《统计学》重点归纳(20200625174335)
统计学各章节期末复习知识点归纳(原创整理精华,考试复习必备!)

统计学原理与实务各章节复习知识点归纳(考试复习资料精华版-根据历年考试重点以及老师画的重点原创整理)第一章总论重点在“第三节:统计学中的基本概念”考点一:掌握以下四组概念(含义及举例)——肯定考一个名词解释!①总体、总体单位(统计)总体:是由客观存在的,具有某种共同性质的许多个别事物构成的整体。
总体单位:构成总体的个别事物。
②标志、标志值及分类标志:说明总体单位特征的名称。
分类:Ⅰ按性质不同a.品质标志:说明总体单位的品质特征,一般用文字表现。
(有些品质标志虽然以数量表现,但实质表现产品质量差异。
例如产品质量的具体表现未“一等、二等、三等”。
)b.数量标志:说明总体单位的数量特征。
只能用数值来表现。
Ⅱ按变异情况可变标志:当一个标志在各个总体单位表现不尽相同时称为可变标志不变标志:……都相同……不变标志。
标志值:标志的具体表现。
③变量、变量值变量:指数量标志。
变量值:指数量标志值,具有客观存在性。
④指标的含义及分类(统计)指标:是综合反映统计总体某一数量特征的概念和数值,简称指标。
a.按其反映总体现象内容不同:数量指标(绝对数,绝对指标,总量指标),质量指标(相对数或平均数,相对指标和平均指标)。
b.按其作用不同:总量指标,相对指标和平均指标。
c.按反映的时间特点不同:试点指标和时期指标d.计量单位的特点:实物指标、价值指标和劳动指标。
★指标和标志的区别与联系:区别:①标志是说明总体单位特征的名称;指标是说明总体的数量特征;②标志既有反映总体单位数量特征的,也有反映总体单位品质特征;而指标只反映总体的数量特征;③凡是统计指标都具有综合的性质,而标志一般不具有。
联系:①许多指标由数量标志值汇总而得;②指标与数量标志可随统计研究目的而改变;课后习题:社会经济统计学研究对象的特点是:数量性、总体性、变异性。
统计研究运用的方法主要包括:大量观察法、统计分组法、综合指标法、统计模型法标志值就是标志表现。
第二章统计调查考点一:统计报表的分类①填报内容和实施范围:国家、部门和地方统计报表②调查范围:全面、非全面③报送周期长短:日报、旬报、月报、季报、半年报和年报④填报单位:基层、综合报表考点二:“普查”的含义普查:是普遍调查的简称。
统计学知识点全归纳全面、准确

统计学知识点汇总一、统计学统计学是一门关于数据资料的收集、整理、分析和推断的科学。
二、统计学的产生与发展(1)政治算术学派最早的统计学源于17世纪英国。
其代表人物是威廉·配第,代表作《政治算术》。
政治算术学派主张用大量观察和数量分析等方法对社会经济现象进行研究的主张,为统计学的发展开辟了广阔的前景。
其被称为“无统计学之名,有统计学之实”。
(2)记述学派亦称国势学派,创始人和代表人物是德国康令和阿亨瓦尔,主要使用文字记述方法对国情国力进行研究,其学科内容与现代统计学有较大差别。
因此被称为“有统计学之名,无统计学之实”。
(3)社会统计学派创始人和代表人物,德国恩格尔和梅尔。
该学派主张统计是实质性的研究社会现象的社会科学,认为统计学的研究对象是社会现象,目的在于明确社会现象内部的联系联系和相互关系。
(4)数理统计学派创始人是比利时统计学家凯特勒,他所著的代表作《社会物理学》等将概率论和统计方法引入社会经济方面的研究,其认为统计学是一门通用的方法论科学。
从19世纪中叶到20世纪中叶,数理统计学得到迅速发展。
到20世纪中期,数理统计学的基本框架已经形成,数理统计学派成为英美等国统计学界的主流。
三、统计的特点(1)数量性:社会经济统计的认识对象是社会经济现象的数量方面,包括现象的数量表现、现象之间的数量关系和质量互变的数量界限。
(2)总体性:社会经济统计的认识对象是社会经济现象的总体的数量方面。
例如,国民经济总体的数量方面、社会总体的数量方面、地区国民经济和社会总体的数量方面、各企事业单位总体数量方面等等。
