材料力学5-弯曲强度

合集下载

材料力学习题册答案-第5章 弯曲应力

材料力学习题册答案-第5章 弯曲应力

第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。

( × )2、中性轴是梁的横截面与中性层的交线。

梁发生平面弯曲时,其横截面绕中性轴旋转。

( √ )3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。

( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。

( √ )5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。

( × )6、控制梁弯曲强度的主要因素是最大弯矩值。

( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。

( √ )@二、填空题1、应用公式zMy I 时,必须满足的两个条件是 满足平面假设 和 线弹性 。

2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。

3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力=S FbhF23 。

4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、xH Bh BH 66132- 和 Hbh BH 66132- 。

三、选择题1、如图所示,铸铁梁有A ,B ,C 和D 四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。

2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F。

则当F 增大时,破坏的情况是 ( C )。

A 同时破坏 ;B (a )梁先坏 ;C (b )梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。

若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是(D )ABCDHABC D?四、计算题&1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。

材料力学课件第5章

材料力学课件第5章

M
zM
x
等截面梁
y
注意 当梁为变截面梁时, max 并不一定
发生在|M|max 所在面上.
22
5.3 横力弯曲时梁横截面上的正应力 弯曲正应力强度条件
h
常用图y形Wz
c b
Wz =Iz /ymax
z
Wz
Iz h
bh3 2 12 h
bh2 6
2
h2
h1
y
c
z
Wz
Iz h1
1 ( b1h13 h1 6
z
于是
M
E
Iz
M

1 M
EIz
y
x
代入
E
y得
My
Iz
15
5.2 纯弯曲时梁横截面上的正应力
常用图形y、Iz
h
y
1.矩形
dy
c
y z
Iz
Ay2 d A
h 2
y2b d y bh3
h 2
12
b
y
同理:
Iy
hb3 12
z
Iz
b1h13 12
b2h23 12
c
b2 b1
同理: I y
h1b13 12
y
12 rp
mn
x2
x
x1
12
dx
'=
x2 FN1
FN2
'=
38
5.4 横力弯曲时梁横截面上的切应力 弯曲切应力强度条件
F
Fx 0
FN 2 FN1 dx b
x1
y
12 rp mn
x2
x
12
dx

