16二次函数的综合提高

合集下载

中考数学专题复习二次函数与图形综合培优

中考数学专题复习二次函数与图形综合培优

1坐标系中(函数图象上)动点产生三角形的问题我们主要讲解3类:①因动点产生的等腰三角形问题②因动点产生的直角三角形问题③因动点产生的相似三角形问题.一、方法与技巧:已知线段AB 和直线l ,在直线l 上找点P ,使ABP △为等腰三角形.l知识互联网思路导航二次函数与图形综合题型一:坐标系中(函数图象上)动点产生三角形问题234l 几何法:①分别以点A 、B 为圆心,AB 为半径作圆,找点1P ,2P ,3P ,4P .(检验) ②作线段AB 的垂直平分线k ,找点5P .(检验)代数法:设点P 的坐标为()m n ,,求出AB 、AP 、BP 的长度,分类讨论:①AB AP =;②AB BP =;③AP BP =.求出点P ()m n ,.(检验)二、方法与技巧:已知线段AB 和直线l ,在直线l 上找点P ,使ABP △为直角三角形.几何法:①分别过点A 、B 作线段AB 的垂线,找点1P ,2P .(检验)②以线段AB 为直径作圆,利用直径所对的圆周角为90︒,找点3P ,4P .(检验)代数法:设点P 的坐标为()m n ,,求出AB 、AP 、BP 的长度,分类讨论: ①222AB AP BP =+;②222AP AB BP =+;③222BP AB AP =+. 求出点P ()m n ,.(检验)三、方法与技巧:以点A 、B 、C 为顶点的三角形和OPQ △相似.根据“两组角对应相等,两三角形相似.”进行分类讨论: ①ABC OPQ △∽△,②ACB OPQ △∽△, ③BAC OPQ △∽△,④BCA OPQ △∽△,⑤CAB OPQ △∽△,⑥CBA OPQ △∽△.(检验)【例1】 已知二次函数23y x bx =-++的图象与x 轴的一个交点为()40A ,,与y 轴交于点B . ⑴ 求此二次函数关系式和点B 的坐标;⑵ 在x 轴的正半轴上是否存在点P .使得PAB △是以AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.【解析】⑴ 把点()40A ,代入二次函数有: 01643b =-++得:134b =所以二次函数的关系式为:21334y x x =-++. 当0x =时,3y =∴点B 的坐标为()03,.⑵ 如图:典题精练3作AB 的垂直平分线交x 轴于点P ,连接BP , 则:BP AP =设BP AP x ==,则4OP x =-, 在直角OBP △中,222BP OB OP =+ 即:()22234x x =+- 解得:258x = ∴257488OP =-= 所以点P 的坐标为:708⎛⎫⎪⎝⎭, 【点评】 可以把“PAB △是以AB 为底边的等腰三角形”拓展为“PAB △是等腰三角形”.【例2】 在平面直角坐标系内,反比例函数和二次函数()21y k x x =+-的图象交于点和点()k B --1,. ⑴当时,求反比例函数的解析式;⑵要使反比例函数和二次函数都是随着的增大而增大,求应满足的条件以及的取值范围;⑶设二次函数的图象的顶点为,当是以为斜边的直角三角形时,求的值.【解析】 ⑴当时,,∵在反比例函数图象上,∴设反比例函数的解析式为:my x=,代入得:21m -=, 解得:,∴反比例函数的解析式为:,⑵∵要使反比例函数和二次函数都是y 随着的增大而增大,∴0k <,∵二次函数,的对称轴为:直线,要使二次函数满足上述条件,在的情况,必须在对称轴左边,即时,才能使得随着的增大而增大,∴综上所述,0k <且;()1A k ,2k =-y x k x Q ABQ △AB k 2k=-()12A -,A ()12A -,2m =-2y x=-x ()2215124y k x x k x k ⎛⎫=+-=+- ⎪⎝⎭12x =-()21y k x x =+-0k <x 12x <-y x 12x <-4⑶由⑵可得:,∵是以为斜边的直角三角形,点与点关于原点对称,(如图是其中的一种情况)∴原点平分,∴,作,,∴, ∵,解得:. 【例3】 如图,在矩形OABC 中,10AO =,8AB =,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处.分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线2y ax bx c =++经过O ,D ,C 三点.⑴求AD 的长及抛物线的解析式;⑵一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,以P 、Q 、C 为顶点的三角形与ADE △相似?【解析】 ⑴∵四边形ABCO 为矩形,∴90OAB AOC B ∠=∠=∠=︒, 8AB CO ==,10AO BC ==. 由题意得,BDC EDC △≌△.∴90B DEC ∠=∠=︒,10EC BC ==,ED BD =. 由勾股定理易得6EO =.∴1064AE =-=. 设AD x =,则8BD DE x ==-,由勾股定理,得()22248x x +=-. 解之得,3x =,∴3AD =.∵抛物线2y ax bx c =++过点()00O ,,∴0c =. ∵抛物线2y ax bx c =++过点()310D ,,()80C ,, ∴93106480a b a b +=⎧⎨+=⎩.解之得23163a b ⎧=-⎪⎪⎨⎪=⎪⎩. ∴抛物线的解析式为:221633y x x =-+.1524Q k ⎛⎫- ⎪⎝⎭,ABQ △AB A B O AB OQ OA OB ==AD OC ⊥QC OC ⊥OQ ==OA =k =5⑵∵90DEA OEC ∠+∠=︒,90OCE OEC ∠+∠=︒, ∴DEA OCE ∠=∠.由⑴可得3AD =,4AE =,5DE =. 而CQ t =,2EP t =,∴102PC t =-.当90PQC DAE ∠=∠=︒时,ADE QPC △∽△,∴CQ CP EA ED =,即10245t t -=,解得4013t =. 当90QPC DAE ∠=∠=︒时,ADE PQC △∽△, ∴PC CQ AE ED =,即10245t t -=,解得257t =. ∴当4013t =或257时,以P ,Q ,C 为顶点的三角形与ADE △相似.坐标系中(函数图象上)动点产生四边形问题:主要讲解两类问题:⑴因动点产生的平行四边形问题 ⑵因动点产生的梯形问题.⑴因动点产生的平行四边形问题的方法与技巧:已知以点A 、点B 为顶点的四边形为平行四边形,寻找平行四边形的另外两个顶点. ①AB 为边:平移型,利用一组对边平行且相等的四边形为平行四边形. ②AB 为对角线:旋转型,利用对角线互相平分的四边形为平行四边形.⑵因动点产生的梯形问题的方法与技巧:如图,已知ABC △和直线l ,在直线l 上找点P ,使以点A 、B 、C 、P 为顶点的四边形为梯形.①分别过点A 、B 、C 作BC 、AC 、AB 的平行线与直线l 相交. ②检验以点A 、B 、C 、P 为顶点的四边形是否为平行四边形.ABClP 3P 2P 1lCBA思路导航题型二:坐标系中(函数图象上)动点产生四边形问题B BAA6【例4】 在平面直角坐标系中,以点()30A ,为圆心、半径为5的圆与x 轴相交于点B 、C (点B 在点C 的左边),与y 轴相交于点D 、M (点D 在点M 的下方). ⑴求以直线3x =为对称轴,且经过点D 、C 的抛物线的解析式;⑵若E 为这条抛物线对称轴上的点,则在抛物线上是否存在这样的点F ,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形.若存在,求出点F 坐标;若不存在,说明理由.【解析】 ⑴如图,∵圆以点()30A ,为圆心,半径为5,∴此圆与x 轴交于点()20B -,,()80C ,.连接OD 在Rt AOD △中,90AOD ∠=°,∵3OA =,5AD =,∴4OD =.∴点D 的坐标为(设抛物线的解析式为2y ax bx c =++, ∵抛物线经过点()04D -,,()80C ,, 且对称轴为3x =,∴4320648c b a a b c=-⎧⎪⎪-=⎨⎪⎪=++⎩ 解得14a =,32b =-,4c =-. ∴抛物线的解析式为 213442y x x =--.