(3)具体性:社会经济统计的认识对象是具体事物的数量方面,而不是抽象的量。
这是统计与数学的区别。
(4)社会性:社会经济现象是人类有意识的社会活动,是人类社会活动的条件、过程和结果,社会经济统计以社会经济现象作为研究对象,自然具有明显的社会性。
四、统计工作过程(1)统计设计根据所要研究问题的性质,在有关学科理论的指导下,制定统计指标、指标体系和统计分类,给出统一的定义、标准。
统计学重点知识点

基本统计方法第一章 概论1. 总体(Population ):根据研究目的确定的同质对象的全体(集合);样本(Sample ):从总体中随机抽取的部分具有代表性的研究对象。
2. 参数(Parameter ):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic ):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。
3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。
第二章 计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR =P 75-P 25)、标准差(或方差)、变异系数(CV )3. 正态分布特征:①X 轴上方关于X =μ对称的钟形曲线;②X =μ时,f(X)取得最大值;③有两个参数,位置参数μ和形态参数σ;④曲线下面积为1,区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。
4. 医学参考值范围的制定方法:正态近似法:/2X u S α±;百分位数法:P 2.5-P 97.5。
第三章 总体均数估计和假设检验1. 抽样误差(Sampling Error ):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。
抽样误差不可避免,产生的根本原因是生物个体的变异性。
2. 均数的标准误(Standard error of Mean, SEM ):样本均数的标准差,计算公式:X σσ=误差的大小。
3. 降低抽样误差的途径有:①通过增加样本含量n ;②通过设计减少S 。
4. t 分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度ν,ν越小,t 值越分散,t 分布的峰部越矮而尾部翘得越高;③当ν逼近∞,X S 逼近X σ, t 分布逼近u 分布,故标准正态分布是t分布的特例。
统计学重点部分归纳

统计学重点部分归纳 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】第三章全距也称极差,是一组数据的最大值与最小值之差。
R=最大值-最小值组距分组数据可根据最高组上限 -最低组下限计算。
四分位数:数据按大小顺序排序后把分割成四等分的三个分割点上的数值。
SPSS中四分位数的位置为(n+1)/4, 2(n+1)/4, 3 (n+1)/4。
Excel中四分位数的位置分别为(n+3)/4, 2(n+1)/4,(3 n+1)/4。
如果四分位数的位置不是整数,则四分位数等于前后两个数的加权平均。
四分位距等于上四分位数与下四分位数之差IQR=Q3-Q1反映了中间50%数据的离散程度,数值越小说明中间的数据越集中。
不受极端值的影响。
可以用于衡量中位数的代表性。
方差是一组数据中各数值与其算术平均数离差平方的平均数,标准差是方差正的平方根。
是反映定量数据离散程度的最常用的指标。
离散系数:标准差与其相应的均值之比,表示为百分数。
特点:(1)反映了相对于均值的相对离散程度;(2)可用于比较计量单位不同的数据的离散程度;(3)计量单位相同时,如果两组数据的均值相差悬殊,离散系数可能比标准差等绝对指标更有意义数据分布的不对称性称作偏态。
偏态系数就是对数据分布的不对称性(即偏斜程度)的测度。
峰度:数据分布的扁平或尖峰程度。
