博弈论第四章习题.doc

合集下载

博弈论基础讲义-第四章

博弈论基础讲义-第四章

第四章动态不完全信息博弈第一节. 序贯均衡的内涵一.问题的提出1.序贯理性2.一致信念二.序贯均衡的内涵1.例子2.定义a.行为战略b.序贯理性c.一致信念3.存在性三.序贯均衡的计算1.例子:一般计算2.例子:分析应用第二节. 序贯均衡的应用一.教育和信号传递1.假设2.分析二.垄断限价模型1.假设2.分析三.声誉模型1.假设2.分析四.序贯均衡之再精炼1.剔除劣弱战略2.直观标准3.垄断限价模型第四章不完全信息动态博弈第一节.序贯均衡的内涵一.问题的提出1.序贯理性——参与人在所有情况决策都是理性的,即在给定信念的条件下,以及其他参与人的选择条件下,自身选择是最优的例1:子博弈最优——纳什均衡(,)L l是否合理?——如果参与人2有机会选择,肯定选r而不是l;——(,)L l不是子博弈精炼纳什均衡。

例2:单点信息集最优——纳什均衡(,,)D a l是子博弈纳什均衡;——但如果参与人2有机会选择,但肯定选择d;——(,,)D a l不满足单点信息集理性。

例3:多点信息集最优——纳什均衡(,)A r是子博弈精炼纳什均衡;——(,)A r不满足多点信息集理性。

2.一致信念例1:与客观事实一致u=是否合理?——参与人2的信念2/3——2/3u=是不合理的,因为任何到达参与人2信息集都不可能产生此后验概率;——后验信念必须与先念信念保持一致。

例2:前后信念一致——参与人2的第2个信息集上的信念,是否合理?——不合理,给定参与人战略和第1个信息集的信念,利用贝叶斯法则计算信念与此不一致;——参与人前后信念保持一致。

例3:独立偏离——参与人3的信念0.9u =是否合理?——参与人1和参与人3的偏离是独立的,所以参与人3的合理信念为0.1u =;——不同参与人之间的偏离是独立的总结,一致信念要求:参与人偏离最小化,,参与人之间偏离是独立的;二.序贯均衡的定义1.例子——定义参与人1在信息集1.1和1.3以及参与人2在2.2上的序贯理性;——定义信息集1.3和2.2的信念?2.定义a.行为战略:参与人在某个信息集到行动集映射,——如果某个状态真正发生,参与人如何决策;——序贯理性是否满足?b.序贯理性:在任何信息集上,参与人在给定信念和所有后续行为战略,选择自身行为战略最大化预期效用。

博弈论(第四章)

博弈论(第四章)
谢富纪 2009年3月 11
2.有限次重复博弈
有唯一纯策略纳什均衡博弈的有限次重复博弈
有限次重复博弈的囚徒困境博弈,可以理解成警察 给两人两次交代的机会。
囚 徒2 坦白 不坦白
囚 徒 1
坦白
不坦白
-5, -5
-8, 0
0, -8
-1, -1
谢富纪 2009年3月
12
2.有限次重复博弈
因为重复博弈全过程是一种动态博弈过程,从第二 阶段开始。 此前的博弈已是既成的事实,而在此后又没有任何 的后继阶段,因此实现本阶段最大利益是两博弈 方在该阶段的唯一原则。结果是(坦白,坦白),
谢富纪 2009年3月
29
2.有限次重复博弈
本博弈中之所以不能或不能部分实现最佳结果
(A,A),是因为在两次重复博弈中博弈方没
有运用触发策略的条件或者说机会。后面的选择 并不取决于第一次博弈的结果。
谢富纪 2009年3月
30
2.有限次重复博弈
厂商2 得益
(1,4) (1.5,3) (3,3)
谢富纪 2009年3月
17
2.有限次重复博弈
削价竞争博弈
高价 寡 高价 头 1 低价
寡头2
低价
100,100 20,150 150,20 70,70
由于两个寡头在同一市场的竞争可以看作维持很 长时间,因此可以看作是重复博弈。然而结果是 令人遗憾的。
谢富纪 2009年3月 18
2.有限次重复博弈
两个悖论
谢富纪 2009年3月
27
2.有限次重复博弈
两市场博弈的重复博弈
厂商 2 A 厂A 商 1 B B
3,3
1,4
4,1
0,0