⑵存在符合条件的点F ,使得以点B 、C 、E 、F 顶点的四边形是平行四边形.情况1:当BC 为平行四边形的一边时,∵10BC =, ∴10EF BC ==.设点()3E t ,,()17F t -,,()213F t ,,将点1F 、2F 分别代入抛物线的解析式,得17574F ⎛⎫- ⎪⎝⎭,,275134F ⎛⎫ ⎪⎝⎭,.情况2:当BC 为平行四边形的对角线时,AE AF =,又∵点F 在抛物线上, ∴点F 必为抛物线的顶点.∴32534F ⎛⎫- ⎪⎝⎭,.综上所述17574F ⎛⎫- ⎪⎝⎭,,275134F ⎛⎫ ⎪⎝⎭,,32534F ⎛⎫- ⎪⎝⎭,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形.【例5】 抛物线2y x bx c =-++经过直线3y x =-+与坐标轴的两个交点A B 、,抛物线与x 轴的另一个交点为C ,抛物线的顶点为D . ⑴求此抛物线的解析式;典题精练F 3ECBAF 2F 1E CB7⑵试判断ABD △的形状,并证明你的结论;⑶在坐标轴上是否存在点P 使得以点P 、A 、B 、D 为顶点的四边形是梯形.若存在,求出点P 的坐标;若不存在,说明理由.【解析】 ⑴∵直线3y x =-+与坐标轴的两个交点坐标分别为()()0330A B ,,,,又抛物线2y x bx c =-++经过这两个点, 则可得0933b c c =-++⎧⎨=⎩,解得23b c =⎧⎨=⎩,∴此抛物线的解析式为223y x x =-++.⑵由⑴可知:C 点坐标为()10-,,顶点D 的坐标为()14,,过D 点作DE y ⊥轴于E ,可知11AE DE ==,,∴45DAE ∠=︒,∵390OA OB AOB ==∠=︒,,∴45OAB ∠=︒,∴18090DAB DAE OAB ∠=︒-∠-∠=︒, ∴ABD △是直角三角形.⑶分以下三种情况讨论:①若BD 为底,则1AP BD ∥与x 轴交于1P 点,由()()3014B D ,,,易知,直线BD 的解析式为26y x =-+, ∴直线1AP 的解析式为23y x =-+,∴1302P ⎛⎫⎪⎝⎭,. ②若AD 为底,则2BP AD ∥与y 轴交于2P 点,由()()0314A D ,,,易知,直线AD 的解析式为3y x =+, ∴直线2BP 的解析式为3y x =-,∴()203P -,.③若AB 为底,则DP AB ∥与y 轴、x 轴分别交于34P P 、, 已知直线AB 的解析式为3y x =-+,∴直线34P P 的解析式为5y x =-+,∴()()340550P P ,,,.综上所述,满足以P A B D 、、、为顶点的四边形是梯形的P 点坐标为1302P ⎛⎫ ⎪⎝⎭,,()203P -,,()305P ,,()450P ,.8【例6】 如图,已知抛物线1C :()225y a x =+-的顶点为P ,与x 轴相交于A B 、两点(点A 在点B 的左边),点B 的横坐标是1.⑴求P 点坐标及a 的值;⑵如图⑴,抛物线2C 与抛物线1C 关于x 轴对称,将抛物线2C 向右平移,平移后的抛物线记为3C ,3C 的顶点为M,当点P M 、关于点B 成中心对称时,求3C 的解析式; ⑶如图⑵,点Q 是x 轴正半轴上一点,将抛物线1C 绕点Q 旋转180︒后得到抛物线4C .抛物线4C 的顶点为N ,与x轴相交于E F 、两点(点E 在点F 的左边),当以点P N F 、、为顶点的三角形是直角三角形时,求点Q 的坐标.【解析】 ⑴由抛物线1C :()225y a x =+-得顶点P 的坐标为()25--, ∵点()10B ,在抛物线1C 上,∴()20125a =+-,解得59a =.⑵连接PM ,作PH x ⊥轴于H ,作MG x ⊥轴于G ∵点P M 、关于点B 成中心对称, ∴PM 过点B ,且PB MB =∴PBH MBG △≌△,∴5MG PH ==,3BG BH == ∴顶点M 的坐标为()45,抛物线1C 关于x 轴对称得到2C ,再平移得到3C∴抛物线3C 的解析式为()25459y x =--+⑶∵抛物线4C 由1C 绕着x 轴上的点Q 旋转180︒得到 ∴顶点N P 、关于点Q 成中心对称由⑵得点N 的纵坐标为5,设点N 坐标为()5m , 作PH x ⊥轴于H ,作NG x ⊥轴于G ,作PK NG ⊥于K ∵旋转中心Q 在x 轴上,∴26EF AB BH ===,∴3FG =,点F 坐标为()30m +,,H 坐标为()20-,,K 坐标为()5m -,,根据勾股定理得22224104PN NK PK m m =+=++,22221050PF PH HF m m =+=++, 2225334NF =+=,①当90PNF ∠=︒时,222PN NF PF +=,解得443m =,∴Q 点坐标为1903⎛⎫⎪⎝⎭,②当90PFN ∠=︒时,222PF NF PN +=,解得103m =,∴Q 点坐标为203⎛⎫ ⎪⎝⎭, C③∵90NPF HPK∠<∠=︒,∴90NPF∠≠︒综上,当Q点坐标为193⎛⎫⎪⎝⎭,或23⎛⎫⎪⎝⎭,时,以点P N F、、为顶点的三角形是直角三角形.910x题型一 坐标系中(函数图象上)动点产生三角形问题 巩固练习 【练习1】 如图,抛物线()()31y a x x =+-与x 轴相交于A 、B 两点(点A 在点B 右侧),过点A的直线交抛物线于另一点C ,点C 的坐标为()26-,.⑴求a 的值及直线AC 的函数关系式;⑵P 是线段AC 上一动点,过点P 作y 轴的平行线,交抛物线于点交x 轴于点N .①求线段PM 长度的最大值;②在抛物线上是否存在这样的点M ,使得CMP △与APN △果存在,请直接写出所有满足条件的点M 的坐标(不必写解答过程);如果不存在,请说明理由.【解析】 ⑴由题意得()()62321a =-+--,∴2a =-∴抛物线的函数解析式为()()231y x x =-+-,与x 轴交于()30B -,、()10A , 设直线AC 的解析式为y kx b =+,则有062k b k b =+⎧⎨=-+⎩,解得22k b =-⎧⎨=⎩,∴直线AC 的解析式为22y x =-+⑵ ①设P 的横坐标为()21a a -≤≤,则()22P a a -+,,()2246M a a a --+, ∴()2221924622224242PM a a a a a a a ⎛⎫=--+--+=--+=-+++ ⎪⎝⎭219222a ⎛⎫=-++ ⎪⎝⎭∴当12a =-时,PM 的最大值为92.②()106M ,;215548M ⎛⎫- ⎪⎝⎭,提示:1M 通过观察容易得到,2M 需要计算过C 点且与AC 垂直的直线与抛物线的交点,比较复杂;亦或过C 作MN 的垂线,垂足为H ,则CHM PNA △∽△,得到2CHMH=,设P 点的横坐标为m ,通过点坐标与线段的转化,利用比例关系求出m ,进一步求出M 点坐标.题型二 坐标系中(函数图象上)动点产生四边形问题 巩固练习【练习2】 已知:如图所示,关于x 的抛物线()20y ax x c a =++≠与x 轴交于点()20A -,、点()60B ,,与y 轴交于点C .复习巩固⑴求出此抛物线的解析式,并写出顶点坐标;⑵在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的 解析式;⑶在⑵的条件下直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q ,是否存在以A 、M 、P 、Q 为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.【解析】 ⑴根据题意,得4203660a c a c -+=⎧⎨++=⎩,解得143a c ⎧=-⎪⎨⎪=⎩∴抛物线的解析式为2134y x x =-++,顶点坐标是()24,.⑵()43D ,设直线AD 的解析式为()0y kx b k =+≠ ∵直线经过点()20A -,,点()43D ,∴2043k b k b -+=⎧⎨+=⎩,解得121k b ⎧=⎪⎨⎪=⎩,∴112y x =+.⑶存在.()120Q -,,()220Q --,,()360Q -,()460Q +.