等量关系:(1)同时同向出发:快的走的路程-环行跑道周长=慢的走的路程(第一次相遇)(2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)(四)航行问题常用的等量关系:(1)顺水速度=静水速度+水流速度(2)逆水速度=静水速度-水流速度(3)顺速–逆速= 2水速;顺速+ 逆速= 2船速(4)顺水的路程= 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
问:(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。
一元一次方程-相遇、追及问题

19
精讲 例题
分
析
例2、小明每天早上 要在7:50之前赶到距离 家1000米的学校上学, 一天,小明以80米/分 的速度出发,5分后, 小明的爸爸发现他忘了 带语文书,于是,爸爸 立即以180米/分的速 度去追小明,并且在途 中追上他。 (1)爸爸追上小明用 了多少时间? (2)追上小明时,距 离学校还有多远?
1.顺逆问题 2. 3.追及问题
一、明确行程问题中三个量的关系
三个基本量关系是:速度×时间=路程 引例:从甲地到乙地,水路比公路近40千米,上午十 时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地
驶往乙地,结果同时到达终点。已知轮船的速度是每小时 24千米,汽车的速度是每小时40千米,求甲、乙两地水路、 公路的长,以及汽车和轮船行驶的时间?
线段图分析:
A
B
80千米
甲
乙
第二种情况: A车路程+B车路程-相距80千米= 相距路程
变式 练习
分
析
1、 A、B两车分别 停靠在相距115千米的
线段图分析:
甲、乙两地,A车每小
A
B
时行50千米,B车每小
甲
乙
时行30千米,A车出发
1.5小时后B车再出发。
(1)若两车相向而行, 请问B车行了多长时间 后与A车相遇?
解:设船在静水中的平均速度为x千米/时,则顺流
速度为(x+3)千米/时,逆流速度为(x-3)千米/时。
根据往返路程相等,列得
2(x+3)=2.5(x-3)
去括号,得
2x+6=2.5x-7.5
移项及合并,得 0.5x=13.5
X=27
答:船在静水中的平均速度为27千米/时。
一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
(完整版)一元一次方程应用题专题训练行程问题

(完整版)一元一次方程应用题专题训练行程问题一元一次方程应用题专题讲解【解题思路】1、审——读懂题意,找出等量关系.2、设-—巧设未知数.3、列——根据等量关系列方程。
4、解——解方程,求未知数地值。
5、答——检验,写答案(注意写清单位和答话).6、练——勤加练习,熟能生巧。
触类旁通,举一反三.第一讲 行程问题【基本关系式】(1) 行程问题中地三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间(2) 基本类型① 相遇问题:快行距+慢行距=原距② 追及问题:快行距-慢行距=原距③ 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水地路程 = 逆水地路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变地特点考虑相等关系.常见地还有:相背而行;环形跑道问题.【经典例题】例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开.两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车地后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等地含义,弄清行驶过程。
故可结合图形分析. (1)分析:相遇问题,画图表示为: 等量关系是:慢车走地路程+快车走地路程=480公里。
(2)分析:相背而行,画图表示为: 等量关系是:两车所走地路程和+480公里=600公里。
(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里.甲 乙600甲 乙(完整版)一元一次方程应用题专题训练行程问题(4)分析:追及问题,画图表示为:等量关系为:快车地路程=慢车走地路程+480公里.甲乙(5)分析:追及问题,等量关系为:快车地路程=慢车走地路程+480公里。
初一一元一次方程:行程问题应用题专题