博弈论第四章

博弈论第四章

(1)起始结是一个单结的信息结;
(2)子博弈保留了原博弈的所有结构。 则称它为原博弈的一个子博弈(子博弈)。
按照博弈树的延伸的时序,或者按照博弈 树生长的时序,我们用一个扁椭圆形的虚 线的圈,把所论局中人在同一个时点的若
干决策节点罩起来,成为他的一个信息集。
(1)起始结是一个单结的信息结
x1
L L 1 2 S L 2 S (1,1) (2,2) 1 (-1,-1) (-1,-1) S 2 L L S (2,2)
镇上能卖6000元;但如果另一家商铺同时在小镇上卖
鞭炮,价格下跌使得这批鞭炮只能卖4000元。纳什均
衡是什么?
• 假设甲先行动,商铺乙看到对方的选择后再决定是否
进货,子博弈精炼纳什均衡是什么?
如果甲先行动,但在博弈开始前商铺主乙有一次行动A 的机会,利用子博弈精炼均衡概念分析下述两种情况下
的博弈结果: 何行动他都不会改变这个决定;
一颗大树表示一个博弈,一颗小树同样可以表示
一个博弈。如果小树是大树的一颗子树,并且
小树表示的博弈不破坏大树表示的博弈的结构,
那么小树表示的博弈,就叫做大树表示的博弈
的子博弈。
一、子博弈(sub-game)
子博弈定义:在一个扩展型博弈中,如果一 个博弈由它的一个决策结及其所有后续结 构成,并满足:
信息集的时候,面临决策的局中人对于博弈迄今的历史是
不清楚的,他不清楚博弈具体走到了他的这个信息集里面 的哪个决策节点。
在市场进入博弈中,包含3个子博弈(包括原博 弈)。而在囚徒博弈中,只有一个子博弈(?)
收益: A
B 容忍
进入 抵抗 A 不进入 B
B
抵赖
B 抵赖
-1 ,-1 -9 ,0 0 ,-9

博弈论课后习题

博弈论课后习题

Document serial number [UU89WT-UU98YT-UU8CB-UUUT-UUT108]第一章导论1、什么是博弈博弈论的主要研究内容是什么2、设定一个博弈模型必须确定哪儿个方面3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。

4、"囚徒的困境”的内在根源是什么举出现实中囚徒的困境的具体例子。

5、博弈有哪些分类方法,有哪些主要的类型6、你正在考虑是否投资100万元开设一家饭店。

假设情况是这样的:你决定开,则的概率你讲收益300万元(包括投资),而的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择(c)如果你是风险规避的,且期望得益的折扣系数为,你的策略选择是什么(d)如果你是风险偏好的,期望得益折算系数为,你的选择又是什么7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。

如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。

逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。

请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。

第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么2、为什么说纳什均衡是博弈分析中最重要的概念3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。

4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响5、下面的得益矩阵表示两博弈方之间的一个静态博弈。

该博弈有没有纯策略纳什均衡t専弈的结果是什么6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。

7、博弈方1和2就如何分10 000元进行讨价还价。

假设确定了以下规则:双方同时提出自己要求的数额S1和S2, 0< sl,s2< 10 000,如果sl+s2W10 000,则两博弈方的要求都得到满足,即分别得到si和s2, 但如果是sl+s2>10 000,则该笔钱就被没收。

(完整word版)博弈论练习题

(完整word版)博弈论练习题

1、纳什均衡一定是上策均衡,但并非每一个上策均衡都是纳什均衡。

(×)2、如果重复博弈的次数较少,但两家厂商都具有完全理性,则相互合作仍能实现。

(×)1、贝叶斯纳什均衡属于哪种博弈中的均衡状态?(C )A、完全信息静态博弈;B、完全信息动态博弈;C、不完全信息静态博弈;D、不完全信息动态博弈。

2、下列正确的表述是(A )。

A、任何市场竞争都可由市场博弈来概括B、剔除不可置信的威胁后的纳什均衡属于精炼贝叶斯纳什均衡C、股票投资者之间的博弈属于零和博弈D、“摸着石子过河”属于完全信息动态博弈3、下述错误的表述是(C )。

A、现实中,信息不对称比信息对称更为普遍B、道德风险源于代理人的理性行为C、父子合开的小企业中不存在委托——代理问题D、委托人与代理人的利益几乎不可能完全一致4、右图为某一博弈的得益矩阵,据此可知:(D. )A.甲与乙均没有上策B.甲与乙均有上策C.甲有上策而乙没有上策D.甲没有上策而乙有上策5、对于右下图表示的博弈,其上策均衡或纳什均衡A.左上角B.右上角C.左下角D.右下角6、乒乓球团体赛中双方出场阵营的选择和确定属于(A. )。