【练习3】 在平面直角坐标系中,以点(30)A -,为圆心、半径为5的圆与x 轴相交于点B 、C(点B 在点C 的左边),与y 轴相交于点D 、M (点D 在点M 的下方). ⑴求以直线3x =-为对称轴,且经过点C 、D 的抛物线的解析式; ⑵若点P 是该抛物线对称轴上的一个动点,求PC PD +的取值范围;⑶若E 为这个抛物线对称轴上的点,则在抛物线上是否存在这样的点F ,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形.若存在,求出点F 的坐标;若不存在,说明理由.【解析】 ⑴由A ⊙的圆心为()30-,,半径为5,及各点的位置可知()()()()80200404B C D M --,,,,,,,,∵抛物线的对称轴是3x =-,且经过点C ,∴该抛物线一定经过点B ,∴设抛物线解析式为()()82y a x x =+-,代入()04D -,,可得()482a -=⋅⋅-,解得14a =,∴抛物线解析式为()()2113824442y x x x x =+-=+-. ⑵由B C 、两点关于对称轴对称,则连结BD 与对称轴交于一点P ,此时PC PD +最小,又知BD =∴PC PD +的取值范围是PC PD +≥.⑶①若BC EF ∥,则F 点横坐标为13-或7,这两点关于对称轴对称,∴16939754424F y =--=,∴F 点的坐标为757513744⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,.②若BC EF 、互相平分,则F 点在对称轴上, ∴F 点坐标为2534⎛⎫-- ⎪⎝⎭,.∴存在点F ,坐标为7575251373444⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,. 【练习4】 如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与y 轴的交点为点B ,与x 轴的交点为点A ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE OA ∥,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)⑴求A ,B ,C 三点的坐标和抛物线的顶点的坐标;⑵当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;⑶当902t <<时,PQF △的面积是否总为定值?若是,求出此定值,若不是,请说明理由;⑷当t 为何值时,PQF △为等腰三角形?请写出解答过程.【解析】 ⑴∵()21818018y x x =--,令0y =,得281800x x --=,()()18100x x -+=,∴18x =或10x =-,∴()180A ,;在21410189y x x =--中,令0x =,得10y =-,即()010B -,; 由于BC OA ∥,故点C 的纵坐标为10-,由2141010189x x -=--,得8x =或0x =即()810C -,,且易求出顶点坐标为9849⎛⎫- ⎪⎝⎭,,于是,()()()180010810A B C --,,,,,,顶点坐标为9849⎛⎫- ⎪⎝⎭,.⑵若四边形PQCA 为平行四边形,由于QC PA ∥.故只要QC PA =即可,而184PA t CQ t =-=,,故184t t -=,得185t =;⑶设点P 运动t 秒,则4OP t CQ t ==,,0 4.5t <<, 说明P 在线段OA 上,且不与点O 、A 重合,由于QC OP ∥知QDC PDO △∽△,故144QD QC t DP OP t ===,∴4AF t OP ==,∴18PF PA AF PA OP =+=+=.又点Q 到直线PF 的距离10d =,∴1118109022PQF S PF d =⋅⋅=⨯⨯=△,于是PQF △的面积总为90.⑷由⑶知,()()()401840810P t F t Q t +--,,,,,.构造直角三角形后易得()()2222481058100PQ t t t =-++=-+,()()2222184810510100FQ t t t =+-++=++.①若FP FQ =,即()2218510100t =++,故()2252224t +=,∵22 6.5t +≤≤,∴2t +==,∴2t =. ②若QP QF =,即()()2258100510100t t -+=++,无0< 4.5t ≤的t 满足条件; ③若PQ PF =,即22(58)10018t -+=,得2(58)224t -=,∴ 4.5t =>或0t =<都不满足0< 4.5t ≤,故无0< 4.5t ≤的t 满足方程;综上所述:当2t =-时,PQR △是等腰三角形.【练习5】 如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB ,把AB所在的直线沿y 轴向上平移,使它经过原点O ,得到直线l ,设P 是直线l 上一动点.⑴求点A 的坐标;⑵以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、 直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标; ⑶设以点A 、B 、O 、P 为顶点的四边形的面积为S ,点P 的横坐标为x ,当46S ++≤时,求x 的取值范围.【解析】 ⑴由()22424y x x x =+=+-,知点A 的坐标为()24--,.⑵ ①如图2,菱形OABP 的顶点P 的坐标为()24-,. ②如图3,等腰梯形OBAP 的顶点P 的坐标为2455⎛⎫- ⎪⎝⎭,.③如图4,直角梯形OPBA 的顶点P 的坐标为4855⎛⎫- ⎪⎝⎭,,直角梯形OBAP '的顶点P '的坐标为61255⎛⎫- ⎪⎝⎭,.⑶ 直线l 的解析式为2y x =-,那么点P 的坐标可表示为()2x x -,.ABO △的面积8ABO S =△.① 当P 在x 轴上方时,184(2)842ABO PBO S S S x x =+=+⨯⨯-=-△△.解不等式组4846x +-+≤≤,得112x -≤.② 当P 在x 轴下方时,ABO △与ABP △是同底等高的三角形,面积相等.因此1842842ABP PBO ABO PBO S S S S S x x =+=+=+⨯⨯=+△△△△.解不等式组4846x +++≤≤112x --≤≤.综上所述,x 的取值范围.是112x --≤112x --≤≤【测试1】点A 在x 轴的负半轴上,4OA =,AB OB ==.将ABO △绕坐标原点O 顺时针旋转90︒,得到11A B O △,再继续旋转90︒,得到22A B O △.抛物线23y ax bx =++经过B 、1B 两点.⑴ 求抛物线的解析式;⑵ 点2B 是否在此抛物线上,请说明理由;⑶ 在该抛物线上找一点P ,使得2PBB △是以2BB 为底的等腰三角形,求出所有符合条件的点P 的坐标;⑷ 在该抛物线上,是否存在两点M 、N ,使得原点O 是线段MN 中点,若存在,直接写出这两点的坐标;若不存在,请说明理由. 【解析】⑴ 过点B 作BE OA ⊥于点E ,∵AB OB =,∴OE =又OB =∴1BE =. ∴(2B -.∴(11B ,)21-.∵抛物线23y ax bx =++经过B 、1B 两点,∴423132a b a b -+=⎧⎨++=⎩, 解得⎪⎩⎪⎨⎧-=-=3132b a . ∴抛物线的解析式为331322+--=x x y .⑵ ∵当2x =时,22112231333y =-⨯-⨯+=--≠,∴点()221B -,不在此抛物线上.⑶ 点P 应在线段2BB 的垂直平分线上,由题意可知,12OB BB ⊥且平分2BB , ∴点P 在直线1OB 上.可求得1OB 所在直线的解析式为2y x =.又点P 是直线2y x =与抛物线221333y x x =--+的交点,由2221333y x y x x =⎧⎪⎨=--+⎪⎩,解得{1112x y ==,22929x y ⎧⎪=-⎨=-⎪⎩. ∴符合条件的点P 有两个,()112P ,即点1B 和2992P ⎛⎫-- ⎪⎝⎭,. ⑷存在.⎛ ⎝和. 课后测。