峰度系数:数据分布峰度的度量值,对数据分布尖峰或扁平程度的测度,一般用K表示。
箱线图用于描述数据分布特征的一种图形。
最简单的箱线图可以根据数据的最大值、最小值和三个四分位数绘制的:先根据三个四分位数Q1、Q2、Q3画出中间的盒子,然后由盒子两端分别向最大、最小值连线。
在SPSS中标准的箱线图一般是这样绘制的:先根据三个四分位数Q1、Q2、Q3画出中间的盒子;由Q3至Q3+*IQR区间内的最大值向盒子的顶端连线,由Q1至*IQR区间内的最小值向盒子的底部连线;处于Q3+*IQR至Q3+3*IQR或者 *IQR至Q1-3*IQR范围内的数据用圆圈标出;大于Q3+3*IQR或者小于Q1-3*IQR的用星号标出。
统计学知识点梳理

统计学知识点梳理统计学是一门研究数据收集、整理、分析和解释的学科,它在各个领域都有着广泛的应用。
从科学研究到商业决策,从社会调查到医疗保健,统计学的方法和理论都发挥着重要的作用。
下面让我们来梳理一下统计学中的一些关键知识点。
一、数据的类型数据可以分为定性数据和定量数据。
定性数据是描述事物性质或特征的数据,例如性别、职业、颜色等,通常用类别或标签来表示。
定量数据则是可以用数字来衡量的数量数据,如身高、体重、年龄等,又可以进一步分为离散数据和连续数据。
离散数据只能取有限个或可数个值,比如班级里的学生人数;连续数据可以在某个区间内取任意值,例如时间、温度等。
二、数据收集数据收集是统计学的第一步。
常见的数据收集方法包括普查、抽样调查和实验。
普查是对研究对象的全体进行调查,能够获得全面准确的信息,但往往成本高、耗时长。
抽样调查则是从总体中抽取一部分样本进行调查,通过合理的抽样方法,可以用样本数据来推断总体特征。
抽样方法有简单随机抽样、分层抽样、系统抽样等。
实验是在控制条件下对研究对象进行观察和测量,以探究因果关系。
三、数据整理收集到的数据通常需要进行整理,以便于分析。
整理数据的方法包括数据分组、编制频数分布表和绘制统计图等。
数据分组是将数据按照一定的规则分成若干组,以便观察数据的分布特征。
频数分布表可以直观地展示每个组的数据个数,而统计图如直方图、折线图、饼图等则能更形象地呈现数据的分布和趋势。
四、描述性统计描述性统计是对数据的集中趋势、离散程度和分布形态进行描述和概括。
集中趋势的度量指标包括均值、中位数和众数。
均值是所有数据的算术平均值,容易受到极端值的影响;中位数是将数据排序后位于中间位置的数值,对极端值不敏感;众数是数据中出现次数最多的数值。
离散程度的度量指标有方差、标准差和极差。
方差和标准差反映了数据的离散程度,标准差是方差的平方根;极差则是数据中的最大值与最小值之差。
分布形态可以通过偏态和峰态来描述。
(完整word版)统计学知识点梳理

统计学第一章导论1.1.1什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
数据分析所用的方法分为描述统计方法和推断统计方法。
1.2统计数据的类型1.2.1分类数据、顺序数据、数值型数据按照所采用的计算尺度不同,可以将统计数据分为分类数据、顺序数据、数值型数据。
分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表示。
例如:支付方式、性别、企业类型等。
顺序数据:只能归于某一有序类别的非数字型数据。
例如:员工对改革措施的态度、产品等级、受教育程度等。
数值型数据:按数字尺度测量的观测值,其结果表现为具体的数值。
例如:年龄、工资、产量等。
统计数据大体上可分为品质数据(定性数据)和数量数据(定量数据、数值型数据)。
1.2.2观测数据和实验数据按照统计数据的收集方法,可以分为观测数据和实验数据。
观测数据:通过调查或观测而收集的数据。
例如:降雨量、GDP、家庭收入等。
实验数据:在实验中控制实验对象而收集到的数据。
例如:医药实验数据、化学实验数据等。
1.2.3截面数据和时间序列数据按照被描述的现象与时间的关系,可分类截面数据和时间序列数据。
