解析几何中的对称问题答案
高考数学 专题05 解析几何中的对称解法(解析版)

专题05 解析几何中的对称解法一.【学习目标】1.掌握点关于直线,直线关于直线,曲线关于点,曲线关于直线的对称2.对称思想的应用 二.【知识点】 1.中心对称(1)设平面上的点M (a ,b ),P (x ,y ),P ′(x ′,y ′),若满足:x +x ′2=a ,y +y ′2=b ,那么,我们称P ,P ′两点关于点M 对称,点M 叫做对称中心.(2)点与点对称的坐标关系:设点P (x ,y )关于M (x 0,y 0)的对称点P ′的坐标是(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2x 0-xy ′=2y 0-y . 2.轴对称(1)设平面上有直线l :Ax +By +C =0和两点P (x ,y ),P ′(x ′,y ′),若满足下列两个条件:①__________________;②_______________________,则点P ,P ′关于直线l 对称. (2)对称轴是特殊直线的对称问题对称轴是特殊直线时可直接通过代换法得解:①关于x 轴对称(以_____代______); ②关于y 轴对称(以_______代_______); ③关于y =x 对称(_______互换);④关于x +y =0对称(以_______代_____,以_____代______); ⑤关于x =a 对称(以______代______); ⑥关于y =b 对称(以________代________). (3)对称轴为一般直线的对称问题可根据对称的意义,由垂直平分列方程,从而找到坐标之间的关系:设点P (x 1,y 1),Q (x 2,y 2)关于直线l :Ax +By +C =0(AB ≠0)对称,则 三.【题型】(一)点关于直线的对称 (二)光线的对称问题 (三)圆关于直线的对称 (四)利用对称求最值 (五)圆锥曲线的对称 (六)椭圆的中点弦问题 (七)双曲线的中点弦 (八)抛物线的对称问题 (九)椭圆中的对称方法 (十)对称的综合应用 四.【题型解法】(一)点关于直线的对称例1.已知坐标原点()0,0O 关于直线L 对称的点()3,3M -,则直线L 的方程是( ) A .210x y -+= B .210x y --= C .30x y -+= D .30x y --=【答案】D【解析】由(0,0)O , (3,3)M -, 可得OM 的中点坐标为33,22⎛⎫-⎪⎝⎭,又313OMk-==-, OM∴的垂直平分线的斜率为1, ∴直线L的方程为33122y x⎛⎫+=⨯-⎪⎝⎭,即30x y--=,故选D.练习1.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称为欧拉线,已知ABC∆的顶点(20)(04)A B,,,,若其欧拉线方程为20x y-+=, 则顶点C的坐标为()A.04-(,)B.4,0-()C.4,0()或4,0-()D.4,0()【答案】B【解析】设C坐标x,y(),所以重心坐标为2+4(,)33x y+,因此2+4204033x yx y+-+=∴-+=,从而顶点C的坐标可以为4,0-(),选B.(二)光线的对称问题例2.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.5B.33C.6D.210【答案】D【解析】点P关于y轴的对称点P'坐标是()2,0-,设点P关于直线:40AB x y+-=的对称点()",P a b,由()112204022baa b-⎧⨯-=-⎪⎪-⎨++⎪+-=⎪⎩,解得42ab=⎧⎨=⎩,故光线所经过的路程()22'"242210P P=--+=,故选D.练习1.一条光线从点()2,3-射出,经x轴反射后与圆2264120x y x y+--+=相切,则反射光线所在直线的斜率为()A.65或56B.45或54C.43或34D.32或23【解析】点()2,3-关于x 轴的对称点Q 的坐标为()2,3--, 圆2264120x y x y +--+=的圆心为()3,2,半径为1R =.设过()2,3--且与已知圆相切的直线的斜率为k , 则切线方程为()23y k x =+-即230kx y k -+-=, 所以圆心()3,2到切线的距离为25511k d R k-===+,解得43k =或34k =,故选C.(三)圆关于直线的对称例3..