二次函数综合提高

二次函数综合提高

题型1.代数型综合题函数型综合题主要是以二次函数为主线,几何与二次函数相结合的综合形式。

二次函数是初中数学的重点,也是难点,以二次函数为背景的代数型综合题能较全面地反映学生的综合能力和较好的区分度,因此是各地中考的热点题型,是压轴题的主要来源之一.解题时重点把握:1.二次函数的图象信息与方程的代数信息的相互转化.例如函数图象与x 轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等;2.方程、分类讨论、数形结合始终是解题的主旋律,尤其是题中数量信息转化为方程;3.探索问题,动点问题联系转化来解决;4.计算能力的培养。

题型2 几何型综合题几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 1. 几何型综合题,常用相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现. 2. 几何计算是以几何推理为基础的几何量的计算,主要有线段和弧的长度的计算,角、角的三角函数值的计算,以及各种图形面积的计算等. 3. 几何论证题主要考查学生综合应用所学几何知识的能力. 4. 解几何综合题应注意以下几点:(1) 注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2) 注意推理和计算相结合,力求解题过程的规范化; (3) 掌握常规的证题思路,尤其理解作辅助线的本质就是挖掘题中的隐含条件; (4) 解题自信心的培养解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的。

例1.已知抛物线2(4)24y x m x m =-+-++与x 轴交于1(,0)A x 、2(,0)B x ,与y 轴交于点C ,且1x 、2x 满足条件1212,20x x x x <+= (1)求抛物线的解析式;(2)能否找到直线y kx b =+与抛物线交于P 、Q 两点,使y 轴恰好平分△CPQ的面积?若能,求出k 、b 所满足的条件.解析:(1)∵△=22(4)4(24)320m m m -++=+>,∴对一切实数m ,抛物线与x 轴恒有两个交点,由根与系数的关系得124x x m +=- ①, 12(24)x x m =-+ ②.由已知有1220x x += ③.③-①得2124,228.x m x x m =-=-=-代入②得(28)(4)(24)m m m --=-+. 化简得29140m m -+=.解得121122,7.2,4,2m m m x x ====-=当时,满足12x x <. 当27m =时,126,3x x ==-,不满足12x x <,∴抛物线的解析式为228y x x =--+. (2)如图,设存在直线y kx b =+与抛物线交于点P 、Q ,使y 轴平分△CPQ 的面积,设点P 的横坐标为Q x ,直线与y 轴交于点E . ∵1122PCE QCEP Q S S CE x CE x ∆∆==∙∙=∙∙, ∴P Q x x =,由y 轴平分△CPQ 的面积得点P 、Q 在y即P Q x x =-,∴0P Q x x +=,由228y kx by x x =+⎧⎨=--+⎩得2(2)80x k x b +++-=.又∵P x 、Q x 是方程2(2)80x k x b +++-=的两根,∴(2)0P Q x x k +=-+=,∴2k =-.又直线与抛物线有两个交点,∴当28k b =-<且时,直线y kx b =+与抛物线的交点P 、Q ,使y 轴能平分△CPQ 的面积. 故2,8k b =-<.例2如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C,,三点的坐标并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在PAB△是等腰三角形.若存在,求出所有符合条件的点P解:(1)抛物线的对称轴5522axa-=-=(2)(30)A-,(54)B,(04)C,把点A坐标代入254y ax ax=-+中,解得16a=-215466y x x∴=-++(3)存在符合条件的点P共有3设抛物线对称轴与x轴交于N,与CB交于M.过点B作BQ x⊥轴于Q,易得4BQ=,8AQ=, 5.5AN=,52BM=①以AB为腰且顶角为角A的PAB△有1个:1PAB△.222228480AB AQ BQ∴=+=+=在1Rt ANP△中,12PN==== 1522P⎛∴-⎝⎭,②以AB为腰且顶角为角B的PAB△有1个:2P AB△.在2Rt BMP△中,2MP===252P⎛∴⎝⎭③以AB为底,顶角为角P的PAB△有1个,即3P AB△.画AB的垂直平分线交抛物线对称轴于3P,此时平分线必过等腰ABC△的顶点C.过点3P作3P K垂直y轴,垂足为K,显然3Rt RtPCK BAQ△∽△.312P K BQCK AQ∴==.32.5P K=5CK∴=于是1OK=3(2.51)P∴-,例3.如图,抛物线2(0)y x bx c b =++≤的图象与x 轴交于A B ,两点,与y 轴交于点C ,其中点A 的坐标为(20)-,;直线1x =与抛物线交于点E ,与x 轴交于点F ,且4560FAE≤∠≤.(1)用b 表示点E 的坐标; (2)求实数b 的取值范围;(3)请问BCE △的面积是否有最大值?若有,求出这个最大值;若没有,请说明理由. 解(1) 抛物线2y x bx c =++过(20)A -,,24c b ∴=-点E 在抛物线上,112433y b c b b b ∴=++=+-+=-,∴点E 的坐标为(133)b -,.(2)由(1)得33EF b =-,4560FAE ≤∠≤,3AF =,10b ∴≤.(3)BCE △的面积有最大值,2y x bx c =++ 的对称轴为2bx =-,(20)A -,, ∴点B 的坐标为(20)b -,,由(1)得(024)C b -,, 而BCE EFB OCB OCEF S S S S =+-△△△梯形111()222OC EF OF EF FB OB OC =++- []111(42)(33)1(33)(1)(2)(42)222b b b b b b =-+-⨯+----- 21(32)2b b =-+, 21(32)2y b b =-+ 的对称轴是32b =,10b ≤∴当1b =BCE S △取最大值,其最大值为21(13(122⎡⎤-+=⎣⎦例4.已知抛物线2y ax bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC)是方程210160x x -+=的两个根,且抛物线的对称轴是直线2x =-(1)求此抛物线的表达式;(2)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(3)在(2)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由. 解:(1)解方程210160x x -+=得122,8x x ==∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC ∴点B 的坐标为(2,0),点C 的坐标为(0,8) 又∵抛物线2y ax bx c =++的对称轴是直线2x =- ∴由抛物线的对称性可得点A 的坐标为(-6,0) ∵点C (0,8)在抛物线2y ax bx c =++的图象上 ∴c =8,将A (-6,0)、B (2,0)代入表达式,得2036683042883a a b a b b ⎧=-⎪=-+⎧⎪⇒⎨⎨=++⎩⎪=-⎪⎩∴所求抛物线的表达式为228833y x x =--+(2)依题意,AE =m ,则BE =8-m ,∵OA =6,OC =8,∴AC =10 ∵EF ∥AC ∴△BEF ∽△BAC ∴EF AC =BE AB 即EF 10=8-m 8 ∴EF =40-5m 4过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45∴FG EF =45 ∴FG =45·40-5m 4=8-m ∴S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m )=12(8-m )(8-8+m )=12(8-m )m =-12m 2+4m 自变量m 的取值范围是0<m <8 (3)存在.理由:∵S =-12m 2+4m =-12(m -4)2+8 且-12<0,∴当m =4时,S 有最大值,S 最大值=8∵m =4,∴点E 的坐标为(-2,0)CE CB ∴= ∴△BCE 为等腰三角形.例5、如图5,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在y 轴上. (1)求m 的值及这个二次函数的表达式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)D 为直线AB一点P ,使得四边形DCEP 是平行四边形?若存在,标;若不存在,请说明理由. 解析: (1) ∵ 点A(3,4)在直线m x y +=上,∴4=3+m . ∴m 设所求二次函数的关系式为2(1)y a x =- ∵ 点A(3,4)在二次函数2(1)y a x =-的图象上,∴24(31)a =- ∴ 1a =∴ 所求二次函数的关系式为2(1)y x =-即221y x x =-+ (2) 设P 、E 两点的纵坐标分别为p y 和E y∴ 22(1)(21)3p E PE h y y x x x x x ==-=+--+=-+ 即h =23(03)x x x -+<<(3) 存在. 解:要使四边形DCEP 是平行四边形,必需有PE=DC.点D 在直线1y x =+上 ∴ 点D 的坐标为(1,2),图5∴ 232x x -+= 解之得122,1x x ==(不合题意,舍去) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形例6 如图6,已知抛物线2y ax bx c =++经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式.(2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式;② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 解析:(1)∵ 抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3),∴ ⎪⎩⎪⎨⎧==+=+03390416c b a b a 解得 0,334,33==-=c b a ∴ 所求抛物线的函数关系式为x x y 334332+-=.(2)① 过点B 作BE ⊥x 轴于E ,则BE=3,AE=1,由tan ∠BAE=3=AEBE ,得∠BAE =60°.(ⅰ)当点Q 在线段AB 上运动,即0<t ≤2时,QA=t ,过点Q 作QF ⊥x 轴于F ,则QF=t 23,∴ S=21PA ·QF t t 23)4(21⋅-=t t 3432+-=22)t =-∵ 043<-,∴ 当t =2时,S 有最大值,最大值S=3(ⅱ)当点Q 在线段BC 上运动,即2≤t <4时,Q 点的纵坐标为3,PA=4-t . 这时,S=3)4(21⋅-t 3223+-=t∵ 023<-, ∴ S 随着t 的增大而减小. ∴ 当t =2时,S 有最大值,最大值332223=+⋅-=S综合(ⅰ)(ⅱ),当t =2时,S 有最大值,最大值为3. △PQA 是等边三角形. ③ 存在. 当点Q 在线段AB 上运动时,要使得△PQA 是直角三角形,必须使得∠PQA =90°,这时PA=2QA ,即4-t =2t ,∴ 34=t .∴ P 、Q 两点的坐标分别为P 1(34,0),Q 1(310,332).当点Q 在线段BC 上运动时,Q 、P 两点的横坐标分别为(41)(2)5t t ---=-和t ,要使得△PQA 是直角三角形,则必须5-t =t ,∴ 25=t∴ P 、Q 两点的坐标分别为P 2(25,0),Q 2(25,3).例7.如图,在平面直角坐标系中,抛物线上有A (-1,0),B (3,0)C (0,-1)三点。