A.静态博弈B.动态博弈C.零和博弈D.合作博弈7、就足球比赛中的比分而言,比赛属于( B )。

A.零和博弈B.变和博弈C.常和博弈D.静态博弈8、就排球比赛中的输赢结果而言,比赛属(A. )。

A.零和博弈B.变和博弈C. 常和博弈D.静态博弈假设有10 名劳动者,其中10 - x名是低能力的,另外x名是高能力的。

这10 名劳动者是企业的潜在员工。

现在,企业因业务扩展需要招聘1 名高能力劳动者。

又假设这10 名劳动者都渴望到这家企业去工作。

假设企业对高能力者愿意支付2元的工资,对低能力者支付1元的工资;高能力劳动者保留工资是1元,低能力者保留工资是0.5元。

请回答如下一些问题:1)假设信息是完全的(即劳动者的能力写在脸上,人人皆知),企业具有完全的谈判能力(即只支付员工保留工资水平的工资),则招聘结果将如何?由于信息是完全的,企业将大大降低招聘的风险,并以高能力劳动者可以接受的保留工资1元,从X名高能力劳动者中招聘到一名员工,市场交易顺利进行。

博弈论 课后习题答案

博弈论 课后习题答案

博弈论课后习题答案第四部分课后习题答案1. 参考答案:括号中的第一个数字代表乙的得益,第二个数字代表甲的得益,所以a表示乙的得益,而b表示甲的得益。

在第三阶段,如果,则乙会选择不打官司。

这时逆推回第二阶段,甲会选择a,0不分,因为分的得益2小于不分的得益4。

再逆推回第一阶段,乙肯定会选择不借,因为借的最终得益0比不借的最终得益1小。

在第三阶段,如果,则乙轮到选择的时候会选择打官司,此时双方得益是(a,b)。

a,0逆推回第二阶段,如果,则甲在第二阶段仍然选择不分,这时双方得益为(a,b)。

b,2在这种情况下再逆推回第一阶段,那么当时乙会选择不借,双方得益(1,0),当a,1时乙肯定会选择借,最后双方得益为(a,b)。

在第二阶段如果,则甲会选择a,1b,2分,此时双方得益为(2,2)。

再逆推回第一阶段,乙肯定会选择借,因为借的得益2大于不借的得益1,最后双方的得益(2,2)。

根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:(1),此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方a,0得益(1,0),不管这时候b的值是多少;(2),此时博弈的结果仍然012,,,ab且是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3),此时博ab,,12且弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益(a,b);(4),此时乙在第一阶段会选择借,甲在第二阶段会选择分,ab,,02且双方得益(2,2)。

要本博弈的“威胁”,即“打”是可信的,条件是。

要本博弈的“承诺”,即a,0“分”是可信的,条件是且。

a,0b,2注意上面的讨论中没有考虑a=0、a=1、b=2的几种情况,因为这些时候博弈方的选择很难用理论方法确定和预测。

不过最终的结果并不会超出上面给出的范围。

2. 参考答案:静态贝叶斯博弈中博弈方的一个策略是他们针对自己各种可能的类型如何作相应的完整计划。

博弈论课后习题

博弈论课后习题

第一章导论1、什么是博弈博弈论的主要研究内容是什么2、设定一个博弈模型必须确定哪几个方面3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。

4、“囚徒的困境”的内在根源是什么举出现实中囚徒的困境的具体例子。

5、博弈有哪些分类方法,有哪些主要的类型6、你正在考虑是否投资100万元开设一家饭店。

假设情况是这样的:你决定开,则的概率你讲收益300万元(包括投资),而的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择(c)如果你是风险规避的,且期望得益的折扣系数为,你的策略选择是什么(d)如果你是风险偏好的,期望得益折算系数为,你的选择又是什么7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。

如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。

逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。

请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。

第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么2、为什么说纳什均衡是博弈分析中最重要的概念3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。

4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响5、下面的得益矩阵表示两博弈方之间的一个静态博弈。

该博弈有没有纯策略纳什均衡博弈的结果是什么6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。

7、博弈方1和2就如何分10 000元进行讨价还价。

假设确定了以下规则:双方同时提出自己要求的数额S1和S2,0≤s1,s2≤10000,如果s1+s2≤10 000,则两博弈方的要求都得到满足,即分别得到s1和s2,但如果是s1+s2>10 000,则该笔钱就被没收。

问该博弈的纯策略纳什均衡是什么如果你是其中一个博弈方,你会要求什么数额,为什么8、设古诺模型中有n家厂商、qi 为厂商i的产量,Q=q1+…+qn 为市场总产量、P为市场出清价格,且已知P=P(Q)=a-Q(当Q<a时,否则P=0)。