直线1l :y x =、2l :2y x =+与C e :22220x y mx ny +--= 的四个交点把C e 分成的四条弧长相等,则(m = ) A .0或1 B .0或1-C .1-D .1【答案】B【解析】直线l 1:y=x 与l 2:y=x+2之间的距离为2,⊙C :22220x y mx ny +--=的圆心为(m ,m ),半径r 2=m 2+m 2,由题意可得222222222()()22{22()()2m nm n m n m n -+=+-++=+解得 m=0或m=-1,故选B.练习1.已知圆关于对称,则的值为 A .B .1C .D .0【答案】A 【解析】化圆为.则圆心坐标为,圆关于对称,所以直线经过圆心,,得. 当时,,不合题意,.故选A .练习2.已知直线3420x y ++=与圆2240x y y ++=相交于,A B 两点,则线段AB 的垂直平分线的方程为A .4360x y --=B .4320x y --=C .4360x y ++=D .3480x y ++= 【答案】A【解析】圆2240x y y ++=的圆心坐标为()0,2C -,AB 的中垂线垂直于AB 且过C ,故可设中垂线的方程为:430x y m -+=,代入()0,2C -可得6m =-,故所求的垂直平分线的方程为4360x y --=,故选A.(四)利用对称求最值例4.已知点P ,Q 分别在直线1:20l x y ++=与直线2:10l x y +-=上,且1PQ l ⊥,点()3,3A --,31,22B ⎛⎫⎪⎝⎭,则AP PQ QB ++的最小值为().A .130B .3213+C .13D .32【答案】B【解析】因为112,P l l l Q ⊥P ,故()21322PQ --==1AA k '=,故1AA l '⊥,所以A P A Q 'P ,又322AA '=,所以AA PQ '=,故四边形AA QP '为平行四边形, 322AP PQ QB A Q QB '++=++, 因为13A Q QB A B ''+≥=,当且仅当,,A Q B '三点共线时等号成立,AP PQ QB ++的最小值为32132+,选B.(五)圆锥曲线的对称例5.已知F 是双曲线2218y C x -=:的右焦点,P 是C 左支上一点,)66,0(A ,当APF ∆周长最小时,则点P 的纵坐标为( ) A .66 B .26C .46D .86-【答案】B【解析】如图:由双曲线C 的方程可知:a 2=1,b 2=8,∴c 2=a 2+b 2=1+8=9,∴c=3,∴左焦点E (-3,0),右焦点F (3,0), ∵|AF|=223(66)15+=,所以当三角形APF 的周长最小时,|PA|+|PF|最小. 由双曲线的性质得|PF|-|PE|=2a=2,∴|PF|=|PE|+2,又|PE|+|PA|≥|AE|=|AF|=15,当且仅当A ,P ,E 三点共线时,等号成立. ∴三角形APF 的周长:|AF|+|AP|+|PF|=15+|PE|+|AP|+2≥15+15+2=32.此时,直线AE 的方程为y=2666x +,将其代入到双曲线方程得:x 2+9x+14=0, 解得x=-7(舍)或x=-2, 由x=-2得6(负值已舍) 故选:B .练习1.椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 关于直线0x y +=的对称点A 是椭圆C 上的点,则椭圆的离心率为( ) ABC1 D1【答案】A【解析】∵点()0F c -,关于直线0x y +=的对称点A 为()0,A c ,且A 在椭圆上, 即22b c =,∴c b =,∴椭圆C的离心率2e ===.故选A .(六)椭圆的中点弦问题例1.如果椭圆22193x y +=的弦被点(1,1)M 平分,则这条弦所在的直线方程是( )A .340x y +-=B .320x y -+=C .320x y --=D .340x y +-=【答案】A【解析】设直线与椭圆交点为()11,A x y ,()22,B x y22112222193193x y x y ⎧+=⎪⎪∴⎨⎪+=⎪⎩,两式作差得:1212121213ABy y x x k x x y y -+==-⋅-+ 又M 为AB 中点 122x x ∴+=,122y y += 13AB k ∴=-∴直线方程为:()1113y x -=--,即:340x y +-= 本题正确选项:A练习1.已知椭圆()222210x y a b a b+=>>,点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于,A B两点,且AB 的中点为11,2M ⎛⎫⎪⎝⎭,则椭圆的离心率为()A.22B.12C.14D.32【答案】A【解析】设A(1x,1y),B(2x,2y),又AB的中点为11,2M⎛⎫⎪⎝⎭,则121221x x y y+=+=,,又因为A、B在椭圆上所以22221122222211x y x ya b a b+=+=,两式相减,得:2121221212y y y y bx x x x a-+⋅=--+∵12121212b1c2AB FP OMy y y yk k kx x x x,-+===-==-+,∴22b2cba=,,∴22a bc=,平方可得()42224a a c c=-, ∴22ca=12,c2a2=,故选A.