等积变形(附解答)

等积变形(附解答)
等积变形(附解答)

三角形的等积变形

我们已经掌握了三角形面积的计算公式:

三角形面积=底×高÷2

这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不变,底越大(小),三角形面积也就越大(小).这说明;当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来

角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.本讲即研究面积相同的三角形的各种形状以及它们之间的关系.为便于实际问题的研究,我们还会常常用到以下结论:

①等底等高的两个三角形面积相等.

②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.

③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.

它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相等.

同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍.

例如在图中,△ABC与△DBC的底相同(它们的底都是BC),它所对的两个顶点A、D在与底BC平行的直线上,(也就是它们的高相等),那么这两个三角形的面积相等.

例如图中,△ABC与△DBC的底相同(它们的底都是BC),△ABC的高是△DBC 高的2倍(D是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的2倍.

上述结论,是我们研究三角形等积变形的重要依据.

例1、用三种不同的方法,把任意一个三角形分成四个面积相等的三角形.

方法2:如右图,先将BC二等分,分点D、连结AD,得到两个等积三角形,即△ABD与△ADC等积.然后取AC、AB中点E、F,并连结DE、DF.以而得到四个等积三角形,即△ADF、△BDF、△DCE、△ADE等积.

例2、用三种不同的方法将任意一个三角形分成三个小三角形,使它们的面积比为及1∶3∶4.

方法 1:如下左图,将BC边八等分,取1∶3∶4的分点D、E,连结AD、AE,从而得到△ABD、△ADE、△AEC的面积比为1∶3∶4.

DE,从而得到三个三角形:△ADE、△BDE、△ACD.其面积比为1∶3∶4.

当然本题还有许多种其他分法,同学们可以自己寻找解决.

例3、如图,在梯形ABCD中,AC与BD是对角线,其交点O,求证:△AOB与△COD面积相等.

证明:∵△ABC与△DBC等底等高,

∴S△ABC=S△DBC

又∵ S△AOB=S△ABC—S△BOC

S△DOC=S△DBC—S△BOC

∴S△AOB=S△COD.

例4、如图,把四边形ABCD改成一个等积的三角形.

分析本题有两点要求,一是把四边形改成一个三角形,二是改成的三角形与原四边形面积相等.我们可以利用三角形等积变形的方法,如右图,

把顶点A移到CB的延长线上的A′处,△A′BD与△ABD面积相等,从而△A′DC面积与原四边形ABCD面积也相等.这样就把四边形ABCD等积地改成了三角形△A′DC.问题是A′位置的选择是依据三角形等积变形原则.过A 作一条和DB平行的直线与CB的延长线交于A′点.

解:①连结BD;

②过A作BD的平行线,与CB的延长线交于A′.

③连结A′D,则△A′CD与四边形ABCD等积.

例5、如图,已知在△ABC中,BE=3AE,CD=2AD.若△ADE的面积为1平方厘米.求三角形ABC的面积.

解法1:连结BD,在△ABD中

∵ BE=3AE,

∴ S△ABD=4S△ADE=4(平方厘米).

在△ABC中,∵CD=2AD,

∴ S△ABC=3S△ABD=3×4=12(平方厘米).

解法2:连结CE,如右图所示,在△ACE中,

∵ CD=2AD,

∴ S△ACE=3S△ADE=3(平方厘米).

在△ABC中,∵BE=3AE

∴ S△ABC=4S△ACE

=4×3=12(平方厘米).

例6、如下图,在△ABC中,BD=2AD,AG=2CG,BE=EF=FC=

解:连结BG,在△ABG中,

∴ S△ADG+S△BDE+S△CFG

例7、如右图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米.求三角形CDF的面积.

解:连结AF、CE,∴S△ADE=S△ACE;S△CDF=S△ACF;又∵AC与EF平行,∴S△

ACE=S△ACF;

∴ S△ADE=S△CDF=4(平方厘米).

例8、如右图,四边形ABCD面积为1,且AB=AE,BC=BF,DC=CG,AD=DH.求四边形EFGH的面积.

解:连结BD,将四边形ABCD分成两个部分S1与S2.连结FD,有S△FBD=S △DBC=S1所以S△CGF=S△DFC=2S1.

同理 S△AEH=2S2,

因此S△AEH+S△CGF=2S1+2S2=2(S1+S2)=2×1=2.

同理,连结AC之后,可求出S△HGD+S△EBF=2所以四边形EFGH的面积为

2+2+1=5(平方单位).

例9、如右图,在平行四边形ABCD中,直线CF交AB于E,交DA延长线于F,若S△ADE=1,求△BEF的面积.

解:连结AC,∵AB//CD,∴S△ADE=S△ACE

又∵AD//BC,∴S△ACF=S△ABF

而 S△ACF=S△ACE+S△AEF∶S△ABF=S△BEF+S△AEF

∴ S△ACE=S△BEF∴S△BEF=S△ADE=1.