博弈论第四章

博弈论第四章

4 非完全信息动态博弈4.1 精炼贝叶斯均衡概述例简单的非完全信息动态博弈参与人1的类型t为个人信息。

参与人2 不知道t,但知道t的概率分布。

博弈的时序:(1)参与人1选择行动a1∈A1;(2)参与人2观察a1,选择a2∈A2博弈的收益:u1(a1, a2, t), u2(a1, a2, t )u1u1u1u1 u1u1u1u1u2u2u2u2 u2u2u2u2例:1 RL M 13p 2 1- pL'R'L'R'2 0 0 01 0 1 2标准式表示参与人 2L'R'L2,10,0参与人 1 M0, 20,1R1, 31, 3纯战略纳什均衡: (L,L'), (R,R')均为子博弈精炼纳什均衡(无子博弈)。

但是(R, R')不可信。

排除不可信的纳什均衡:要求1 参与人必须有一个推断(belief).要求2 参与者的战略必须满足序贯理性(sequentially rational).定义: 处于均衡路径上(on the equilibrium path)的信息集: 在均衡战略下,博弈以正的概率到达该集.要求3 在处于均衡路径上的信息集上, 推断由贝叶斯法则和参与人的均衡战略决定。

例要求3的说明参与人1的类型空间:{ t1,t2,t3,t4 }行动空间:A= { L,R}推断p i: 观察到L后,参与人1的类型是t i的概率。

推断q i: 观察到R后,参与人1的类型是t i的概率。

p1 + p2 + p3 + p4 = 1q1 + q2 + q3 + q4= 1N如果参与人1的战略: t 1选 L ,t 2选 L , t 3选R ,t 4 选R 。

参与人2对p i 与 q i 的推断:p 1 = 3.02.02.0+= 0.4, p 2 = 3.02.03.0+= 0.6, p 3 = 0, p 4 =0; q 1 = 0, q 2= 0, q 3 =3.02.02.0+= 0.4, q 4= 3.02.03.0+= 0.6,例 3个参与人的博弈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章习题
一、如果T次重复齐威王田忌赛马,双方在该重复博弈中的策略是什么?博弈结果如何?
答:因为这是零和博弈,结论比较具体。

重复Nash 均衡,均以1/6的概率选择各个策略,期望收益分别为1和-1 o
因为这是竞争性的零和博弈,无论是有限次重复博弈还是无限次的重复博弈,均不能达成合作的条件。

二、举出现实生活中的一个重复博弈与一次性博弈效率不同的例子。

答:火车站和机场餐饮业的服务的顾客往往是一次性的,回头客和常客也比较少,价格高,质量差,一次性博弈。

效率也比较低。

商业区和居民区的餐饮业和商业服务业,回头客和常客比较多,比较注重信誉,质优、价廉,重复博弈。

效率也比较高。

三、有限次重复博弈和无限次重复博弈有什么区
别?这些区别对我们有什么启发?
答:动态博弈的逆向归纳法可以用于有限次重复博弈,但不能用于无限次重复博弈,主要用逆向归纳
法。

无限次重复博弈的效率往往高于有限次重复博弈。

当重复次数较少不一定考虑贴现问题,但无限次重复博弈必须考虑贴现问题。

启发:重视有限次与无限次的区别,区分和研究这两类博弈,在实践方面重要启发是促进和保持经济的长期稳定和可持续发展,提高社会经济效率是非常有意义的。

四、判断下列表述是否正确,并作简单讨论:
(1)有限次重复博弈的子博弈完美纳什均衡每次重复采用的都是原博弈的纳什均衡。

答:不一定。

对于有两个以上纯策略纳什均衡的条件下就不一定。

如“触发策略”就不是。

(2)有限次重复博弈的子博弈完美纳什均衡的最后一次重复必定是原博弈的一个纳什均衡。

答:是,根据子博弈完美纳什均衡的要求,最后一次必须是原博弈的一个纳什均衡。

(3)无限次重复博弈均衡解的得益一定优于原博
弈均衡解的得益。

答:错。

如严格竞争的零和博弈就不优于。

(4)无限次重复古诺产量博弈不一定会出现合谋
生产垄断产量的现象。

答:正确。

合谋生产垄断产量是有条件的,由贴现率来反映,当不满足条件时,就不能构成激励。

(5)如果博弈重复无限次或者每次结束的概率足够小,而得益的时间贴现率$充分接近1,那么任何个体理性的可实现得益都可以作为子博弈完美纳什均衡的结果出现。

答:这就是无限次重复博弈的民间定理。

(6)触发策略所构成的均衡都是子博弈完美纳什均衡。

答:错误。

触发策略本身并不能排除重复博弈中不可信的威胁和承诺,因此由触发策略构成的不一定是子博弈完美纳什均衡。

五、为什么消费者偏好去大商店买东西而不太信赖走街穿巷的小商贩?
答:去大商店买东西,重复博弈——合作诚信问题;走街穿巷的小商贩,一次性博弈——没有合作的必要,存在不诚信和欺诈。