练习2.已知椭圆22142x y+=,则以点(1,1)为中点的弦的长度为()A.2B.3C30D36【答案】C【解析】设直线方程为y=k(x﹣1)+1,代入椭圆方程,消去y得:(1+2k2)x2﹣(4k2﹣4k)x+2k2﹣4k﹣2=0,设交点坐标为A(x1,y1),B(x2,y2),则x1+x2=2,解得k=﹣12,∴x1x2=13,∴221212301()43k x x x x++-=.故选C.练习3.已知椭圆C :()2222100x y a b a b +=>,>的离心率为2,直线l 与椭圆C 交于A B ,两点,且线段AB 的中点为()21M -,,则直线l 的斜率为( )A.13B.23C.12D.1【答案】C【解析】由c e a ==,得2222234c a b a a -==, ∴224a b =,则椭圆方程为22244x y b +=,设()()1122A x y B x y ,,,,则121242x x y y ,+=-+=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:()()()()121212124x x x x y y y y -+=--+,∴()12121212414422y y x x x x y y -+-=-=-=-+⨯.∴直线l 的斜率为12. 故选:C .(七)双曲线的中点弦例7.直线l 与双曲线2212y x -=交于A ,B 两点,以AB 为直径的圆C 的方程为22240x y x y m ++++=,则m =( )A.-3B.3C.5-D.【答案】A【解析】设11(,)A x y ,22(,)B x y由根据圆的方程可知(1,2)C --,C 为AB 的中点根据双曲线中点差法的结论202021112ABx b k a y -=⨯=⨯=- 由点斜式可得直线AB 的方程为1y x =-将直线AB 方程与双曲线方程联立22121y x y x ⎧-=⎪⎨⎪=-⎩解得34x y =-⎧⎨=-⎩或10x y =⎧⎨=⎩,所以AB =由圆的直径AB ===3m =-故选A.练习1.双曲线221369x y -=的一条弦被点(4,2)P 平分,那么这条弦所在的直线方程是( )A .20x y --=B .2100x y +-=C .20x y -=D .280x y +-=【答案】C【解析】设弦的两端点1(A x ,1)y ,2(B x ,2)y ,斜率为k ,则22111369x y -=,22221369x y -=,两式相减得12121212()()()()369x x x x y y y y -+-+=, 即121212129()98136()3642y y x x k x x y y -+⨯====-+⨯,∴弦所在的直线方程12(4)2y x -=-,即20x y -=. 故选:C练习2.已知双曲线C的焦点在坐标轴上,其渐近线方程为y =,过点P ⎫⎪⎪⎝⎭. ()1求双曲线C 的标准方程;()2是否存在被点()1,1B 平分的弦?如果存在,求出弦所在的直线方程;如果不存在,请说明理由.【答案】(1)2212y x -=(2)直线l 不存在.详见解析【解析】()1双曲线C的焦点在坐标轴上,其渐近线方程为y =,设双曲线方程为:22y x λ2-=,过点P ⎫⎪⎪⎝⎭.可得λ1=,所求双曲线方程为:22y x 12-=. ()2假设直线l 存在.设()B 1,1是弦MN 的中点,且()11M x ,y ,()22N x ,y ,则12x x 2+=,12y y 2+=.M Q ,N 在双曲线上,22112x y 122222x y 1-=⎧⎪∴-=⎨⎪⎩, ()()()()121212122x x x x y y y y 0∴+---+=,()()12124x x 2y y ∴-=-,1212y y k 2x x -∴==-,∴直线l 的方程为()y 12x 1-=-,即2x y 10--=,联立方程组222x y 22x y 10-=⎧--=⎨⎩,得22x 4x 30-+=1643280QV =-⨯⨯=-<,∴直线l 与双曲线无交点,∴直线l 不存在.练习3.已知双曲线的中心在原点,焦点为,且离心率.(1)求双曲线的方程; (2)求以点为中点的弦所在的直线方程.【答案】(1);(2).【解析】(1) 由题可得,,∴,,所以双曲线方程 .(2)设弦的两端点分别为,,则由点差法有: , 上下式相减有:又因为为中点,所以,,∴,所以由直线的点斜式可得,即直线的方程为.