小学五年级奥数精讲等积变形求面积(含答案)

小学奥数精讲:等积变形求面积 “三角形的面积等于底与高的积的一半”这个结论是大家熟知的,据此我们立刻就可以知道: 等底等高的两个三角形面积相等. 这就是说两个三角形的形状可以不同,但只要底与高分别相等,它们的面积就相等,当然这个问题不能反过来说成是“面积相等的两个三角形底与高一定分别相等”. 另一类是两个三角形有一条公共的底边,而这条底边上的高相等,即这条底边的所对的顶点在一条与底边平 行的直线上,如右图中的三角形A 1BC 与A 2BC 、A 3BC 的面积都相等。 图形割补是求图形面积的重要方法,利用割补可以把—些形状不规则 的图形转换成与之面积相等但形状规则的图形,或把不易求面积的图形转 换成易求面积的图形. 利用添平行线或添垂线的办法,常常是进行面积割补的有效方法,利 用等底等高的三角形面积相等这个性质则是面积割补的重要依据,抓住具体的图形的特点进行分析以确定正确的割补方法则是面积割补的关键. 进行图形切拼时,应该有意识地进行计算,算好了再动手寻找切拼的方案.不要盲目 地乱动手.本讲中.的几个例子都是经过仔细计算才切拼成功的。 例1、已知三角形ABC 的面积为1,BE = 2AB ,BC =CD ,求三角形BDE 的面积? 例2、如下图,A 为△CDE 的DE 边上中点,BC=3 1 CD ,若△ABC(阴影部分)面积为5平方厘米,求△ABD 及△ACE 的面积. 例3、 2002年在北京召开了国际数学家大会,大会会标如下图所示,它是由四个相同的直角 基本概念 例题分析

三角形拼成(直角边长为2和3),问:大正方形面积是多少? 例4、下图中,三角形ABC和DEF是两个完全相同的直角边长等于9厘米的等腰直角三角形,求阴影部分的面积. 1、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米? 2、右图中的长方形ABCD的长是20厘米,宽是12厘米,AF=BE,图中阴影部分的面积是多少 平方厘米? 练习提高

小学奥数——三角形的等积变形

小学奥数三角形的等积变形 我们已经掌握了三角形面积的计算公式: 三角形面积=底×高÷2 这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不变,底越大(小),三角形面积也就越大(小).这说明;当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来 角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.本讲即研究面积相同的三角形的各种形状以及它们之间的关系. 为便于实际问题的研究,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等. ②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等. ③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍. ,它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相等.同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍. 例如在右图中,△ABC与△DBC的底相同(它们的底都是BC),它所对的两个顶点A、D在与底BC平行的直线上,(也就是它们的高相等),那么这两个三角形的面积相等. 例如右图中,△ABC与△DBC的底相同(它们的底都是BC),△ABC的高是△DBC高的2倍(D 是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的2倍. 上述结论,是我们研究三角形等积变形的重要依据. 例1 用三种不同的方法,把任意一个三角形分成四个面积相等的三角形. 方法2:如右图,先将BC二等分,分点D、连结AD,得到两个等积三角形,即△ABD与△ADC 等积.然后取AC、AB中点E、F,并连结DE、DF.以而得到四个等积三角形,即△ADF、△BDF、△DCE、△ADE等积. 例2 用三种不同的方法将任意一个三角形分成三个小三角形,使它们的面积比为及1∶3∶4.方法 1:如下左图,将BC边八等分,取1∶3∶4的分点D、E,连结AD、AE,从而得到△ABD、△ADE、△AEC的面积比为1∶3∶4. DE,从而得到三个三角形:△ADE、△BDE、△ACD.其面积比为1∶3∶4.

三角形等积变形

三角形 (1 )三角形有()条边、() 个角和()个顶点 1 .垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。 2.画三角形高的方法口诀:三角尺,直角边,这边找到底,那边过顶点。 线段,标直角符号,四步画完。 3.你能在右图中找出几条高?标在图中。 4.标出下面各三角形的底和高。 6.画出每个三角形底边上的高。 cn两个面规柑舞的二的膨一定可以拼成一个平轩四边饮c > (2)二角石面枳等丁严厅四边应面积的一也〔) (3)一伞二角形的底S 10 ffi米,高是2厘米,面积是2Q平方匣米”(作垂直 5.我会判断对与错。下面每个三角形的高画得对吗?

1.填空题. (】)用两个()的??角形可以拼成一个平行四边形?这个平行四边形的底等于三用形的(),¥行四边形的岛等于◎角形的()。毎个三角形的面积是平行四边形的< ),所以三角形的面积=(' ),用字母表示为(). (2)—个*行四边形与一个三角形竽底停高,如果平行四边形的面积是12平方厘米,那么三 角形的面枳是()y?方健米;如果三角形的面积是12平方厘米?那么¥行【囚边形的 而枳是()平方厘米. (3)—个三角形的底是5剤米?高是4用米?这个三角形的面积是()平方厘米。2?计算下面图形的面枳. ⑴一个[角形的面枳羽4平方分米滴是4分米,那么底 )分米。 (2)右图阴影部分面积是15平方庵米?则平行四边形而积是 ()平方煙米. (3)一个三角形的底乘3.高 乘6?面积(). (1)一个平行四边形的面积是m平方用米?与它等底等高的三角形 的面积是()平方厘米。 (5)一个平行四边形的面枳是17.1平方厘米?底是4. 5厘米.高是 ( 等底的三角形的高建(”里*。 选择臥 (1)求右图三角形面积 的算式中不正确的是()o A. cX. C. 0X3X3) A.①②③II D.①③ )厘米?与它等面枳