截面数据:在相同或近似相同的时间点上收集的数据。
例如:2012年我国各省市的GDP。
时间序列数据:同一现象在不同的时间收集的数据。
例如:2000-2012年湖北省的GDP。
1.3.1总体和样本总体:包含所研究的全部个体(数据)的集合。
样本:从总体中抽取的一部分元素的集合。
1.3.2参数和统计量参数:用来描述总体特征的概括性数字度量。
统计量:用类描述样本特征的概括性数字度量。
例如:某研究机构准备从某乡镇5万个家庭中抽取1000个家庭用于推断该乡镇所有农村居民家庭的年人均纯收入。
这项研究的总体是5万个家庭;样本是1000个家庭;参数是5万个家庭的人均纯收入;统计量是1000个家庭的人均纯收入。
第二章数据的搜集2.1数据的来源2.1.1数据的间接来源间接来源的数据:如果与研究内容有关的原信息已经存在,我们只是对这些原信息重新加工、整理,使之成为我们进行统计分析可以使用的数据。
统计学重点总结

22时,
X1 X2
的标准差 X1X2
(3)小样本, 正态
X1 X 2 t 2S X1X2
2 1
2 2
n1 n2
2( 1 1 ) n1 n2
4 3 .两 个 总 体 均 值 之 差 的 假 设 检 验 统 计 量
(1)大 样 本 Z X 1 X 2 1 2 ,
2 1
方差未知 : Z X S/ n
38.小 样 本 总 体 均 值 的 检 验 统 计 量 : t X , df n 1
39.总 体 比 率 检 验 统 计 量 : Z
p
S p0
/
n
p0 (1 p0 )
n
40.总 体 均 值 的 单 侧 检 验 中 所 需 样 本 容 量 :
n
23、 异众比率
异众比率是指非众数组的频数占总频数的比例 24、 离散系数
离散系数是一组数据的标准差与平均数之比 25、 抽样分布
(定义)在总体 X 的分布类型已知时,若对任意自然数 n,都 能导出统计量 T=T(X1,X2,…Xn)的分布的数学表达式,这种分布 称为精确地抽样分布 26、 总体分布 总体中各元素的观测值所形成的相对频数分布是总体分布 27、 样本分布 从总体中抽取一个容量为 n 的样本,由这 n 个观测值形成的相 对频数分布,称为样本分布 28、 抽样分布 在重复选取样本量为 n 的样本时,由该样本统计量的所有可能 取值形成的相对频数分布,称为抽样分布 29、 相关关系 变量之间存在的不确定的数量关系,称为相关关系 30、 相关系数 相关系数是根据样本数据计算的度量两个变量之间线性关系强 度的统计量。若为总体的,称为总体相关系数;若为样本的, 则称为样本相关系数,记为
20.贝 叶 斯 公 式
统计学知识点总结

统计学知识点总结第2章统计描述1. 对定量资料进⾏统计描述时,如何选择适宜的指标?定量资料统计描述常⽤的统计指标及其适⽤场合描述内容指标意义适⽤场合平均⽔平均数个体的平均值对称分布⼏何均数平均倍数取对数后对称分布中位数位次居中的观察值①⾮对称分布;②半定量资料;③末端开⼝资料;④分布不明众数频数最多的观察值不拘分布形式,概略分析调和均数基于倒数变换的平均值正偏峰分布资料变异度全距观察值取值范围不拘分布形式,概略分析标准差(⽅差)观察值平均离开均数的程度对称分布,特别是正态分布资料四分位数间距居中半数观察值的全距①⾮对称分布;②半定量资料;③末端开⼝资料;④分布不明变异系数标准差与均数的相对⽐①不同量纲的变量间⽐较;②量纲相同但数量级相差悬殊的变量间⽐较定性资料:阳性事件的概率,概率分布,强度和相对⽐。
2. 应⽤相对数时应注意哪些问题?答:(1)防⽌概念混淆相对数的计算是两部分观察结果的⽐值,根据这两部分观察结果的特点,就可以判断所计算的相对数属于前述何种指标。
(2)计算相对数时分母不宜过⼩样本量较⼩时以直接报告绝对数为宜。
(3)观察单位数不等的⼏个相对数,不能直接相加求其平均⽔平。
(4)相对数间的⽐较须注意可⽐性,有时需分组讨论或计算标准化率。