经检验满足题意.(八)抛物线的对称问题例8.已知抛物线2:2(0)C y px p =>,倾斜角为4π的直线交抛物线C 于A ,B 两点,且线段AB 中点的纵坐标为1,则抛物线C 的准线方程是________ 【答案】12x =-【解析】设1122(,),(,)A x y B x y ,则有2211222,2y px y px ==,两式相减得:()()()1212122y y y y p x x -+=-,又因为直线的斜率为1,所以12121y y x x -=-, 所以有122y y p +=,又线段AB 的中点的纵坐标为1, 即122y y +=,所以1p =,所以抛物线的准线方程为12x =-.故答案为:12x =-.练习1.如图所示,点P 为抛物线E :28y x =上的动点,点Q 为圆:M 22430x y x +-+=上的动点,则PQ的最小值为___________.【答案】1【解析】圆:M 22430x y x +-+=可化为22(2)1x y -+=, 故圆M 的圆心(2,0),半径为1.设000(,)(0)P x y x ≥为抛物线28y x =上任意一点,故有2008y x =,∴00(,)P x y 与(2,0)的距离2222200000000(2)44844(2)d x y x x x x x x =-+=-++=++=+当00x =时, 00(,)P x y 与(2,0)的距离取最小值2,PQ ∴的最小值为211-=,故答案为:1.(九)椭圆中的对称方法例9.如图,椭圆()222210x y a b a b+=>>的右焦点为F ,过F 的直线交椭圆于,A B 两点,点C 是A 点关于原点O 的对称点,若CF AB ⊥且CF AB =,则椭圆的离心率为__________.【答案】63-【解析】作另一焦点F ',连接AF '和BF '和CF ',则四边形FAF C '为平行四边,所以AF CF AB '==,且AF AB '⊥,则三角形ABF '为等腰直角三角形, 设AF AB x '== ,则24x x x a +=,解得(422)x a =-,(222)AF a =,在三角形AFF ' 中由勾股定理得222()()(2)AF AF c '+=,所以2962,63e e =-=,故答案为63-.练习1.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点为1F ,2F ,点P 在椭圆C 上,且12PF F ∆面积3 6.(1)求椭圆C 的方程,并求椭圆C 的离心率;(2)已知直线l :1(0)y kx k =+>与椭圆C 交于不同的两点AB ,若在x 轴上存在点(,0)M m ,使得M 与AB 中点的连线与直线l 垂直,求实数m 的取值范围【答案】(1)22143x y +=,椭圆的离心率12e =(2)3,012⎡⎫-⎪⎢⎪⎣⎭【解析】(1)由题意得2223226bc c a a b c ⎧=⎪+=⎨⎪=+⎩,解之得2a =,3b =1c =,所以椭圆C 的方程为22143x y +=,椭圆的离心率12e =; (2)由221143y kx x y =+⎧⎪⎨+=⎪⎩得()2243880k x kx ++-=,设()11,A x y ,()22,B x y ,则122843kx x k -+=+,122643y y k +=+, 所以线段AB 中点的坐标为2243,4343k k k -⎛⎫⎪++⎝⎭, 则223143443k k k m k -+=-++,整理得213434k m k k k=-=-++, 因为0k >,所以34k k +≥=34k k =,即k =时上式取得等号,此时m取得最小值12-, 因为0k >,所以2043k m k =-<+,所以实数m的取值范围是⎡⎫⎪⎢⎪⎣⎭. 练习2.已知椭圆22:194x y C +=,若不与坐标轴垂直的直线l 与椭圆C 交于,M N 两点.(1)若线段MN 的中点坐标为()1,1,求直线l 的方程;(2)若直线l 过点()6,0,点()0,0P x 满足0PM PN k k +=(,PM PN k k 分别是直线,PM PN 的斜率),求0x 的值.