小学数学《三角形的等积变形》练习题

小学数学《三角形的等积变形》练习题 基础班 1.如图(1),在△ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与△ABE等积的三角形一共有哪几个三角形? 解答:3个。△AEC、△BED、△DEC 。 2.如图(2),在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有哪几个三角形? 解答:△AEC、△AFC、△ABF。 3.如图(3),在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对? 解答:△ABD与△ACD ,△ABC与△DBC,△ABO与△DCO 。 4.右图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。解答:4×4÷2=8 5.如右图,D、E、F分别是BC、AD、BE的三等分点,已知S△ABC=27平方厘米,求S△DEF. 解答: 提高班

习题二 1.如图(1),在△ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与△ABE等积的三角形一共有哪几个三角形? 解答:3个。△AEC、△BED、△DEC 。 2.如图(2),在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与△BEC等积的三角形一共有哪几个三角形? 解答:△AEC、△AFC、△ABF。 3.如图(3),在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对? 解答:△ABD与△ACD ,△ABC与△DBC,△ABO与△DCO 。 4.如图,在梯形ABCD中,AC与BD是对角线,其交点O, 求证:△AOB与△COD面积相等. 证明:∵△ABC与△DBC等底等高, ∴S△ABC=S△DBC 又∵S△AOB=S△ABC—S△BOC S△DOC=S△DBC—S△BOC ∴S△AOB=S△COD. 5.右图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。解答:4×4÷2=8 6.如右图,D、E、F分别是BC、AD、BE的三等分点,已知S△ABC=27平方厘米,求S△DEF.

小学五年级奥数 等积变形

奥数拓展:等积变形 (一)故事导入: 有一个富翁留了一块三角形的土地给两个儿子,两个儿子要求平分这块地,这可伤透了他们的脑筋,因为他们不知道怎样去测量、平分。同学们,你们能想出多少种方法将这块土地平分成2个面积相等的三角形吗? 根据这个问题,你能得出什么结论? 结论一:。 (二)即学即练: 1.你有什么方法将任意一个三角形分成3个面积相等的三角形? 2.如图,把△ABC的底边BC四等分,那么甲、乙两个三角形的面积谁大,为什么? 如图.三角形ABC中.D是AB的中点.点E、F.G、H把BC平均分成五份.阴影部分的面积占三角形ABC面积的几分之几? (三)思维探索: (平行线间的等积变形)如下图,△ACD和△BCD夹在一组平行线之间,且有公共底边,那么△ACD和△BCD的面积关系是怎样的?为什么? 结论2:夹在间的一组同底三角形面积相等(四)即学即练: 1.如图,在梯形ABCD中共有8个三角形,其中面积相等的三角形有哪几对?

(五)结论总结: 一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化。同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状。为便于实际问题的研究,我们还会常常用到以下结论: (1)等底等高的两个三角形面积相等; (2)底在同一条直线上并且相等,该底所对的角的的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等; (3)若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。 (六)例题梳理 【例1】等积变形的等分点应用 1.如图,在直角三角形ABC中,D、E分别是AB、AC的中点,如果△AED的面积是30平方厘米.求△ABC 的面积? 2.如图,A为三角形DE边上的中点,BF为CD边上的三等分点,如果三角形ABC的面积为5,求三角形ABD和三角形ACE的面积。 3.在平行四边形ABCD中,直线CF交AB于E,交DA延长线于F,若三角形ADE的面积是1,求三角形BEF的面积。 【例2】平行线中的等积变形

等积变形(附答案)之令狐文艳创作

三角形的等积变形 令狐文艳 我们已经掌握了三角形面积的计算公式: 三角形面积=底×高÷2 这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不变,底越大(小),三角形面积也就越大(小).这说明;当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来 角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.本讲即研究面积相同的三角形的各种形状以及它们之间的关系. 为便于实际问题的研究,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等. ②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等. ③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.

它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相等. 同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍. 例如在图中,△ABC与△DBC的底相同(它们的底 都是BC),它所对的两个顶点A、D在与底BC平行的直线上,(也就是它们的高相等),那么这两个 三角形的面积相等. 例如图中,△ABC与△DBC的底相同(它们的底都 是BC),△ABC的高是△DBC高的2倍(D是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的2倍. 上述结论,是我们研究三角形等积变形的重 要依据. 例1、用三种不同的方法,把任意一个三角形分成四个面积相等的三角形. 方法2:如右图,先将BC二等分,分点D、 连结AD,得到两个等积三角形,即△ABD与△ADC 等积.然后取AC、AB中点E、F,并连结DE、DF.以而得到四个等积三角形,即△ADF、△BDF、△DCE、△ADE等积. 例2、用三种不同的方法将任意一个三角形分成三个小三角形,使它们的面积比为及1∶3∶4.方法 1:如下左图,将BC边八等分,取1∶3∶4的分点D、E,连结AD、AE,从而得到△ABD、△ADE、△AEC的面积比为1∶3∶4. DE,从而得到三个三角形:△ADE、△BDE、△ACD.其面积比为1∶3∶4. 当然本题还有许多种其他分法,同学们可以 自己寻找解决.