二次函数综合提高讲义

二次函数综合提高讲义

一、选择题1.在下列关系式中,y 是x 的二次函数的关系式是 ( )A.2xy+x 2=1B.y 2-ax+2=0C.y+x 2-2=0D.x 2-y 2+4=0 2.设等边三角形的边长为x(x>0),面积为y ,则y 与x 的函数关系式是( )A.212y x =B.214y x =C.2y x =D.2y x = 3.抛物线y=x 2-8x+c 的顶点在x 轴上,则c 等于( )A.-16B.-4C.8D.16 4.若直线y=ax +b (a≠0)在第二、四象限都无图像,则抛物线y=ax 2+bx+c ( )A.开口向上,对称轴是y 轴B.开口向下,对称轴平行于y 轴C.开口向上,对称轴平行于y 轴D.开口向下,对称轴是y 轴 5.一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图像可能是 ( )6.已知抛物线y=-x 2+mx+n 的顶点坐标是(-1,- 3 ),则m 和n 的值分别是( )A.2,4B.-2,-4C.2,-4D.-2,0 7.对于函数y=-x 2+2x-2使得y 随x 的增大而增大的x 的取值范围是 ( )A.x>-1B.x≥0C.x≤0D.x<-1 8.抛物线y=x 2-(m+2)x+3(m-1)与x 轴 ( )A.一定有两个交点; B .只有一个交点; C .有两个或一个交点; D .没有交点 9. 二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )10.2 +(2-t) x + t 总经过一个固定的点,这个点是( )A . (1, 0) B.(-l, 0) C.(-1, 3) D. (l, 3) 二、填空题11.抛物线y=-2x+x 2+7的开口向 ,对称轴是 ,顶点是 . 12.若二次函数y=mx 2-3x+2m-m 2的图像过原点,则m 的值是 .13.如果把抛物线y=2x 2-1向左平移l 个单位,同时向上平移4个单位,那么得到的新的抛物线是 . 14.对于二次函数y=ax 2, 已知当x 由1增加到2时,函数值减少4,则常数a 的值是 . 15.已知二次函数y=x 2-6x+n 的最小值为1,那么n 的值是 . 16.抛物线在y=x 2-2x-3在x 轴上截得的线段长度是 .17.设矩形窗户的周长为6m ,则窗户面积S(m 2)与窗户宽x (m)之间的函数关系式是 ,自变量x 的取值范围是 .18.设A 、B 、C 三点依次分别是抛物线y=x 2-2x-5与y 轴的交点以及与x 轴的两个交点,则△ABC 的面积是 . 19.抛物线上有三点(-2, 3)、(2,-8)、(1,3),此抛物线的解析式为 .xxxxx20.已知一个二次函数与x 轴相交于A 、B, 与y 轴相交于C ,使得△ABC 为直角三角形,这样的函数有许多,其中一个是 . 三、解答题21、如图正方形CDEF 的边长为4,截去一角成五边形ABCDE ,已知AF=2,BF=1,在AB 上求一点P ,使矩形PNDM 有最大面积.22、函数2(0)y ax a =≠的图象与直线23y x =-交于点(1,b )(1)求a 和b 的值;(2)求两函数图象另一个交点B 的坐标; (3)设坐标原点为O ,求OAB S ∆.23、如图1,Rt ABC ∆中,90A ∠=︒,3tan 4B=,点P 在线段AB 上运动,点Q 、R 分别在线段BC 、AC 上,且使得四边形APQR 是矩形.设AP 的长为x ,矩形APQR 的面积为y ,已知y 是x 的函数,其图象是过点(12,36)的抛物线的一部分(如图2所示). ⑴求AB 的长;⑵当AP 为何值时,矩形APQR 的面积最大,并求出最大值.24、如图,等边ABC ∆中,AD 是BAC ∠的角平分线,E AD 为上一点,以BE 为一边且在BE 下方作等边BEF ∆,连接CF 。

重难题型六 二次函数综合题——三阶 综合提升练+++课件+2025年中考数学人教版一轮复习(广西)

重难题型六 二次函数综合题——三阶 综合提升练+++课件+2025年中考数学人教版一轮复习(广西)

S2=12 PN•|xA-xB|=-12 t2+2,∴S=S1+S2=4t+8, 当t=2时,S的最大值为16.
2025版
数学
广西专版
2.(2024•湖南)已知二次函数y=-x2+c的图象经过点A(-2,5),P(x1, y1),Q(x2,y2)是此二次函数的图象上的两个动点.
2025版
数学
广西专版
数学
广西专版
∵DE⊥OB,∴DE∥AC,∴∠EDO=∠ACO=60°,
2025版
数学
广西专版
(1)解:∵二次函数y=-x2+c的图象经过点A(-2,5), ∴5=-4+c,∴c=9,∴y=-x2+9.
2025版
数学
Байду номын сангаас广西专版
(2)证明:易得B(3,0), 设直线AB的解析式为y=kx+b, ∴ -2k+b=5,∴ k=-1,
3k+b=0, b=3, ∴直线AB的解析式为y=-x+3, 设P(x1,-x12+9), 则Q[x1+3,-(x1+3)2+9],D(x1,-x1+3),
2025版
数学
广西专版
(“一阶
重难题型六 二次函数综合题 ——三阶 综合提升练
方法技巧突破练”、“二阶 考向多维设问练”见本 书P65)
2025版
数学
广西专版
类型一:二次函数中的线段问题 (2024T25,2018-2017T26)
2025版
数学
广西专版
1.(2017•北部湾第26题10分)如图,已知抛物线y=ax2-2 3ax-9a与坐标 轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交 BC于点E,过点D的直线l与射线AC,AB分别交于点M,N. (1)直接写出a的值,点A的坐标及抛物线的对称轴; (2)P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;