【答案】(1)49130x y +-=(2)32【解析】(1)设()11,M x y ,()22,N x y ,由点,M N 都在椭圆22:194x y C +=上,故22112222194194x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩22222121094x x y y --⇒+=,则()()212121214499x x y y k x x y y +-==-=--+故直线l 的方程为()411491309y x x y -=--⇒+-= (2)由题可知,直线l 的斜率必存在,设直线l 的方程为()6y k x =-,()0,0P x , 则()()()()1212021010200660PM PN y y k k k x x x k x x x x x x x +=+=⇒--+--=--即()()12012026120x x x x x x -+++=①联立()()222222149108936360946x y k x k x k y k x ⎧+=⎪⇒+-+⨯-=⎨⎪=-⎩,则21222122108499363649k x x k k x x k ⎧+=⎪⎪+⎨⨯-⎪=⎪+⎩将其代入①得()()2220003546964902k k x x k x --+++=⇒=故0x 的值为32(十)对称的综合应用例10.在直角坐标系xOy 中,抛物线2:4x C y =与直线:4l y kx =+ 交于M ,N 两点.(1)当0k =时,分别求抛物线C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.【答案】(1) 过点M 和点N 的切线方程分别为24,24y x y x =-=--.(2)存在点()0,4P -,理由见解析【解析】(1)由题意知0k =时,联立244y x y =⎧⎪⎨=⎪⎩,解得()4,4M ,()4,4N -.设过点()4,4M 的切线方程为(4)4y k x =-+,联立2444y kx kx y =+-⎧⎪⎨=⎪⎩得:2416160x kx k -+-=, 由题意:2164(1616)0k k ∆=--=,即2440k k -+=,解得2k =, 根据对称性,过点()4,4N -的切线斜率为2k =-,所以过点M 和点N 的切线方程分别为24,24y x y x =-=--. (2)存在符合题意的点,证明如下:设点P ()0,b 为符合题意的点,()11,M x y ,()22,N x y ,直线PM ,PN 的斜率分别为1k ,2k .联立方程244y kx x y =+⎧⎪⎨=⎪⎩,得24160x kx --=,故124x x k +=,1216x x =-, 从而121212y b y b k k x x --+=+=()()12121224kx x b x x x x +-+=()44k b +.当4b =-时,有120k k +=,则直线PM 与直线PN 的倾斜角互补, 故OPM OPN ∠=∠,所以点()0,4P -符合题意.练习2.已知抛物线2:2(0)C y px p =>的焦点为F,点(,B m 在抛物线C上,A ,且||2||BF AF =.(1)求抛物线C 的标准方程;(2)过点(1,2)P 作直线PM ,PN 分别交抛物线C 于M ,N 两点,若直线PM ,PN 的倾斜角互补,求直线MN 的斜率.【答案】(1)24y x =(2)1-【解析】(1)由题得,02p F ⎛⎫⎪⎝⎭,则||2p BF m =+,||AF =因为|2||BF AF =,所以2P m +=因为点B 在抛物线C 上,所以122pm =,即6pm =.②联立①②得428480p p +-=,解得2p =或2p =-(舍去),所以抛物线C 的标准方程为24y x =.(2)由题知直线PM ,PN 的斜率存在,且不为零,且两直线的斜率互为相反数 设()11,M x y ,()22,N x y ,直线:(1)2(0)PM y k x k =-+≠由2(1)24y k x y x =-+⎧⎨=⎩,得()2222244440k x k k x k k --++-+=,则()222222444(2)16(1)0k k k k k ∆=-+--=->,又点P 在抛物线C 上,所以21244k k x k -+=同理得22244k k x k++=.则212228kx xk+ +=,12288kx xk k---==,()()12121212y y k x k x⎡⎤⎡⎤-=-+---+⎣⎦⎣⎦()122k x x k=+-22282kk kk+=⋅-8k=,所以1212818MNy y kkx xk-===---即直线MN的斜率为-1.练习3.如图, 直线12y x=与抛物线2148y x=-交于,A B两点, 线段AB的垂直平分线与直线5y=-交于Q点.(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含,A B)的动点时, 求ΔOPQ面积的最大值.【答案】(1) ()5,5Q-;(2) 最大值30【解析】(1) 解方程组212148y xy x⎧=⎪⎪⎨⎪=-⎪⎩得11-4-2xy=⎧⎨=⎩或2284xy=⎧⎨=⎩即A(-4,-2),B(8,4), 从而AB的中点为M(2,1).由12ABK=,直线AB的垂直平分线方程()122y x-=--令5y=-, 得5x=, ∴()5,5Q-(2)直线OQ的方程为x+y=0, 设21,48P x x⎛⎫-⎪⎝⎭∵点P 到直线OQ 的距离2832x +-,OQ =, ∴12OPQ S ∆=OQ d =2583216x x +-. ∵P 为抛物线上位于线段AB 下方的点, 且P 不在直线OQ 上, ∴-4≤x4或4< x ≤8.∵函数2832y x x =+-在区间[]4,8-上单调递增,∴当x =8时, ΔOPQ 的面积取到最大值30。