《一元一次方程:行程问题》解答题【基本知识】路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.行程问题:解行程问题的关键是抓住时间关系或路程关系,借助草图分析来解决问题.路程=速度×时间相遇路程=速度和×相遇时间追及路程=速度差×追及时间航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2一、【求距离】1、七年级列队以每小时6千米的速度去甲地,小刚从队尾以每小时10千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长。
【解】设队伍长度x 千米 ,等量:时间81164=+x x 52=∴x 答:略 2、队伍以每小时4千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了4.5分钟,求队伍的长。
【解】605.4168=+x x x = 0.4千米 3、队伍以每小时6千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了5分钟,求队伍的长。
【解】605186=+x x x = 0.375千米 4、一队学生从学校出发去部队军训,以每小时5千米的速度行进4.5千米时,一名通讯员以每小时14千米的速度从学校出发追赶队伍,他在离部队6千米处追上了队伍,设学校到部队的距离是x 千米,求x . 【解】565.4146--=-x x ∴ 13=x 5、已知某铁路桥长500m ,现在一列火车匀速通过该桥,火车从开始上桥到过完桥共用了30s ,整列火车完全在桥上的时间为20s ,则火车的长度为多少m ?【解】设火车的长度为x m ,根据火车的速度不变可得方程:2050030500x x -=+ 2(500+x )=3(500﹣x ) x =100. 答:火车的长度为100m .6、王先生计划骑车以每小时10千米的速度由A 地到B 地,这样便可在规定时间到达B 地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B 地,求A 、B 两地间的路程.【解】设由A 、B 两地的路程是 x 千米,则60560101210++=x x 解得:x=15,答:A 、B 两地间的路程是15千米 7、李明和王华步行同时从A 、B 两地出发,相向而行,在离A 地52米处相遇,到达对方出发点后,两人立即以原来的速度原路返回,又在离A 地44米处相遇,求A 、B 两地距离多少米?解:(行程问题,全是路程比与比例)设AB 相距x 千米李明 王华 路程和52 x -52 x2x -44 3x31344252==-∴x x x 8、某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?【解答】设小明家到西湾公园距离x 千米, 根据题意得:6.1408=-x x 解得:x =16. 答:小明家到西湾公园距离16千米.9、小张和父亲预定搭乘家门口的公交汽车赶往火车站,去家乡看望爷爷。
3.4-实际问题与一元一次方程行程问题之相遇追及问题
互动探究,拓展延伸
3、火车用26秒的时间通过了一个长256米的隧道 (即从车头进入入口到车尾离开出口),这列火车 又以16秒的时间通过了长96米的隧道,求这列火车 的长度。
1. 谈谈你的收获。
作业: 同步: P139、140
一天悟空调皮去了花果山玩了,剩下唐僧、二师兄、沙师弟
三人以
的速度在去西天取经的路上,而就在此时
的牛魔王得到了消息悟空不在,他大笑道:哈哈有
唐僧肉吃了,他立马以
的速度向师徒方向赶去。
你能帮助悟空计算一下经过多少小时师傅会与牛魔王相遇?
悟空两小时后赶回来能救师傅吗?
5x
3x
24千米
练习1
西安站和武汉站
一元一次方程与实际问题
行程问题行程问题
——相遇、追及问题
引入新课
西游记中的师徒四人一路艰辛取得真经,而在这
取经过程中有与我们数学有关的行程问题,今天
让我们一起和师徒四人踏上行程,取得我们这节
课的
!
基本关系式
速度、路程、时间之间的关系?
路程= 速度×时间
速度= 路程÷时间 时间= 路程÷速度
《西游记》情节一
行程问题的基本类型
相遇问题: 追及问题:
互动探究,拓展延伸
1、小明、小华在
400米长的环形跑道上练 (1)反向
习跑步,小明每秒跑 , 小华每秒跑 。 (1)若两人同时同地反 向出发,多长时间两人 首次相遇? (2)若两人同时同地同 向出发,多长时间两人 首次相遇?
小华 小明
互动探究,拓展延伸
1、小明、小华在
小明、小华从一点出发, ,小华
要多久才能追上小华?