2020年中考数学一轮复习:二次函数综合提升训练解析版

2020年中考数学一轮复习:二次函数综合提升训练解析版

2020年中考数学一轮复习:二次函数综合提升训练一.选择题(共12小题)1.抛物线y=﹣3x2+6x+2的对称轴是()A.直线x=2B.直线x=﹣2C.直线x=1D.直线x=﹣1 2.抛物线y=﹣2(x﹣3)2﹣4的顶点坐标()A.(﹣3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(3,4)3.已知点A(1,y1),B(2,y2)在抛物线y=﹣(x+1)2+2上,则下列结论正确的是()A.2>y1>y2B.2>y2>y1C.y1>y2>2D.y2>y1>24.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度5.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的6.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣257.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+38.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0C.2a﹣b=0D.a﹣b+c=09.若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9的值是()A.5B.﹣1C.4D.1810.将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2+1D.y=(x﹣2)2﹣1 11.如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3其中正确的有()个.A.1B.2C.3D.412.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A.B.C.D.二.填空题(共8小题)13.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是.14.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是.15.已知二次函数y=x2﹣8x+m的最小值为1,那么m的值等于.16.将抛物线y=x2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为.17.抛物线y=2(x+1)2﹣3的顶点坐标为.18.将y=x2﹣2x+3化成y=a(x﹣h)2+k的形式,则y=.19.已知二次函数y=ax2+bx+c的图象如图所示,若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围是.20.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是.三.解答题(共6小题)21.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?22.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A 在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.23.如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.24.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.25.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.26.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.一.选择题(共12小题)1.抛物线y=﹣3x2+6x+2的对称轴是()A.直线x=2B.直线x=﹣2C.直线x=1D.直线x=﹣1【分析】将抛物线的一般式配方成为顶点式,可确定顶点坐标及对称轴.【解答】解:∵y=﹣3x2+6x+2=﹣3(x﹣1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1.故选:C.2.抛物线y=﹣2(x﹣3)2﹣4的顶点坐标()A.(﹣3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(3,4)【分析】根据顶点式直接可得顶点坐标.【解答】解:∵y=﹣2(x﹣3)2﹣4是抛物线的顶点式,∴顶点坐标为(3,﹣4).∴则答案为C故选:C.3.已知点A(1,y1),B(2,y2)在抛物线y=﹣(x+1)2+2上,则下列结论正确的是()A.2>y1>y2B.2>y2>y1C.y1>y2>2D.y2>y1>2【分析】分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【解答】解:当x=1时,y1=﹣(x+1)2+2=﹣(1+1)2+2=﹣2;当x=2时,y1=﹣(x+1)2+2=﹣(2+1)2+2=﹣7;所以2>y1>y2.故选:A.4.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【解答】解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选:D.5.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x>时,y随x值的增大而增大,选项D不正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确.故选:C.6.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.7.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.8.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0C.2a﹣b=0D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.9.若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9的值是()A.5B.﹣1C.4D.18【分析】把(﹣2,3)代入y=﹣x2+bx+c可得﹣2b+c=7,再将所求的式子变形,整体代入即可求出答案【解答】解:∵抛物线y=﹣x2+bx+c经过点(﹣2,3),∴﹣(﹣2)2﹣2b+c=3,整理得,﹣2b+c=7,∴2c﹣4b﹣9=2(c﹣2b)﹣9=2×7﹣9=5,故选:A.10.将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2+1D.y=(x﹣2)2﹣1【分析】由抛物线平移不改变a的值,根据平移口诀“左加右减,上加下减”可知移动后的顶点坐标,再由顶点式可求移动后的函数表达式.【解答】解:将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是y=(x﹣2)2+1.故选:C.11.如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3其中正确的有()个.A.1B.2C.3D.4【分析】根据抛物线的图象与性质即可判断.【解答】解:抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,故①错误;由于对称轴为x=﹣1,∴x=﹣3与x=1关于x=﹣1对称,∵x=﹣3时,y<0,∴x=1时,y=a+b+c<0,故②错误;∵对称轴为x=﹣=﹣1,∴2a﹣b=0,故③正确;∵顶点为B(﹣1,3),∴y=a﹣b+c=3,∴y=a﹣2a+c=3,即c﹣a=3,故④正确;故选:B.12.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A.B.C.D.【分析】将一次函数解析式展开,可得出该函数图象与y轴交于负半轴,分析四个选项可知,只有C选项符合,由此即可得出结论.【解答】解:一次函数y=k(x﹣k)=kx﹣k2,∵k≠0,∴﹣k2<0,∴一次函数与y轴的交点在y轴负半轴.A、一次函数图象与y轴交点在y轴正半轴,A不正确;B、一次函数图象与y轴交点在y轴正半轴,B不正确;C、一次函数图象与y轴交点在y轴负半轴,C可以;D、一次函数图象与y轴交点在y轴正半轴,D不正确.故选:C.二.填空题(共8小题)13.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是4.【分析】把抛物线化为顶点式可得出其顶点坐标,根据顶点在x轴上,可知顶点的纵坐标为0可求得c.【解答】解:∵y=x2﹣4x+c=(x﹣2)2+c﹣4,∴其顶点坐标为(2,c﹣4),∵顶点在x轴上,∴c﹣4=0,解得c=4,故答案为:4.14.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是(0,3).【分析】y轴上点的坐标特点为横坐标为0,纵坐标为y,把x=0代入即可求得交点坐标为(0,3).【解答】解:当x=0时,y=3,即交点坐标为(0,3).15.已知二次函数y=x2﹣8x+m的最小值为1,那么m的值等于17.【分析】将二次函数化为顶点式,即可建立关于m的等式,解方程求出m的值即可.【解答】解:原式可化为:y=(x﹣4)2﹣16+m,∵函数的最小值是1,∴﹣16+m=1,解得m=17.故答案为:17.16.将抛物线y=x2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为y =(x+2)2﹣3.【分析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(﹣2,﹣3),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移3个单位得到对应点的坐标为(﹣2,﹣3),所以平移后的抛物线解析式为y =(x+2)2﹣3.故答案为y=(x+2)2﹣3.17.抛物线y=2(x+1)2﹣3的顶点坐标为(﹣1,﹣3)..【分析】直接利用顶点式的特点可知顶点坐标.【解答】解:顶点坐标是(﹣1,﹣3).故答案为:(﹣1,﹣3).18.将y=x2﹣2x+3化成y=a(x﹣h)2+k的形式,则y=(x﹣1)2+2.【分析】直接利用配方法把一般式配成顶点式即可.【解答】解:y=x2﹣2x+3=(x﹣1)2+2.故答案为(x﹣1)2+2.19.已知二次函数y=ax2+bx+c的图象如图所示,若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围是k<5.【分析】先移项,整理为一元二次方程,让根的判别式大于0求值即可.【解答】解:由图象可知:二次函数y=ax2+bx+c的顶点坐标为(1,5),∴=5,即b2﹣4ac=﹣20a,∵ax2+bx+c=k有两个不相等的实数根,∴方程ax2+bx+c﹣k=0的判别式△>0,即b2﹣4a(c﹣k)=b2﹣4ac+4ak=﹣20a+4ak =﹣4a(5﹣k)>0∵抛物线开口向下∴a<0∴5﹣k>0∴k<5.故答案为:k<5.20.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是①②④.【分析】根据图象分别求出a、b、c的符号,即可判断①;根据对称轴求出b=2a,代入2a﹣b即可判断②;把x=2代入二次函数的解析式,再根据二次函数的性质即可判断③;求出点(﹣5,y1)关于直线x=﹣1的对称点的坐标,根据对称轴判断y1和y2的大小,即可判断④.【解答】解:①∵二次函数的图象开口向上,∴a>0,∵二次函数的图象交y轴的负半轴于一点,∴c<0,∵对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a>0,∴abc<0,故①正确;②∵b=2a,∴2a﹣b=0,故②正确;③∵抛物线的对称轴为x=﹣1,且过点(﹣3,0),∴抛物线与x轴另一交点为(1,0).∵当x>﹣1时,y随x的增大而增大,∴当x=2时y>0,即4a+2b+c>0,故③错误;④∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),又∵当x>﹣1时,y随x的增大而增大,3>,∴y1>y2,故④正确;故答案为:①②④.三.解答题(共6小题)21.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y =kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x﹣400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=25时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.22.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A 在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.【分析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A、B两点的坐标,再根据函数图象不在x轴下方的x的取值范围得y≥0时x的取值范围;(2)根据题意写出B2,B3的坐标,再由对称轴方程列出n的方程,求得n,进而求得m 的值.【解答】解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6,m),B2(6﹣n,m),B3(﹣n,m),函数图象的对称轴为直线,∵点B2,B3在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.23.如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【分析】(1)由于抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,根据待定系数法可求抛物线的解析式;(2)先得到点E(2,﹣3),根据勾股定理可求BE,再根据直角三角形的性质可求线段HF的长;【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴解得:,∴抛物线的解析式为:y=x2﹣2x﹣3;(2)∵点E(2,m)在抛物线上,∴m=4﹣4﹣3=﹣3,∴E(2,﹣3),∴BE==,∵点F是AE中点,抛物线的对称轴与x轴交于点H,即H为AB的中点,∴FH是三角形ABE的中位线,∴FH=BE=×=.24.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.【分析】(1)直接利用对称轴公式代入求出即可;(2)根据(1)中所求,再将x=4代入方程求出a,b的值,进而解方程得出即可.【解答】(1)证明:∵对称轴是直线x=1=﹣,∴2a+b=0;(2)解:∵ax2+bx﹣8=0的一个根为4,∴16a+4b﹣8=0,∵2a+b=0,∴b=﹣2a,∴16a﹣8a﹣8=0,解得:a=1,则b=﹣2,∴ax2+bx﹣8=0为:x2﹣2x﹣8=0,则(x﹣4)(x+2)=0,解得:x1=4,x2=﹣2,故方程的另一个根为:﹣2.25.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【分析】(1)把点A(﹣4,﹣3)代入y=x2+bx+c得16﹣4b+c=﹣3,根据对称轴是x =﹣3,求出b=6,即可得出答案,(2)根据CD∥x轴,得出点C与点D关于x=﹣3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.【解答】解:(1)把点A(﹣4,﹣3)代入y=x2+bx+c得:16﹣4b+c=﹣3,c﹣4b=﹣19,∵对称轴是x=﹣3,∴﹣=﹣3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=﹣3对称,∵点C在对称轴左侧,且CD=8,∴点C的横坐标为﹣7,∴点C的纵坐标为(﹣7)2+6×(﹣7)+5=12,∵点B的坐标为(0,5),∴△BCD中CD边上的高为12﹣5=7,∴△BCD的面积=×8×7=28.26.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.【分析】(1)利用待定系数法把A(1,0),C(0,﹣3)代入二次函数y=x2+bx+c中,即可算出b、c的值,进而得到函数解析式是y=x2+2x﹣3;(2)首先求出A、B两点坐标,再算出AB的长,再设P(m,n),根据△ABP的面积为10可以计算出n的值,然后再利用二次函数解析式计算出m的值即可得到P点坐标.【解答】解:(1)∵二次函数y=x2+bx+c过点A(1,0),C(0,﹣3),∴,解得,∴二次函数的解析式为y=x2+2x﹣3;(2)∵当y=0时,x2+2x﹣3=0,解得:x1=﹣3,x2=1;∴A(1,0),B(﹣3,0),∴AB=4,设P(m,n),∵△ABP的面积为10,∴AB•|n|=10,解得:n=±5,当n=5时,m2+2m﹣3=5,解得:m=﹣4或2,∴P(﹣4,5)(2,5);当n=﹣5时,m2+2m﹣3=﹣5,方程无解,故P(﹣4,5)(2,5);。