3. 常⽤统计图有哪些?分别适⽤于什么分析⽬的?常⽤统计图的适⽤资料及实施⽅法图形适⽤资料实施⽅法条图组间数量对⽐⽤直条⾼度表⽰数量⼤⼩直⽅图定量资料的分布⽤直条的⾯积表⽰各组段的频数或频率百分条图构成⽐⽤直条分段的长度表⽰全体中各部分的构成⽐饼图构成⽐⽤圆饼的扇形⾯积表⽰全体中各部分的构成⽐线图定量资料数值变动线条位于横、纵坐标均为算术尺度的坐标系半对数线图定量资料发展速度线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系散点图双变量间的关联点的密集程度和形成的趋势,表⽰两现象间的相关关系箱式图定量资料取值范围⽤箱体、线条标志四分位数间距及中位数、全距的位置茎叶图定量资料的分布⽤茎表⽰组段的设置情形,叶⽚为个体值,叶长为频数第3章概率分布1. 服从⼆项分布及Poisson分布的条件分别是什么?⼆项分布成⽴的条件:①每次试验只能是互斥的两个结果之⼀;②每次试验的条件不变;③各次试验独⽴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学》期末重点1. 统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(1)(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(2)(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(3)(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;(4)观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
(5)实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;(6)截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
(7)时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
2. 变量的题型第10 页,习题1.1(1)年龄:数值型变量(2)性别:分类变量(3)汽车产量:离散型变量(4)员工对企业某项改革措施的态度(赞成、中立、反对):顺序变量(5)购买商品时的支付方式(现金、信用卡、支票):分类变量3.随机抽样(概率抽样)的抽样方式。
(1)简单随机抽样(2)分层抽样:就是抽样单位按某种特征或者某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本。
将各层的样本结合起来,对总体目标量进行估计。
(3)整群抽样:(4)系统抽样(5)多阶段抽样分层抽样与整群抽样的区别:分层抽样的层数就是样本容量;整群抽样的群中单位的个数就是样本容量4.非概率抽样的几种类型(1)方便抽样(2)判断抽样(3)自愿样本(4)滚雪球抽样滚雪球抽样往往用于对稀少群体的调查。
在滚雪球抽样中,首先选择一组调查单位,对其实施调查后,再请他们提供另外一些属于研究总特的调查对象,调查人员根据调查线索,进行此后的调查。
这个过程持续下去,就会形成滚雪球效应。
优点:容易找到那些属于特定群体的被调查者,调查成本也比较低。
(5)配额抽样比较概率抽样和非概率抽样的特点,指出各自适用情况概率抽样:抽样时按一定的概率以随机原则抽取样本。
每个单位别抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽到的概率。
技术含量和成本都比较高。
如果调查目的在于掌握和研究对象总体的数量特征,得到总体参数的置信区间,就使用概率抽样。
非概率抽样:操作简单,时效快,成本低,而且对于抽样中的统计学专业技术要求不是很高。
它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。