例析“直线关于直线对称”问题

例析“直线关于直线对称”问题2019-10-21⾼中数学解析⼏何《直线⽅程》部分涉及点关于点、直线关于点、点关于直线、直线关于直线对称四类问题,现就个⼈在教学中有关直线关于直线对称问题加以分析:(⼀)求已知直线与对称轴平⾏的直线⽅程例求已知直线L1:2x+3y-4=0关于直线2x+3y-6=0的对称直线L的⽅程。
解:由题意知:L1与对称直线2x+3y-6=0平⾏可设其对称直线的⽅程为2x+3y+C=0L1到2x+3y-6=0的距离等于L到对2x+3y-6=0的距离所求直线L的⽅程为:2x+3y-8=0评析:此题为求已知直线与对称轴平⾏的对称问题,解题时,只需利⽤平⾯⼏何知识,即平⾏间的距离相等便能使问题得到解决。
(⼆)求已知直线与对称轴相交的直线⽅程例求已知直线L1:x-y-1=0关于直线2x-y=0的对称直线L的⽅程。
解法1:由x-y-1=02x-y=0得x=-1y=-2(-1,-2)为两已知直线交点,且(-1,-2)也在直线L上。
设所求直线L的斜率为k,则:所求直线L的⽅程为y+2=7(x+1)即为:7x-y+5=0解法2:由解法1知交点为(-1,-2),在L1:x-y-1=0上设其⼀点为(1,0),则(1,0)关于2x-y=0对称点B(x0,y0)即:直线L1:x-y-1=0关于直线2x-y=0对称直线L的⽅程为7x-y+5=0解法3:设所求直线L上任意⼀点P(x0,y0),P点关于2x-y=0的对称点为P1(x1,y1),则P1在直线x-y-1=0上。
即:7x-y+5=0为所求直线L的⽅程评析:此类问题为求已知直线与对称轴相交的直线⽅程,⽅法有3种,各有优势。
其中第1种解法是由轴对称性质,对称轴与两条直线夹⾓相等,然后使⽤到⾓公式求出直线斜率,再利⽤点斜式求出所求直线⽅程;第⼆种⽅法是在已知直线上任找⼀点(特殊点也可),从⽽求出该点关于定直线的对称点,然后根据两点式求出直线⽅程,充分利⽤垂直平分来求解对称的直线⽅程;第三种⽅法由两条直线关于定直线对称,则这两条直线中任何⼀条直线上任意⼀点关于对称轴的点必在另⼀条直线上,对称轴是这两点的中垂线,由此可写出两点坐标间的关系式,⽤代⼊法求出直线⽅程。
高中数学教案 解析几何 专题提升课三 对称问题

专题提升课三 对称问题类型一 点关于点的对称点问题【典例1】已知点A (x ,5)关于点(1,y )的对称点为(-2,-3),则点P (x ,y )到原点的距离是( )A .2B .4C .5D .√17 【解析】选D .根据中点坐标公式得到x -22=1且5-32=y ,解得x =4,y =1,所以点P 的坐标为(4,1),则点P (x ,y )到原点的距离d =√(4-0)2+(1-0)2=√17.【思维提升】运用中点坐标公式是处理这类问题的关键.类型二 点关于直线的对称点问题【典例2】过点A (2,3)的光线在直线l :x +y +1=0上反射后的反射光线经过点B (1,1),试求入射光线和反射光线所在直线的方程.【思路分析】先求点关于直线l 的对称点,再由点斜式求直线的方程.【解析】设点A (2,3)关于直线l 的对称点为A'(x 0,y 0),则{2+x 02+3+y 02+1=0y 0-3x 0-2=1, 解得{x 0=-4y 0=-3,所以A'(-4,-3). 因为反射光线经过点A'(-4,-3)和B (1,1),所以反射光线所在直线的方程为y -1=(x -1)·1+31+4,即4x -5y +1=0. 联立{4x -5y +1=0x +y +1=0, 解得{x =-23y =-13,所以反射点的坐标为-23,-13,所以入射光线所在直线的方程为5x -4y +2=0.综上,入射光线和反射光线所在直线的方程分别为5x -4y +2=0,4x -5y +1=0.【思维提升】点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方面:(1)两点连线与已知直线斜率乘积等于-1;(2)两点的中点在已知直线上.类型三 直线关于点的对称直线问题【典例3】已知直线l :x +2y -2=0,试求:(1)点P (-2,-1)关于直线l 的对称点坐标;(2)直线l 关于点A (1,1)对称的直线方程.