三角形等积变形

三角形 (1)三角形有( )条边、( )个角和( )个顶点 1.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。 2.画三角形高的方法口诀:三角尺,直角边,这边找到底,那边过顶点。作垂直线段,标直角符号,四步画完。 3.你能在右图中找出几条高?标在图中。 4.标出下面各三角形的底和高。 5.我会判断对与错。下面每个三角形的高画得对吗? 6.画出每个三角形底边上的高。

1、如图1-a,将BC四等分,连AD、AE、AF,则△ABD、△ADE、△AEF和△AFC的面积有什么关系?. A 1-a 2、如图,三角形ABC和BCD的面积是否相等? 3、如图,在梯形ABCD中,共有几个三角形?其中面积相等的三角形共有哪几对? 4.

5、如图,AD 垂直于BC ,AD=12cm ,DE=3cm ,求三角形ABC 的面积是三角形EBC 面积的多少倍? 6、如图,ABCD 是平行四边形,E 是BC 的中点,平行四边形ABCD 的面积比三角形ABE 的面积多多少倍? 7、如图,三角形ABC 的面积为1,其中AE=3AB,BD=2BC,三角形BDE 的面积是多少? 8、把图中三角形ABC 的底边平均分成4份,D 是BC 的中点。已知三角形EFD 的面积是1平方分米。求三角形ABC 的面积。

9、如下各图,长方形ABCD的长均为20,宽均为12,分别求阴影部分的面积。 10、如图,平行四边形ABCD的面积是50,EF∥AD,求阴影部分的面积。 三角形的等积变形 前言 我们都已经知道三角形的面积计算公式:三角形的面积=底×高÷2 从这个公式我们可以发现三角形的面积大小取决于三年级的底和高的乘积.所以一个三角形在面积不改变的情况下,可以有无数个不同的形状. 成功秘诀 1.如果三角形的底(高)不变,高(底)越大则面积越大,高(底)越小则面积越小; 2.等底等高的三角形面积一定相等,形状不一定相等; 3.如果两个三角形的底(高)相等,高(底)成倍数关系,面积也成相同的倍数关系. 王牌例题

一、三角形的等积变形

一、三角形的等积变形 ①等底等高的两个三角形面积相等。 ②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个 三角形面积相等。 ③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三 角形的面积也是另一个三角形面积的几倍。 【例1】 如右图,已知在△ABC中,BE=3AE,CD=2AD。若△ADE的面积为1平方厘米。求三角形ABC的面积。 二、鸟头模型 在△ABC中,D、E分别是AB、AC上的点如图⑴(或D在BA的延长线上,E在AC上), 则S△ABC∶S△ADE=(AB×AC)∶(AD×AE) 【例2】 如图,三角形ABC的面积是308,D,E,F分别为三角形三边上的点。其中AD∶CD=5∶3,BF∶CF=4∶7,AE∶BE=1∶6。问:阴影部分的小三角形的面积是多少 必备几何模型

【例3】 如图,三角形两边上的点都是各边上的五等分点。问:阴影部分与空白部分的面积比为多少 三、相似三角形性质(沙漏模型): ①AD AE DE AF AB AC BC AG === ②S△ADE∶S△ABC=AF2∶AG2 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; 【例4】 如图,在平行四边形ABCD中,直线CF交AB于E,交DA延长线于F,若S△ADE=1,求△BEF的面积。

四、蝴蝶模型 任意四边形中的比例关系(“蝴蝶定理”) ①S1×S3=S2×S4 ②AO∶OC=(S1+S2)∶(S4+S3) ①S1∶S3=a2∶b2 ②S1∶S2∶S3∶S4=a2∶ab∶b2∶ab ③梯形面积S的对于份数是(a+b)2 【例5】 如图面积为12平方厘米的正方形ABCD中,E、F是BC边上的三等分点,求阴影部分的面积。 【例6】 在直角梯形ABCD中,AB=15厘米,AD=12厘米,阴影部分的面积为15平方厘米。梯形ABCD的面

小升初几何重点考查内容————(五大模型——三角形等积变形、共角模型)

(★★★) 已知三角形DEF 的面积为 18,AD∶BD=2∶3,AE∶CE=1∶2,BF∶CF=3∶2,则三角形ABC 的面积为

如图,已知三角形 ABC 面积为 1,延长 AB 至 D ,使 BD =AB ;延长 BC 至 E ,使 CE =2BC ; 延长 CA 至 F ,使 AF =3AC ,求三角形 DEF 的面积。 (★★★★) 如图将四边形 ABCD 四条边 AB 、CB 、CD 、AD 分别延长两倍至点 E 、F 、G 、H ,若四边形ABCD 的面积为 5cm 2 ,则四边形 EFGH 的面积是多少 (★★★) 图中三角形 ABC 的面积是 180 平方厘米,D 是 BC 的中点,AD 的长是 AE 长的 3 倍,EF 的长是 BF 长的 3 倍。那么三角形 AEF 的面积是多少平方厘米 (★★★★) 如图,大长方形由面积是 12 平方厘米、24 平方厘米、36 平方厘米、48 平方厘米的四个小长方形组合而成。求阴影部分的面积。 (★★★)