弯曲强度与弯曲模量的关系

弯曲强度与弯曲模量的关系

弯曲强度与弯曲模量的关系1.引言1.1 概述概述弯曲强度和弯曲模量都是材料力学性能的重要指标,它们描述了材料在受到外部力作用时的抵抗变形和破坏能力。

弯曲强度是指材料在弯曲加载下抵抗破坏的能力,通常用抗弯强度来表示;而弯曲模量则描述了材料在受到外力作用时的抵抗变形能力,它代表了材料的刚性程度。

在工程实践中,了解材料的弯曲强度和弯曲模量对于正确选择材料并进行结构设计具有重要意义。

通过研究材料的弯曲强度和弯曲模量之间的关系,可以了解材料的力学性能和耐久性,并为工程实践中的材料选择、力学设计以及预测材料的破坏行为提供参考依据。

本文将首先对弯曲强度和弯曲模量进行定义和测量方法的介绍,包括常见的试验方法和计算公式。

接着,将分析弯曲强度和弯曲模量之间的关系,探讨两者之间的影响因素和相互作用机制。

最后,将讨论弯曲强度和弯曲模量在实际应用中的意义,并讨论影响其数值的因素,以及如何通过工程手段来调控和优化这些性能。

通过深入研究弯曲强度和弯曲模量之间的关系,有助于我们更好地理解材料的力学性能和行为,为工程实践提供科学依据,并推动材料科学和工程领域的发展和进步。

最后,本文将总结研究结果,提出一些对未来研究的展望。

文章结构部分的内容应该包括对整篇文章的结构和各个章节内容的简要描述。

下面是对文章结构部分的一种可能描述:1.2 文章结构本文主要探讨弯曲强度与弯曲模量之间的关系,并分析在实际应用中的意义和影响因素。

文章按照以下章节组织:2.1 弯曲强度的定义和测量方法这一章节首先介绍了弯曲强度的定义,即在外力作用下材料能够承受的最大弯曲应力。

接着详细探讨了测量弯曲强度的方法,包括三点弯曲试验和四点弯曲试验等。

2.2 弯曲模量的定义和测量方法在本章节中,我们首先给出了弯曲模量的定义,即在弯曲过程中材料对应力的抵抗能力。

然后,我们将深入讨论测量弯曲模量的方法,如静态三点弯曲试验和动态振动试验等。

3. 结论在本章节中,我们将对弯曲强度与弯曲模量的关系进行分析和总结。

材料力学第5章弯曲变形ppt课件

材料力学第5章弯曲变形ppt课件

qL
4.22kNm
4.22kNm
M
max
32 M
max
76.4MPa
WZ
d 3
例题
20kN m
A
4m
FA
20kN m
A
MA
4m
试求图示梁的支反力
40kN
B
D
2m
2m
B
B1 FB
FB 40kN
B
D
B2
2m
2m
在小变形条件下,B点轴向力较小可忽略不
计,所以为一次超静定.
C
B1 B2
FBBBMF12AA2383qFEqELBqqLI84LI2LLZZ32F35BFF4FEFB83PBPLIEL7Z3L12IZ.218352.k75N5kFkN2PNmEL2IZ2
x
边界条件
A
L2
B
L2
C
y
连续条件
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
全梁仅一个挠曲线方程
C
q
EA
共有两个积分常数 边界条件
L1
A
x
B
EI Z
L
y
例题 5.5
用积分法求图示各梁挠曲线方程时,试问在列各梁 的挠曲线近似微分方程时应分几段;将分别出现几个 积分常数,并写出其确定积分常数的边界条件
q
a
B C LBC
B
2a
FN
B
q2a4
8EIZ
FN 2a3
3EIZ
C
FN
a
D

《材料力学》课件5-6梁内的弯曲应变能

《材料力学》课件5-6梁内的弯曲应变能

3
结论
深入研究弯曲应变能对于实际工程设计和结构的完善非常重要。我们相信,在学 习本章内容之后,大家会对弯曲应变能的计算和应用有更深入的认识。
总结
重要性和应用
弯曲应变能是研究物体弯曲 变形和内应力分布的重要机 制,对于工程师和设计师来 说至关重要。
计算方法的优缺点
弯曲应变能的计算方法有许 多种,每种方法都有各自的 优缺点,需要灵活运用。
物理意义பைடு நூலகம்
弯曲应变能是物体弯曲变 形的内在机制,对于研究 物体受力后的变形状态和 内应力分布具有重要的意 义。
梁的弯曲
1
基本概念
梁是一种经常被工程师用来支撑重量的结构。梁的形状和尺寸取决于所需的支撑 和跨度。
2
受力分析
在弯曲的情况下,内力主要包括弯矩和剪力。弯曲应变能的计算需要考虑这两个 因素。
3
应用
巩固与拓展
了解弯曲应变能的相关知识 点是设计和工程领域的基础, 我们需要不断学习和探索。
为了提高计算效率和精度,一 些简化的计算公式也可以用于 计算弯曲应变能。
示例分析
1
实际工程中的应用
弯曲应变能在桥梁、车辆和建筑物的设计和构造中起着重要作用。对于这些特殊 结构的设计,精确计算弯曲应变能是非常必要的。
2
桥梁、车辆和建筑物中的案例分析
我们可以通过一些实例来了解弯曲应变能的具体应用。这些案例可以帮助我们深 入了解弯曲应变能对实际结构的影响。
弯曲应变能可用于预测梁的强度和刚度,有助于提高梁的设计效率和经济性。
梁内弯曲应变能的计算
梁的截面和形状
梁的截面和形状对它的弯曲应 变能有较大的影响。对于不同 的截面形状,弯曲应变能的计 算方法也会有所不同。

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

材料力学第5章-剪力图与弯矩图

材料力学第5章-剪力图与弯矩图

第5章 梁的强度问题
剪力方程与弯矩方程
建立剪力方程和弯矩方程的方法与过程,实际上与前面所 介绍的确定指定横截面上的剪力和弯矩的方法和过程是相似的 ,所不同的,现在的指定横截面是坐标为x的横截面。
需要特别注意的是,在剪力方程和弯矩方程中,x是变量, 而FQ(x)和M(x)则是x的函数。
第5章 梁的强度问题
剪力方程与弯矩方程
例题2
MO=2FPl
FP
B
A
C
l
l
悬臂梁在B、C两处分别承受集中力FP和集中力偶M=2FPl
的作用。梁的全长为2l。 试写出:梁的剪力方程和弯矩方程。
第5章 梁的强度问题
剪力方程与弯矩方程
y
MO=2FPl
O
A
C
l
FP
B l
解:1.确定控制面和分段
本例将通过考察截开截面的右
边部分平衡建立剪力方程和弯矩方 程,因此可以不必确定左端的约束 力。
本章首先介绍如何建立剪力方程和弯矩方程;讨论载荷、 剪力、弯矩之间的微分关系;怎样根据载荷、剪力、弯矩之间 的微分关系绘制剪力图与弯矩图;然后应用平衡、变形协调以 及物性关系,建立确定弯曲的应力和变形公式;最后介绍弯曲 强度设计方法。
第5章 梁的强度问题
工程中的弯曲构件 梁的内力及其与外力的相互关系 剪力方程与弯矩方程 载荷集度、剪力、弯矩之间的微分关系 剪力图与弯矩图 刚架的内力与内力图 结论与讨论(1)
根据以上分析,不难得到结论: 杆件各截面上内力变化规律随着外力的 变化而改变。
第5章 梁的强度问题
梁的内力及其与外力的相互关系
所谓剪力和弯矩变化规律是指表示剪力和弯矩变 化的函数或变化的图线。这表明,如果在两个外力 作用点之间的梁上没有其他外力作用,则这一段梁 所有横截面上的剪力和弯矩可以用同一个数学方程 或者同一图线描述。