它同样使用市场调查中的概念测试(不需要调查结果投影到总体的情况)。
5.数据预处理内容数据审核(完整性和准确性;适用性和实效性),数据筛选和数据排序。
6.数据型数据的分组方法和步骤分组方法:单变量值分组和组距分组,组距分组又分为等距分组和异距分组。
分组步骤:(1)确定组数(2)确定各组组距3)根据分组整理成频数分布表7.散点图与饼图的主要用途饼图是用圆形及圆内扇形的角度来表示数值大小的图形,它主要用于表示一个样本(或总体)中各组成部分的数据占全部数据的比例,对于研究结构性问题十分有用。
散点图是描述变量之间关系的一种直观方法,从中可以大体上看出变量之间的关系形态及关系强度。
8.举例说明开口组组中值的计算方法缺下限开口组组中值=上限-1/2邻组组距缺上限开口组组中值=下限+1/2邻组组距9.怎样理解平均数在统计学中的地位?平均数在统计学中具有重要的地位,是集中趋势的最主要的测度,主要适用于数值型数据,而不适用于分类数据和顺序数据。
10.中位数与众数的区别众数:是一组数据中出现次数最多的变量值,用M0表示。
众数主要用于测度分类数据的集中趋势,当然也适用于作为顺序数据以及数值型数据集中趋势的测度值。
中位数:是一组数列排序后处于中间位置上的变量值,用M e。
中位数主要用于测度顺序数据的集中趋势,当然也适用测度数值型数据的集中趋势,但不适用于分类数据。
简述众数、中位数和平均数的特点和应用场合。
众数是一组数据分布的峰值,不受极端值的影响,缺点是具有不唯一性。
众数只有在数据量较多时才有意义,数据量较少时不宜使用。
主要适合作为分类数据的集中趋势测度值。
中位数是一组数据中间位置上的代表值,不受极端值的影响。
当数据的分布偏斜较大时,使用中位数也许不错。
主要适合作为顺序数据的集中趋势测度值。
平均数对数值型数据计算的,而且利用了全部数据信息,在实际应用中最广泛。
当数据呈对称分布或近似对称分布时,三个代表值相等或相近,此时应选择平均数。
但平均数易受极端值的影响,对于偏态分布的数据,平均数的代表性较差,此时应考虑中位数或众数。
11.标准差系数(离散系数或变异系数)的计算及其应用为什么要计算离散系数?方差和标准差是反映数据分散程度的绝对值,一方面其数值大小受原变量值本身水平高低的影响,也就是与变量的平均数大小有关;另一方面,它们与原变量的计量单位相同,采用不同计量单位的变量值,其离散程度的测度值也就不同。
因此,为消除变量值水平高低和计量单位不同对离散程度测度值的影响,需要计算离散系数。
12.什么是次序统计量由小到大的排序x(1)- X(2) - - X(i) 一- X(n) 中,第i个值X(i)就作为次序统计量X⑴的序统计量13.什么是自由度?自由度:随机变量所包含的独立变量的个数。
14.偏态系数(SK取值的不同意义如果一组数据的分布是对称的,则偏态系数等于0;如果偏态系数明显不等于0,表明分布是非对称的。
若偏态系数大于1或小于-1,成为高度偏态分布;若偏态系数在0.5-1或-1--0.5之间,被认为是中等偏态分布;偏态系数越接近0,偏斜程度就越低。
15.中心极限定理的内容2 _设从均值"方差为二的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值X的抽(第89页,第96页习题4.8 (1))设X1,X2,是从总体X中抽取的一个样本,n X(i)称为第i个次序统计量,它是样本(X 1,X 2,,X n )满足如下条件的函数:每当样本得到一组观测值X1'X2' X n 时,其观测值,而X ⑴,X(2) X(n)称为次序统计量。
其中,X(1)和X (n)分别为最小的的最大次16. 评价估计量的标准 (1) 无偏性无偏性是指估计量抽样分布的数学期望等于被估计的总体参数。
设总体参数为 9,所选择的估计量为9 ,如果E (9) =9 ,则称9为9的无偏估计量。
(2) 有效性有效性是指对同一整体参数的两个无偏估计量,有更小的标准的估计量更有效。
在无偏估计的条件下,估 计量的方差越小,估计也就越有效。