(2009 年“学而思杯”六年级) 如图 BC =45,AC =21,△ABC 被分成 9 个面积相等的小三角形,那么 DI +FK = 。 在线测试题 温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。 1. ★★★★设 AD 1 AB , BE 1 BC , FC 1 AC , 如果三角形 DEF 的面积为 19 平方厘米, 3 4 5 那么三角形 ABC 的面积是多少平方厘米 A . B . C . D . (★★★★★)

F E S G 2. ★★★如下图,将三角形 ABC 的 BA 边延长 1 倍到 D ,CB 的边延长 2 倍到 E ,AC 边延长 1 倍到 F 。如果三角形 ABC 的面积等于 1,那么三角形 DEF 的面积是多少 A .10 B .8 C .9 D .11 3. ★★★★★如图,把四边形 ABCD 的各边都延长 3 倍,得到一个新四边形 EFGH ,如果 ABCD 的面积是 6,则 EFGH 的面积是( ) A .130 B .145 C .160 D .150 4. ★★★★如图, D 是 BC 的中点,AD 的长是 AE 长的 3 倍,EF 的长是 BF 长的 3 倍. 三角形 AEF 的面积是 18 平方厘米,三角形 ABC 的面积是( )平方厘米 A .144 B .168 C .72 D .100 5. ★★图中的 E 、F 、G 分别是正方形 ABCD 三条边的三等分点,如果正方形的边长是12 , 那么阴影部分的面积是( ) A .50 B .48 C .56 D .45 6. ★★★如图, S 1 , BC 5BD , AC 4EC , DG GS SE , AF FG 。三角形 FGS 的面积是( )。 A. 4 13 B. 2 5 C. 2 3 D. 1 10 A B C

初中数学教程等积变形和行程问题

3.2一元一次方程的应用 第1课时 等积变形和行程问题 教学目标 1.通过学习列方程解决实际问题,进一步感知数学在生活中的作用; 2.通过分析等积变形,追及问题中的数量关系,从而建立方程解决实际问题。进一步发展分析问题,解决问题的能力。 教学重难点 【教学重点】 列一元一次方程解决等积变形和行程问题。 【教学难点】 找出问题中的等量关系。 课前准备 课件、教具等。 教学过程 一、情境导入 一种牙膏出口处直径为5mm ,子昂每次刷牙都挤出1cm 长的牙膏,这样一支牙膏可以用36次.该品牌牙膏现推出新包装,只是将出口处直径改为6mm ,子昂还是按习惯每次挤出1cm 的牙膏,这样,这支牙膏能用多少次呢? 二、合作探究 探究点一:等积变形问题 例1 用直径为90mm 的圆钢,铸造一个底面长和宽都是131mm ,高度是81mm 的长方体钢锭.问需要截取多长的一段圆钢?(结果保留π) 解析:圆钢由圆柱体变为长方体,形状变了,但体积不变. 解:设截取圆钢的长度为x mm. 根据题意,得π? ?? ??9022 x =131×131×81, 解方程,得x =686.44π . 答:截取圆钢的长度为686.44π mm. 方法总结:列方程解应用题首先要审题,本题中圆钢由圆柱体变成了长方体,形状发生了变化,但是体积保持不变.“变形之前圆钢的体积=变形之后长方体的体积”. 例2 将一个长、宽、高分别为15cm 、12cm 和8cm 的长方体钢坯锻造成一个底面是边长为12cm 的正方形的长方体钢坯.试问:是锻造前的长方体钢坯的表面积大,还是锻造后的长方体钢坯的表面积大?请你计算比较.

解析:由锻造前后两长方体钢坯体积相等,可求出锻造后长方体钢坯的高.再计算锻造前后两长方体钢坯的表面积,最后比较大小即可. 解:设锻造后长方体的高为x cm,依题意,得15×12×8=12×12x.解得x=10. 锻造前长方体钢坯的表面积为2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2), 锻造后长方体钢坯的表面积为2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2). 因为792>768,所以锻造前的长方体钢坯的表面积较大. 方法总结:本题的解题关键是根据等积变形中的等量关系确定变化后长方体的高. 探究点二:行程问题 【类型一】相遇问题 例3 小明家离学校2.9千米,一天小明放学走了5分钟之后,他爸爸开始从家出发骑自行车去接小明,已知小明每分钟走60米,爸爸骑自行车每分钟骑200米,请问小明爸爸从家出发几分钟后接到小明? 解析:本题等量关系:小明所走的路程+爸爸所走的路程=全部路程,但要注意小明比爸爸多走了5分钟,另外也要注意本题单位的统一. 解:设小明爸爸出发x分钟后接到小明,如图所示,由题意,得200x+60(x+5)=2900.解得x=10. 答:小明爸爸从家出发10分钟后接到小明. 方法总结:找出问题中的等量关系是列方程解应用题的关键,对于行程问题,通常借助“线段图”来分析问题中的数量关系.这样可以比较直观地反映出方程中的等量关系. 【类型二】追及问题 例4 敌我两军相距25km,敌军以5km/h的速度逃跑,我军同时以8km/h的速度追击,并在相距1km处发生战斗,问战斗是在开始追击后几小时发生的? 解析:本题相等关系:我军所走的路程-敌军所走的路程=敌我两军相距的路程. 解:设战斗是在开始追击后x小时发生的.根据题意,得8x-5x=25-1.解得x=8. 答:战斗是在开始追击后8小时发生的. 方法总结:追及问题中的等量关系:追及距离=速度差×追及时间. 【类型三】环形问题 例5 甲、乙两人在一条长400米的环形跑道上跑步,甲的速度为360米/分,乙的速度是240米/分.