动点与二次函数综合提高题(含答案)[1]

动点与二次函数综合提高题(含答案)[1]

72x =B(0,4)A(6,0)EFxyO 二次函数与四边形一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.A5-4- 3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O2l 1lx y练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P :y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点(点A 在x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下:x … -3 -2 1 2 … y…-52-4-52…(1) 求A 、B 、C 三点的坐标;(2) 若点D 的坐标为(m ,0),矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围;(3) 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM=k ·DF ,若点M 不在抛物线P 上,求k 的取值范围.练习1.(辽宁省十二市2007年第26题).如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C );(2)求出过A ,B ,C 三点的抛物线的表达式;(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围;面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接写出此时m 的值,并指出相等的邻边;若不存在,说明理由.练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在图10对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.三.二次函数与四边形的动态探究例 1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.B CPO D QA BPC ODQ Ay321O12 x例2.(2010年沈阳市第26题)、已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.例3..(湖南省郴州) 27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.练习1.(07年河池市)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自图2OCA BxyDPE F 图1 FE PD y xBA C OxN MQ PHGFEDCBA图11QPN M HGFED CBA图10y QBCN变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标, 若不存在,说明理由.练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1),x图1x图2x图3)x图4E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(4(4F F F F - 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式27(2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725(326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725(326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264()2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E 使OEAF 为正方形.练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 又点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+(2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.5-4-3-2-1-12 3D554 32 1 ACEM BC '1-O 2l 1l xy设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD =,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-.(2)由(1)可计算得点(31)(31)M N --,,,. 过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+.根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤.(3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得1222t t ==,(舍).所以在运动过程中四边形MDNA 可以形成矩形,此时2t =.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

中考数学(二次函数提高练习题)压轴题训练含详细答案(1)

中考数学(二次函数提高练习题)压轴题训练含详细答案(1)

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC .①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.【答案】(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=94;②P (2,﹣3)或(22﹣2). 【解析】 【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案. 【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3; (2)设BC 的解析式为y=kx+b , 将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣32)2+94,当n=32时,PM最大=94;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=2,n2﹣2n﹣3=-3,P(2,-3);当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=3+2(不符合题意,舍),n3=3-2,n2﹣2n﹣3=2-42,P(3-2,2-42);综上所述:P(2,﹣3)或(3-2,2﹣42).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.2.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P 在第三象限.①当线段PQ=34AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.【答案】(1)抛物线的函数表达式为y=x2-2x-3.(2)直线BC的函数表达式为y=x-3.(3)①23.①P1(122),P2(16,74).【解析】 【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】(1)∵抛物线的对称轴为直线x=1,∴− 221b ba -⨯==1 ∴b=-2∵抛物线与y 轴交于点C (0,-3), ∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3; (2)∵抛物线与x 轴交于A 、B 两点, 当y=0时,x 2-2x-3=0. ∴x 1=-1,x 2=3. ∵A 点在B 点左侧, ∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m ,则033k m m ==+⎧⎨-⎩,∴13k m ⎧⎨-⎩==∴直线BC 的函数表达式为y=x-3; (3)①∵AB=4,PQ=34AB , ∴PQ=3 ∵PQ ⊥y 轴 ∴PQ ∥x 轴,则由抛物线的对称性可得PM=32, ∵对称轴是直线x=1, ∴P 到y 轴的距离是12, ∴点P 的横坐标为−12, ∴P (−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(1-62-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.∴P1(2-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-62,或1+62,∵点P在第三象限.∴P2(1-6,-52).综上所述:满足条件为P1(1-2,-2),P2(1-62,-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.3.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【详解】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得30 4233 a ba b--=⎧⎨+-=-⎩解得12 ab=⎧⎨=-⎩∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入23k b k b -+=⎧⎨+=-⎩ 解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1 ∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2) ∴P 点纵坐标为﹣2, ∴x 2﹣2x ﹣3=﹣2解得:x =1±2,∵x >0∴x =1+2. ∴P (1+2,﹣2) 【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3. 【解析】【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得1266x x =+=-12x x -=答:两排灯的水平距离最小是考点:二次函数的实际应用.5.对于二次函数 y=ax 2+(b+1)x+(b ﹣1),若存在实数 x 0,使得当 x=x 0,函数 y=x 0,则称x 0 为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b ,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A 、B 两点的横坐标是该函数的“不变值”,且 A 、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值. 【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】 【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得. 【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a=- A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b ba a-- ) A 、B 两点关于直线y=kx-2a+3对称, 又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上.∴b a -=ba-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.6.如图,已知抛物线的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5)。

一元二次方程综合提高精选题含答案

一元二次方程综合提高精选题含答案

一元二次方程综合提高题一、选择题1.若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1m4 >-;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】(A)0 (B)1 (C)2 (D)3【答案】C。

【考点】抛物线与x轴的交点,一元二次方程的解,一元二次方程根的判别式和根与系数的关系。

【分析】①∵一元二次方程实数根分别为x1、x2,∴x1=2,x2=3,只有在m=0时才能成立,故结论①错误。

②一元二次方程(x-2)(x-3)=m化为一般形式得:x2-5x+6-m=0,∵方程有两个不相等的实数根x1、x2,∴△=b2-4ac=(-5)2-4(6-m)=4m+1>0,解得:1m4>-。

故结论②正确。

③∵一元二次方程x2-5x+6-m=0实数根分别为x1、x2,∴x1+x2=5,x1x2=6-m。

∴二次函数y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m =x2-5x+6=(x-2)(x-3)。

令y=0,即(x-2)(x-3)=0,解得:x=2或3。

∴抛物线与x轴的交点为(2,0)或(3,0),故结论③正确。

综上所述,正确的结论有2个:②③。

故选C。

2.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为【】A.3 B.﹣3 C.13 D.﹣13【答案】B。

【考点】一元二次方程根与系数的关系。

【分析】∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x 1+x 2=﹣4,x 1x 2=a 。

∴x 1x 2﹣2x 1﹣2x 2﹣5=x 1x 2﹣2(x 1+x 2)﹣5=a ﹣2×(﹣4)﹣5=0,即a+3=0, 解得,a=﹣3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年级初三学科数学编稿老师田一鹏课程标题二次函数的综合提高一校林卉二校黄楠审核孙永涛一、考点突破二次函数问题多次出现在各地中考的压轴题中,这是因为一方面二次函数的基本内容与近现代数学的发展有密切联系,是学习高中数学极为重要的知识点,另一方面围绕二次函数能全面考查对函数性态的分析,以二次函数为载体把数(计算、证明)与形(图象)融合起来,把方程、不等式、绝对值等知识融合起来,围绕着二次问题,勾通了一元二次函数、一元二次不等式、一元二次方程问题的内在联系,很好地体现了数学学科的内在联系和知识的综合运用,体现了在知识网络交汇点上设计试题的指导思想。

纵观历届中考对二次函数的考查,反复出现的内容可以归纳为以下几点:二次函数的定义式问题,解析式问题(求参数),图象问题,图象平移问题,二次函数与方程、不等式问题,含绝对值的二次函数问题,二次函数的最值问题,以及二次函数和直线相交问题,二次函数实际应用问题。

二、重难点提示重点:二次函数的概念及性质;用待定系数法求二次函数的解析式,用配方法和公式法求抛物线的顶点坐标和对称轴。

难点:能利用二次函数的关系式、图象、性质解决实际问题及比较复杂的问题。

能力提升类例 1 如图所示是二次函数2122y x =-+的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为与其最.接近的值是( ) A. 4 B.163C. 2πD. 8一点通:可以先求出二次函数与x 、y 轴的交点坐标,再根据阴影部分的面积大于交点所围成的三角形面积,并小于交点所围成的圆的面积,即可求解。