(3) 一致性一致性是指随着样本量的增大,估计量的指越来越接近被估计总体的参数。
换而言之,一个大样本给岀的 估计量要比一个小样本给出的估计量更接近总体的参数。
17. 简述样本量与置信水平、总体方差、估计误差的关系 样本量越大置信水平越高,总体方差和边际误差越小18. 大样本条件下总体均值的区间估计总体均值"在「〉置信水平下的置信区间为:总体均值不包括在置信区间的概率;1_y为置信水平; Z 2是标准正态分布右侧面积为2时的Z 值;CJZ 2 n 是总体均值的估计误差)_ 2(2)大样本条件下,方差' 未知,正态总体或非正态总体样分布近似服从均值为 ,方差为 的正态分布(1)大样本条件下,方差 2已知,正态总体或非正态总体- CFX _2 . n 为置信下限;- CFXZ 2 r 为置信上限,-n为事先确定的一个概率值,也称风险值,是总体均值"在置信水平下的置信区间为:- SX—Z:2,n2(S为样本方差,s为样本标准差)19.置信区间可靠性与精确性的关系置信度又称置信水平是对总体参数进行区间估计时构造的随机区间包含参数真值的概率。
精确度是对总体参数进行区间估计时构造的随机区间的平均长度。
置信度和精确度是评价区间估计优劣的两个标准,置信度度和精确度都高则说明区间估计较好,但是二者是此消彼长的关系,提高置信度必将以降低精确度为代价。
20.假设检验和参数估计有什么相同点和不同点?参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,然而推断的角度不同。
参数估计讨论的是用样本统计量估计总体参数的方法,总体参数卩在估计前是未知的。
而在参数假设检验中,则是先对卩的值提岀一个假设,然后利用样本信息去检验这个假设是否成立。
21.假设检验的种类及假设的正确写法建设检验的一般流程:首先提岀原假设和备择假设,分别为:H o:H i:然后,确定适当的检验统计量,需要考虑样本量的多与少,总体标准差规定显著性水平检验统计量的确定:①若是大样本条件下,采用z统计量,计算公式为:②若是小样本条件下,采用t统计量,计算公式为匚已知与否,等等。
(t 统计量的自由度为n-1)注:即使是小样本,若 c 已知,仍可继续使用z 统计量 最后,进行统计决策。
比例问题的检验,z 统计量的计算公式为:(p 为样本比例;兀0为总体比例n 的假设值) (1 )双侧检验在双侧检验中,只要 」 或」 两者之中有一个成立,就可以拒绝原假设0 0以大样本条件下为例,双侧检验的决策准则为:若Z V Z2,不拒绝H 。
若z >z“2,拒绝H 。
(Z 的下标〉2表示双侧检验)不管双侧检验或是单侧检验,若使用 P 值检验,pvot ,拒绝 H 0; PX ,(2 )单侧检验① 左单侧检验(下限检验) 希望所考查的数值越大越好 ② 右单侧检验(上限检验) 希望所考查的数值越小越好22. 大样本条件下总体均值的假设检验( 192页例题)5.总体方差假设检验的方法2 (n-1)s2(J2若进行双侧检验,在确定的 :-水平下,拒绝域分布在 统计量分布曲线的两边;(1 -二 n0)不能拒绝H 。
2统计量分布曲线的一边。
具体在左还是在右,需根据原假设和备择假设23.假设检验中犯两类错误及其概率之间的关系假设检验的结果可能是错误的,所犯的错误有两种类型,一类错误是原假设H0为真却被我们拒绝了,犯这种错误的概率用a表示,所以也称a错误或弃真错误;另一类错误是原假设为伪我们却没有拒绝,犯这种错误的概论用B表示,所以也称B错误或取伪错误。
两类错误之间存在什么样的数量关系:在假设检验中,a与B是此消彼长的关系。
如果减小a错误,就会增大犯B错误的机会,若减小B错误,也会增大犯a错误的机会。
故,二者是此消彼长的关系。
24.列联表的概念及自由度的确定列联表是由两个以上的变量进行交叉分类的頻数分布表。
自由度=(R-1) ( C-1)简述列联表的构造与列联表的分布两个以上的变量进行交叉分类的頻数分布表,包括观察值的分布与期望值的分布。