小学数学《三角形的等积变形》练习题(含答案)

小学数学《三角形的等积变形》练习题(含答案) 内容概述 我们已经知道三角形面积的计算公式:三角形面积=底×高÷2 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1/3,则三角形面积与原来的一样。这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ① 等底等高的两个三角形面积相等. ②若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍. 若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍. ③夹在一组平行线之间的等积变形,如下图,ACD ?和BCD ?夹在一组平行线之间,且有公共底边CD 那么BCD ACD S S ??=;反之,如果 BCD ACD S S ??=,则可知直线AB 平行于CD 。 例题精讲 【例1】 如右图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线长。 ① 求三角形ABC 的面积是三角形ABD 面积的多少倍? ② 求三角形ABD 的面积是三角形ADC 面积的多少倍? 【例2】 如右图,E 在AD 上,AD 垂直BC , AD=12厘米,DE=3厘米。 ① 求三角形ABC 的面积是三角形EBC 面积的几倍? A C D B

小学奥数几何篇 五大模型——等积变换和共角定理(附答案)

等积变换与共角定理 我们的目标:掌握三角形等积变换与共角定理的基本模型;学会构造出模型进行解题三角形等积变换模型 (1)等底等高的两个三角形面积相等; (2)两个三角形高相等,面积比等于底之比;如左图1 2 : :S S a b (3)两个三角形底相等,面积比等于高之比; 在一组平行线之间的等积变形,如右图; S△ACD=S△BCD; 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如下两图

例1. 如图三角形ABC的面积为1,其中AE=3AB,BD=2BC,三角形BDE的面积是多少? 例2. 如图,三角形ABC的面积是24,D、E分别是BC、AC和AD的中点,求三角形DEF的面积。 例3.如图,在角MON的两边上分别有A、C、E及B、D、F六个点,并且△ OAB、△ABC、△BCD、△CDE 、△DEF 的面积都等于1,则△DCF的面积等于 例4.E、M分别为直角梯形ABCD两边的点,且DQ、CP、ME彼此平行,若AD=5,BC=7,AE=5,EB=3.求阴影部分的面积

例5.如图,已知CD=5,DE=7,EF=15,FG=6,线段AB将图形分成两部分,左边部分面积是38,右边部分是65,那么三角形ADG的面积是 例6. 如图,正方形的边长为10,四边形EFGH的面积为5,那么阴影部分的面积是 = 例7. 已知正方形的边长为10,EC=3,BF=2,则S 四边形ABCD

例8.如图,平行四边形ABCD,BE=AB,CF=2BC,DG=3DC,HA=4AD,平行四边形ABCD的面积是2,求平行四边形ABCD与四边形EFGH的面积比。 例9. 已知△DEF的面积为7平方厘米,BE=CE,AD=2BD,CF=3AF,求△ABC的面积

四年级下册数学试题-思维训练:三角形等积变形(下)(含答案)全国通用

正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平 方厘米?两个正方形如图排列,面积相差60,求阴影部分梯形面积。 如图所示,已知正方形ABCD的边长为10厘米,EC=2×BE,那么,图中阴影部分的面积是________平方厘米。 例3 例2 例1 三角形等积变形(下)

如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。 如图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米。求三角形CDF 的面积。例5 例4

如图,在四边形ABCD中,对角线AC、BD交于E,且AF=CE,BG=DE,如果四边形ABCD面积是1,求△EFG的面积? 例6

测试题 1.如图,长方形ABCD的面积是1,M是AD边的中点,N在AB边上,且2AN BN 。那么,阴影部分的面积是多少? 2.如图,梯形ABCD被它的一条对角线BD分成了两部分。三角形BDC的面积比三角形ABD的面积大10平方分米。已知梯形的上底与下底的长度之和是15分米,它们的差是5分米。求梯形ABCD的面积。 A D B C 3.图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是()平方厘米。 4.正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?