解:方法一:由题意,设这段图象与x 轴的交点为A (-2,0)、B (2,0),与y 轴的交点为C (0,2)。

显然,S 在面积与过A 、B 、C 三点的⊙O 的半圆面积之间。

∵=4,π221=ΘO S ,∴4<S <。

说明:关于半圆⊙O 的面积大于图示阴影部分面积的证明,如下: 设P (x ,y )在图示的抛物线上,则OP 2=x 2+y 2=(4-2y )+y 2=(y -1)2+3。

∵0≤y ≤2, ∴3≤OP 2≤4。

∴点P 在半圆x 2+y 2=3、x 2+y 2=4所夹的圆环内, ∴半圆⊙O 的面积大于图示阴影部分的面积。

由于内半圆的面积为,∴<S <。

方法二:由题意,设这段图象与x 轴的交点为A (-2,0)、B (2,0),与y 轴的交点为C (0,2)。

显然,这段图象在图示半径为、2的两个半圆所夹的圆环内,以及过内半圆上点P(,1)与半外圆上点A 、B 、C 。

∴S 在图示两个半圆面积之间。

即<S <。

∴<S <。

点评:不规则图形的面积,除转化为规则图形计算外,还可根据其特征,用上下界限的方法确定其近似值。

例2 已知二次函数图象的顶点坐标为(3,-2),并且图象与x 轴两交点间的距离为4,求该二次函数的解析式。

一点通:由于给出了抛物线的顶点坐标,因此可用“顶点式”列出解析式,然后求解;还可以求出抛物线与x 轴两交点的坐标,然后利用一般式求解。

方法较多,可选择不同的方法。

解:方法一:∵抛物线的顶点坐标为(3,-2),∴可设二次函数的解析式为y a x =--()322, ∵抛物线与x 轴两交点间的距离为4,对称轴为x =3, ∴抛物线与x 轴的两个交点为(1,0),(5,0), 将点(1,0)的坐标代入,得01322=--a(),∴4a =2,∴a =12, ∴二次函数的解析式为:y x x x x x =--=-+-=-+12321269212352222()(),即y x x =-+123522y0 1 25 3 4 x方法二:由以上分析,可知抛物线与x 轴交点为(1,0),(5,0) ∴可设二次函数的解析式为y a x x =--()()15将点(3,-2)的坐标代入,得-=--23135a()() ∴-=-42a ,∴=a 12,∴二次函数的解析式为:y x x x x x x =--=-+=-+121512651235222()()(),即y x x =-+123522;方法三:∵抛物线过(3,-2),(1,0),(5,0)三点, ∴设二次函数的解析式为y ax bx c =++2,将三点的坐标代入,得93202550a b c a b c a b c ++=-++=++=⎧⎨⎪⎩⎪ 解得a b c ==-=⎧⎨⎪⎪⎩⎪⎪12352 ∴二次函数的解析式为y x x =-+123522;方法四:设二次函数的解析式为y ax bx c a =++≠20()由题意,得 -=-=-++=⎧⎨⎪⎪⎪⎩⎪⎪⎪a ac b a a b c 23442026084002a b a b ac a b c +=-+=++=⎧⎨⎪⎩⎪ 将b a =-6代入,得 83640502a a ac a c -+=-+=⎧⎨⎩①将c =5a 代入①,得83620022a a a -+= 1680a a -= 202a a -=∴==a a 12012,∵a 10=不合所设,舍去∴a b c ==-=12352,,∴二次函数的解析式为y x x =-+123522点评:此题一题多解,考查了列函数解析式的能力及解方程组的能力。

综合运用类例3 已知反比例函数ky x=的图象经过点P (2,2)、Q (4,m ),直线y =ax +b 与直线y =-x 平行,并且经过点Q 。

(1)求直线y =ax +b 的解析式; (2)当x 为何值时,函数225k y ax bx k-=++取得最大值或最小值?并求出这个最大值或最小值。

一点通:(1)由反比例函数xky =的图象经过点P (2,2)可以求出反比例函数解析式,从而得出Q (4,m )的坐标,直线y =ax +b 与直线y =-x 平行,可得出a =-1,并且经过点Q ,从而求出解析式;(2)由(1)式中a ,b ,k 的值得出二次函数的解析式,可以借助配方法求出二次函数的最值。

解:(1)∵函数ky x=的图象经过点P (2,2), 22k =∴k =4.∴反比例函数为4y x=。

又∵Q (4,m )在反比例函数4y x=的图象上, ∴m =1.∴Q (4,1).∵直线y =ax +b 与y =-x 平行, ∴a =-1.∴直线的解析式为y =-x +b. 又∵直线y =-x +b 过点Q , ∴1=-4+b. b =5.∴直线的解析式为y =-x +5; (2)由a =-1,b =5,k =4,得函数225k y ax bx k -=++为22154y x x -=-++。

∴221(5)4y x x =---22525215()244x x ⎡⎤=--+--⎢⎥⎣⎦ 252521()244x =--+-25()12x =--+,∴当52x =时,所求函数的最大值为1。

点评:此题是一次函数、反比例函数和二次函数综合题目,综合性较强,两问中层层递进,在计算过程中一定要认真,避免出错。

例4 某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和成本进行了调研,结果如下:每件商品的售价M (元)与时间t (月)的关系可用一条线段上的点来表示(如图1),每件商品的成本Q (元)与时间t (月)的关系可用一条抛物线的一部分上的点来表示(如图2)。

(说明:图1,图2中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本。

) 请你根据图象提供的信息回答:(1)每件商品在3月份出售时的利润(利润=售价-成本)是多少元?(2)求图2中表示的每件商品的成本Q (元)与时间t (月)之间的函数关系式(不要求写自变量的取值范围);(3)你能求出三月份至七月份每件商品的利润W (元)与时间t (月)之间的函数关系式吗(请写出计算过程,不要求写自变量的取值范围)?若该公司共有此种商品30000件,准备在一个月内全部售完,请你计算一下至少可获利多少元?图1 图2一点通:由图象提供的信息可求出M 、Q 关于t 的函数表达式,进而可求出利润关于t 的函数表达式,再根据题目要求,运用函数的相关性质进行解答。

解:(1)每件商品在3月份出售时的利润为6-1=5(元); (2)∵抛物线的顶点坐标为(6,4) ∴设抛物线的解析式为Q =a (t -6)2+4∵抛物线过(3,1)点 ∴1=a (3-6)2+4解得:13a =-,∴Q =13-(t -6)2+4=13-t 2+4t -8 (3)设每件商品的售价M (元)与时间t (月)之间的函数关系式为M =kt +b ∵线段过(3,6)、(6,8)两点 ∴⎩⎨⎧=+=+8663b k b k解得:⎪⎩⎪⎨⎧==432b k∴M =23t +4,所以每件商品的利润W (元)与时间t (月)的函数关系式为W =M -Q =(23t +4)-(13-t 2+4t -8)=13t 2-103t +12 ∴W =13(t -5)2+113,∴当t =5时,W 的最小值为113元,∴30000件商品一个月内售完,至少获利30000×113=110000元。

答:30000件商品一个月内售完,至少获利110000元。

点评:此题难点在第(3)问:表示利润。

运用二次函数的性质求最值常用配方法或公式法。

思维拓展类例5 已知点)1,2(),1,2(),3,0(---C B A ,点),(2t t P 为抛物线2x y =上位于ABC ∆内部的一动点,BP 所在直线交AC 于点E ,CP 所在直线交AB 于点F 。

(1)将CE 表示为变量t 的函数; (2)求CEBF的变化范围。

一点通:本题是一道综合题,集几何、代数于一体,第(1)问在求解时要用到相似形的知识。

解:(1)设AB 所在直线的方程为b ax y +=,已知)1,2(),3,0(--B A 在直线上,即得⎩⎨⎧+-=-=b a b 213,解得⎩⎨⎧==,3,2b a 即AB 所在直线的方程为32+=x y 。

该直线与抛物线2x y =的交点的横坐标x 满足方程322+=x x ,解得3,121=-=x x 。

同理可求得AC 所在直线的方程为32+-=x y ,该直线与抛物线2x y =的交点的横坐标x 满足方程322+-=x x ,解得13=x ,34-=x 。

因),(2t t P 为抛物线2x y =上位于ABC ∆内部的一动点,所以1t 1-<<。

过点P 作BC 的平行线,分别交AB 、AC 于点M 、N ,由PNE ∆∽BCE ∆,可得EC NE BC NP =,从而有CE CNCE NE CE BC NP BC =-=-。

同理,由MPF ∆∽BCF ∆可得BFBMBF FM BF BC MP BC =-=-。

相关文档
最新文档