材料力学第五章弯曲内力

材料力学第五章弯曲内力
2、判断各段Q、M图形状:
CA和DB段:q=0,Q图为水平线, M图为斜直线。
AD段:q<0, Q图为向下斜直线, M图为上凸抛物线。
3、先确定各分段点的Q 、M 值,用相应形状的线条连接。
32
§5-6 纯弯曲时的正应力
• 纯弯曲(Pure Bending):某段梁的 内力只有弯矩没有剪力时,该段 梁的变形称为纯弯曲。
如图(b)示。
qL A
x1Q1
图(a) M1
图(b)
Y qL Q1 0 Q1 qL
mA(Fi) qLx1 M1 0 M1 qLx1
17
2--2截面处截取的分离体如图(c) qL
Y qL Q2 q(x2 a) 0 Q2 qx2 a qL
剪力等于梁保留一侧横向外
②写出内力方程
Q(x)
P
Q( x ) YO P
M(x) PL
x
M( x ) YOx MO
P( x L ) x
③根据方程画内力图
20
F
a
b
A
C
x1 x2
FAY
l
FS Fb / l
Fa / l
Fab/ l
M
[例]图示简支梁C点受集中力作用。
试写出剪力和弯矩方程,并画 B 出剪力图和弯矩图。
4. 标值、单位、正负号、纵标线
31
例 外伸梁AB承受荷载如图所示,作该梁的Q---M图。
3kN
6kN m 2kN/m
A C
B D
1m
4m
FA
Q 4.2
(kN) +
E
_
3
x=3.1m
1m
FB
_
3.8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 杆件轴向拉伸或压缩时的变形
载荷与内力成正比,因此荷载与它所引起的变形成 线性关系:载荷增加一倍,变形增加一倍。
2. 圆轴扭转时的变形
载荷与内力成正比,因此荷载与它所引起的变形成 线性关系:载荷增加一倍,变形增加一倍。
3. 梁的弯曲变形
载荷它所引起的变形成线性关系:载荷增加一倍, 变形增加一倍。 那么,如果变形中有同载荷无关的项,意味着载荷 为0时,梁也有变形。
2.曲率与弯矩的符号关系 M与w''的符号相反。 梁弯曲时轴线曲率:
7.2 用积分法求梁的位移
梁的挠曲线近似微分方程:
式中积分常数C、D由约束条件和连续条件(统称 边界条件)确定。
要求: (1)约束处满足位移约束条件; (2)梁轴中间的点满足连续与光滑条件弯矩方程不连 续时要分段积分。
注意
1. 分段连续弯矩方程必须从原点沿x的正向依 次写出; 2. 对含(x-a)项可不展开,把它视为新变量 积分,更为方便; 3. 挠曲轴是一条连续而光滑的曲线(中间铰链 除外,该处只连续而不光滑),为此必须满 足连续光滑条件。
7.3 用叠加法计算梁的变形 在材料服从胡克定律(线弹性)、且变形很小(小 变形)的前提下,载荷与它所引起的变形成线性关 系。
弯曲变形的基本概念 1.挠曲线
挠曲线方程:
2.挠度和转角 挠度w:横截面 形心处的铅垂位 移。
ห้องสมุดไป่ตู้
转角θ:横截面绕 中性轴转过的角 度。 规定向y正向的挠 度为正,顺针向 的转角为正。 转角方程
曲线y = f ( x )的曲率为:
几何方法
材料力学方法
又因为挠曲线非常平坦,即w’<<1
第 七 章 梁的位移
7.1 梁的挠曲线近似微分方程
在工程实践中,对某些受弯构件,除要求具有 足够的强度外,还要求变形不能过大,即要求 构件有足够的刚度,以保证结构或机器正常工 作,如摇臂钻床。
桥式起重机的横梁变 形过大,则会使小车行 走困难,出现爬坡现 象。
另外一些情况却要求 构件具有较大的弹性 变形,以满足特定的 工作需要,例如车辆上 的板弹簧。缓解车辆 受到的冲击和振动作 用。
7.4 梁的刚度校核 刚度条件:
[w]、[θ]是构件的许可挠度和转角,它们决定于构件 正常工作时的要求。
相关文档
最新文档