H G F E B A 5.如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使2AF AC =,求三角形DEF 的面积。 答案 1. A M 连接BM ,因为M 是中点所以ABM ?的面积为14又因为2AN BN =,所以ANM ?的面积为 1114312?=,又因为BDC ?面积为12,所以阴影部分的面积为:115112212--= 2. b D C B A

六年级奥数试题-等积变形(学生版)

第三讲等积变形 1.等积模型 2.鸟头定理 3.蝶形定理 4.相似模型 5.共边定理(燕尾模型和风筝模型) 1.了解三角形的底、高与面积的关系,会通过分析以上关系解题。 2.能在解题中发现题目中所涉及的几何模型。

例1:如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 . 例2:长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少? 例3:如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 . 例4:已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC ) 例5:如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 . E B

例6:如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积. 例7:如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =, :3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积. 例8:如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比. 例9:如图所示的四边形的面积等于多少? G F E D C B A A B C D E F G E D C B A E D C B A E D C B A E D C B A H G A B C D E F H G A B C D E F

六年级奥数优胜教育第3讲:等积变形含答案

第三讲 等积变形 例1:如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 . 例2:长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少? 例3:如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 . 例4:已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC ) 例5:如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 . E B

例6:如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积. 例7:如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =, :3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积. 例8:如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比. 例9:如图所示的四边形的面积等于多少? G F E D C B A A B C D E F G E D C B A E D C B A E D C B A E D C B A H G A B C D E F H G A B C D E F

一、三角形的等积变形

一、三角形的等积变形 ①等底等高的两个三角形面积相等。 ②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等。 ③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。 【例1】 如右图,已知在△ABC 中,BE =3AE ,CD =2AD 。若△ADE 的面积为1平方厘米。求三角形ABC 的面积。 二、鸟头模型 在△ABC 中,D 、E 分别是AB 、AC 上的点如图⑴ (或D 在BA 的延长线上,E 在AC 上), 则S △ABC ∶S △ADE =(AB ×AC )∶(AD ×AE ) 【例2】 如图,三角形ABC 的面积是308,D ,E ,F 分别为三角形三边上的点。其中AD ∶CD =5∶3,BF ∶CF =4∶7,AE ∶BE =1∶6。问:阴影部分的小三角形的面积是多少? 必备几何模型

【例3】 如图,三角形两边上的点都是各边上的五等分点。问:阴影部分与空白部分的面积比为多少? 三、相似三角形性质(沙漏模型): ① AD AE DE AF AB AC BC AG === ②S △ADE ∶S △ABC =AF 2∶AG 2 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; 【例4】 如图,在平行四边形ABCD 中,直线CF 交AB 于E ,交DA 延长线于F ,若S △ADE =1,求△BEF 的面积。 四、蝴蝶模型 任意四边形中的比例关系(“蝴蝶定理”) ①S 1×S 3=S 2×S 4 ②AO ∶OC =(S 1+S 2)∶(S 4+S 3)

等积变形(附答案)

For personal use only in study and research; not for commercial use 三角形的等积变形 我们已经掌握了三角形面积的计算公式: 三角形面积=底×高÷2 这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不变,底越大(小),三角形面积也就越大(小).这说明;当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来 角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.本讲即研究面积相同的三角形的各种形状以及它们之间的关系.为便于实际问题的研究,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等. ②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等. ③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍. 它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相等. 同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍. 例如在图中,△ABC与△DBC的底相同(它们的底都是BC),它所对的两个顶点A、D在与底BC平行的直线上,(也就是它们的高相等),那么这两个三角形的面积相等. 例如图中,△ABC与△DBC的底相同(它们的底都是BC),△ABC的高是△DBC 高的2倍(D是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的2倍. 上述结论,是我们研究三角形等积变形的重要依据. 例1、用三种不同的方法,把任意一个三角形分成四个面积相等的三角形.方法2:如右图,先将BC二等分,分点D、连结AD,得到两个等积三角形,即△ABD与△ADC等积.然后取AC、AB中点E、F,并连结DE、DF.以而得到四个等积三角形,即△ADF、△BDF、△DCE、△ADE等积.

三角形面积等积变形

三角形面积等积变形 小学四年级阶段训练——三角形的等积变形 一、填空: 1.如图所示,已知矩形ABCD中,BE=1EC,则△ABE和△ABC的面积,则△2 ABC的面积是△ABE的面积的()倍。 C (第1题)(第2题) 2.如图所示,梯形ABCD中共有8个三角形,其中,面积相等的三角形有()对。 3.如图所示,已知平行四边形ABCD中,BC=3厘米,BC边的高AE是2厘米,则 △ACD的面积是()平方厘米。 O (第3题)(第4题) 4.如图所示,平行四边形MNOP中,Q是OP上任意一点,则 S△MRQ( )S△NRO, S△MRN( )S△NRO,(填“>”“<”或“=”) 5.如图所示,平行四边形ABCD中,E、F分别为AD,CD的中点,那么与△BFC面积相等的三角形有()个。 (第5题)(第6题) 26.如图所示,△ABC中,D为BC中点,且DE=AD,则△ABC的面积等于5 △CDE面积的()倍。 7.如图所示,在长方形ABCD中,阴影部分面积(>,<,=)空白部分面积表示()