而行,小明 ,小明再出发
,小华 ,问小明
初一数学一元一次方程应用题的各种类型
初一数学一元一次方程应用题的各种类型一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间(三)环形跑道常用等量关系:(1)同时同向出发:快的走的路程-环行跑道周长=慢的走的路程(第一次相遇) (2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)(四)航行问题常用的等量关系:(1)顺水速度=静水速度+水流速度(2)逆水速度=静水速度-水流速度(3)顺速–逆速 = 2水速;顺速 + 逆速 = 2船速(4)顺水的路程 = 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
问:(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。
一元一次方程应用题专题--行程问题汇总
一元一次方程应用题----行程问题〔相遇、追及、行船、飞行、跑道、坡路、错车、过桥等问题〕一、行程〔相遇〕问题A.根底训练1.小和小刚家距离900米,两人同时从家出发相向行,小每分走60米,小刚每分走90米,几分钟后两人相遇.2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米.3.王强和文从相距2280米的两地出发相向而行,王强每分行60米,文每分行80米,王强出发3分钟后文出发,几分钟后两人相遇.4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇.5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间.6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,甲比乙每小时多行2千米,求两人的速度。
8.AB两地相距900米。
甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间.9.甲乙两地相距640千米。
一辆客车和一辆货车同时从甲地出发,同向而行,客车每小时行46千米,货车每小时34千米,客车到达乙地后马上返回与货车在途中相遇,问从出发到相遇一共用了多少时间.B.提高训练1.建朋和建博两人骑自行车同时从相距65千米的两地相向而行,经过两小时相遇,建朋比建博每小时多走2.5千米,问建博每小时走多少千米.2.A、B两地相距360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120千米时,甲车从出发一共用了多少时间.3.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少.4.AB两地相距1120千米,甲乙两列火车同时从两地出发,相向而行。
七年级上册数学行程问题-相遇与追及问题-教学设计--上课用
七年级上册数学行程问题-相遇与追及问
题-教学设计--上课用
一元一次方程模型在行程问题中的应用
本文将介绍一元一次方程模型在行程问题中的应用,重点是相遇和追及问题的解决方法。
通过“线段图”分析数量关系,建立方程解决问题。
教学目标是让学生进一步领会代数方法解应用题的优越性,培养实事求是的态度及与人合作交流的能力,逐步树立客服困难的信心、意志力,培养学生研究数学的热情和良好的人格品质。
在教学过程中,教师采用引导法、分析法、小组讨论法等教学方法,多媒体辅助教学手段。
首先,回顾速度、路程、时间之间的关系,让学生复基础知识。
接着,通过实例演示相遇问题和追及问题的解决方法,引导学生找到等量关系,建立方程解决问题。
同时,教师鼓励学生自主思考,提高观察、思考和归纳总结的能力。
在相遇问题中,教师通过动画演示两车相遇情况,让学生自己找出等量关系解决问题,培养学生的观察、思考能力。
在追及问题中,教师引导学生找到快车和慢车之间的关系式,让学生自己解决问题,提高学生的自主研究能力。
通过本教学设计,学生能够掌握相遇、追及问题的解题规律,学会解决环形跑道问题。
同时,培养学生实事求是的态度及与人合作交流的能力,逐步树立客服困难的信心、意志力,培养学生研究数学的热情和良好的人格品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学
一元一次方程追击和相遇应用题
行程问题(行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点)
行程中的基本关系:路程=速度×时间
相遇问题(相向而行):这类问题的相等关系是:甲走的路程+乙走的路程=全路程
追及问题(同向而行):这类问题的等量关系是:
同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程
同地不同时:甲的时间=乙的时间-时间差
甲的路程=乙的路程
解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
【例】甲、乙两站相距480公里,一列慢车
从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
【解析】(1)分析:相遇问题,画图表示为:
甲乙
等量关系是:慢车走的路程+快车走的路程=480公里。
解:设快车开出x 小时后两车相遇,由题
意得,140x+90(x+1)=480
解这个方程,230x=390
∴ x=11623
答:略.
(2)分析:相背而行,画图表示为:
600
甲 乙
等量关系是:两车所走的路程和+480公
里=600公里。
解:设x 小时后两车相距600公里,
由题意得,(140+90)x+480=600解这个方
程,230x=120
∴ x=1223
答:略.
(3)分析:等量关系为:快车所走路程
-慢车所走路程+480公里=600公里。
解:设x 小时后两车相距600公里,由
题意得,(140-90)x+480=600 50x=120
∴ x=2.4
答:略.
(4)分析:追及问题,画图表示为:
甲乙
等量关系为:快车的路程=慢车走的路程+480公里。
解:设x小时后快车追上慢车。
由题意得,140x=90x+480
解这个方程,50x=480 ∴ x=9.6
答:略.
(5)分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。
解:设快车开出x小时后追上慢车。
由题意得,140x=90(x+1)+480
50x=570 解得, x=11.4
①答:略.
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和=一圈的路程;同地同向而行的等量关系是两人所走的路程差=一圈的路程。
航行问题:顺水(风)速度=静水(风)速
度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
【例】一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
1、A、B两地相距150千米。
一辆汽车以每小时50千米的速度从A地出发,另一辆汽车以每小时40千米的速度从B地出发,两车同时出发,相向而行,问经过几小时,两车相距30千米?
2、甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?
3、一架飞机飞行在两个城市之间,顺风要2小时45分,逆风要3小时,已知风速是20千米/小时,则两城市间的距离为多少?
4、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?
5、火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求列车的长度。