建立信用制度和诚信档案的必要性。

六、寡头的古诺产量博弈中,如果市场需求p=130-2,边际成本 C = 30且没有固定成本,贴现因子$ = 0.9。

如果该市场有长期稳定性,问两个厂商能否维持垄断产量?
解:『=(130-/-必-30气古诺产量
[刀)—(130 —q、— % )公—3。


* * 100 * * 10000
01=02=-^,利泅为:羽=缶=3—
垄断产量勿= (13O — 0)g — 3Og,
A q,n = 50,兀m = 2500
市场长期稳定的,翕= 1250
2
1250(1 + ^ +罗+.・.)=^^ = 12500, 3 = 0.9 1-3
如果一厂商偏离:勿]=(130 - 25 - 0)0 - 30., n% =37.5, <=1406.25
成,山皿* 10000,£ £2、牌皿* 100003
那么:1406.25 + ---- (3+罗+••.) = 1406.25 + --
9 9(1- $)
= 1406.25 +10000 = 11406.2502500
因此,坚持垄断产量是明智的。

七、如果上一题厂商1的边际成本该为10,厂商
2695.312 51 — 5 二
610.937
51一3
=
2的边际成本仍然是30。

假设市场仍然是长期稳定的, 而且两个厂商已经达成了厂商1生产3/4,厂商2生产1/4的垄断产量分配协议,问这种协议是否能够长期维持?
解.J 羽=(13。

-01 -02)01 T°01古诺产量
[刀2 =(130-01 - 02)02 - 3002
* 140 * 80 打心乌* 19600 * 6400
0 =^~902=§,木j/门为:心=—-—,刀2=-g-
垄断产量71= (130 - Q)Q- 0.75 x 102 - 0.25 x 300,
= 115Q_Q2,
=> Q n = 57.5 ,产量分别为:43.125 , 14.375 ;
心加=2695.3125, 7T2tn= 610.9375
如果两个厂商均不偏离:
厂商1偏离:
丸1 = (130 -14.375 - %-10/ = 105.625/ -g:, q x
=52.8125,徇=278926
2789.16 +以迎(^+郡+・・・)= 2789.16 + 19600
9
=22389.16 < 26953.125 不偏离
厂商2偏离:
勿2 = (130-43.125 -02)02 -3。

02,02 = 28.4375,
"2 =808.6914
808.6914 +竺匹($+普+...)= 808.6914 + 6400
9
=7208.6914 > 6109.375 偏离
还可以计算出不同的3,可以进一步讨论。

八、两个人合作开发一项产品,能否成功与两个
人的工作态度有关,设成功概率如下:
B
A
努力偷懒努力9/163/8偷懒3/81/4
再假设成功时每人有4单位的利益,失败则双方
都没有利益,偷懒本身有1单位的利益。

问该博弈无限次重复博弈的均衡是什么?
解:根据问题的假设,该博弈的得益矩阵如下:
B
A
努力偷懒
努力9/4, 9/43/2, 5/2偷懒5/2, 3/22, 2
一次性博弈显然是囚徒困境式博弈,唯一的纳什
均衡两人都偷懒,双方的期望得益都是2。

在无限次重复博弈中,假设双方为了在共同努力
当满足:
4(1 —3) 一 2 (1 也就是S>-时采取这
2
方面实现合作采取如下的触发策略:开始时努力,一旦发现对方不努力,则自己也偷懒。

我们可以分析当贴现因子3符合什么条件时,该策略构成子博弈完美纳什均衡。

.、Q Q
不偏离:一(1 + 3+$2 +...)=——
4 4(1 — 3)
c 1 o
偏离:- + 2(J + ^2+--*) = - + —^―
2 2 (D
种触发策略是正确的,否则,偏离是正确的。

当曷时,两博弈方都采用这样的触发策略是本
博弈的子博弈完美纳什均衡;如果驾,则上述触发策略组合不是子博弈完美纳什均衡,两人都会采取偷懒的策略。

相关文档
最新文档