8.如图所示,△ABC与△BCD中,AE=ED,且AD⊥BC,把BC八等分,点F为第一个八等分点,E恰为第二个八等分点,则与△ABF面积相等的三角形有()个。 9.如图所示,已知BC长是5 ,其他数据如图所示,则画阴影线的两个三角形的 面积之和是() (第7题)(第8题)(第9题) 二.如图,已知在△ABC中,BE=3AE,AD=2CD,若△ADE的面积为2厘米。求三角形ABC的面积。 三、如图,平行四边形ABCD中,直线DE交AB于F,若三角形ABE的面积是2平方厘米,求三角形CEF的面积。 四、如图所示,AD平行于BE,三角形ABC的面积是8平方厘米。求四边形ACDE的面积。

五年级奥数-一半模型-

一、三角形当中的一半模型 由于三角形的面积公式S=底×高÷2,决定于底和高的长度,所以我们有了等高模型和等底模型。在等高模型中,(图1)当BD=CD时,阴影部分,SΔABD=SΔABC÷2 特别地如图2,当BE=ED,DF=FC,阴影部分面积,SΔAEF=SΔABC÷2 在等底模型中(图3),当AE=DE时,阴影部分,SΔEBC=SΔABC÷2 二、平行四边形中的一半模型 由于三角形的面积公式S=底×高÷2, 平行四边行的面积公式S=底×高 所以与平行四边形同底等高的三角形是它面积的一半! 同时,长方形是特殊的平行四边行,再根据平行线间的等积变形,可以得到如下诸图,阴影部分面积是四边形面积的一半: 知识结构 一半模型

【巩固练习】判断下面的图形中阴影部分的面积是不是整个图形面积的一半。是打“√”,不是打“×”。 ()()()() ()() 三、梯形中的一半模型 在梯形中,当三角形的底边是梯形的一个腰,顶点在另一个腰的中点处,那么三角形是梯形面积的一半。 如图4,在梯形ABCD中,BE=CE,则SΔADE=SABCD÷2 如图5,是它的变形,注意其中AF=DF,BE=CE。

四、任意四边形中的一半模型 如图6,在四边形ABCD中,AE=EB,DF=CF,则SEBFD=SABCD÷2 【能力提升】 【巩固练习】

【例1】如图,已知长方形ABCD的面积为24平方厘米,且线段EF,GH把它分成四个小长方形,求阴影部分的面积。 【巩固】已知大长方形的长是6厘米,宽是4厘米,求阴影部分的面积。 【例2】如图所示,平行四边形的面积是50 平方厘米,阴影部分面积是()平方厘米. 【例3】 如图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方形ABCD的长是20,宽是12,则它部阴影部分的面积是多少? 例题精讲 4

高斯小学奥数四年级上册含答案第21讲_等积变形

第二十一讲等积变形 三角形和平行四边形的关系非常紧密.回想它们的面积公式,如果我们把一个平行四边形沿对角线分成两块,那么每个三角形的面积正好是平行四边形的一半,如图: 除了上面这种情形外,下图中的阴影三角形由于和平行四边形底、高都相同,所以面积也是平行四边形的一半.(注意:长方形也是平行四边形) 底 底底 底

例题 1 A D 如图,已知平行四边形ABCD 的面积是100 平方 厘米,E 是其中的任意一点,那么图中阴影部分面积 E 是多少平方厘米? 「分析」辅助线把整个图形分成了左右两个平行 四边形,两个阴影三角形与它们分别有什么关 B C 系呢? 练习 1 A D 如图, E 是平行四边形ABCD 中的任意一点,已 E 知△AED 与△EBC 的面积和是40 平方厘米,那么图 中阴影部分的面积是多少? B C 下图中,两条平行线间有四个三角形:三角形OAB、三角形PAB、三角形MAB 和三角 形NAB,它们的底相同,都是AB;高相等,都是两条平行线间的距离,所以这四个三角形 的面积是相等的.进一步,我们可以在直线ON 上任取若干个点,这些点分别与A、B 两点形成若干个同底等高的三角形,这些三角形的面积是相等的. P M N O 高 A B 底 我们把这种“底相同,高相等”的情况简称为“同底等高”.“同底等高”是我们最早碰到的三角形等积变形的情形,而“等高”最常见的情况就是平行线间的距离相等. 如果两个三角形同底等高,那么它们的面积相等. 利用平行线间的距离相等,构造同底等高的三角形,是很常见的三角形等积变形.

例题 2 A F H D 如图,平行四边形ABCD 的底边AD 长20 厘米, 高CH 为9 厘米;E 是底边BC 上任意的一点,那 么两个阴影三角形的面积之和是多少平方厘米? 「分析」能否通过等积变形,把两个三角形变 B C 成一个三角形呢? E 练习 2 如图,平行四边形ABCD 的面积是100 平方 A D 厘米,那么阴影部分的面积是多少平方厘米? C B 例题 3 如图所示,ABFE 和CDEF 都是长方形,AB 的长是 4 厘 A B 米,BC 的长是 3 厘米.那么图中阴影部分的面积是多少平方 E F 厘米? 「分析」能否通过等积变形,把上层与下层的三角形 分别变成一个三角形呢? D C 练习 3 A D 如图,ABCD 和CDEF 都是平行四边 E 形,四边形ABFE 面积为60 平方厘米.请 问:阴影部分面积是多少平方厘米? B C F 在利用同底等高三角形计算面积的题目中,最重要的一步就是去寻找其中的平行线,进

相关文档
最新文档