【解析】(1)设点P 关于直线l 的对称点为P'(x 0,y 0),则线段PP'的中点在直线l 上,且PP'⊥l.所以{y 0+1x 0+2×(-12)=-1,x 0-22+2×y 0-12-2=0, 解得{x 0=25,y 0=195.即P'点的坐标为25,195. (2)设直线l 关于点A (1,1)的对称直线为l',则直线l 上任意一点P 2(x 1,y 1)关于点A 的对称点 P 2'(x ,y )一定在直线l'上,反之也成立.由{x+x 12=1,y+y 12=1, 得{x 1=2-x ,y 1=2-y .将(x 1,y 1)代入直线l 的方程得,x +2y -4=0,即直线l'的方程为x +2y -4=0.【思维提升】 直线关于点的对称问题,可转化为直线上的点关于某点对称的问题,这里需要注意的是两对称直线是平行的.类型四 直线关于直线的对称直线问题【典例4】直线2x -y +3=0关于直线x -y +2=0对称的直线方程是 ( )A .x -2y +3=0B .x -2y -3=0C .x +2y +1=0D .x +2y -1=0【解析】选A .设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P'(x 0,y 0),由{x+x 02-y+y 02+2=0,x -x 0=-(y -y 0), 得{x 0=y -2,y 0=x +2,由点P'(x 0,y 0)在直线2x -y +3=0上, 所以2(y -2)-(x +2)+3=0,即x -2y +3=0.【思维提升】直线关于直线对称问题,包含两种情形:①两直线平行,②两直线相交.对于①,可转化为点关于直线的对称问题去求解;对于②,其一般解法为先求交点,再转化为点关于直线的对称问题.。
高中 平面解析几何 对称问题 练习 含答案

训练目标会利用点关于直线对称,直线关于点对称,直线关于直线对称的性质求对称“元素”.训练题型(1)求对称点、对称直线,圆关于直线对称的圆;(2)利用对称求最值.解题策略(1)根据对称的几何性质列方程求解;(2)关于特殊“元素”的对称,可按相应公式代入即得(如关于原点、坐标轴、直线x=a,y=x,y=-x等);(3)数形结合,利用几何性质解决最值问题.2.直线ax+3y-9=0与直线x-3y+b=0关于直线x+y=0对称,则a与b的值分别为________.3.设△ABC的一个顶点是A(3,-1),∠B,∠C的平分线方程分别为x=0,y=x,则直线BC的方程为________.4.已知圆C:x2+y2+2x+ay-3=0 (a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C上,则a=________.5.直线2x+3y-6=0分别交x,y轴于A,B两点,P是直线y=-x上的一点,要使P A+PB最小,则点P的坐标是________.6.已知点P(a,b),Q(b,a)(a,b∈R)关于直线l对称,则直线l的方程为________________.7.已知圆C:x2+y2+2x-4y+m=0与直线l:y=x+2相切,且圆D与圆C关于直线l对称,则圆D的方程是________________.8.若直线ax-y+2=0与直线3x-y-b=0关于直线y=x对称,则a=________,b=________. 9.若圆C:x2+y2-ax+2y+1=0和圆x2+y2=1关于直线l1:x-y-1=0对称,动圆P与圆C相外切且与直线l2:x=-1相切,则动圆P的圆心的轨迹方程是________________.10.在直线l:3x-y-1=0上求一点P,使得:(1)P到A(4,1)和B(0,4)的距离之差最大;(2)P到A(4,1)和C(3,4)的距离之和最小.答案解析1.x +2y -3=0解析 由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3, 即x +2y -3=0.2.-9,3解析 在直线ax +3y -9=0上取一点(0,3),点(0,3)关于x +y =0的对称点(-3,0)在直线x -3y +b =0上,所以b =3,同理在直线x -3y +b =0上取一点(0,1),它关于x +y =0的对称点(-1,0)在直线ax +3y -9=0上,∴a =-9.3.y =2x +5解析 点A (3,-1)关于直线x =0,y =x 的对称点分别为A ′(-3,-1),A ″(-1,3),且都在直线BC 上,故得直线BC 的方程为:y =2x +5.4.-2解析 由已知得,直线x -y +2=0经过圆心⎝⎛⎭⎫-1,-a 2, 所以-1+a 2+2=0,从而有a =-2. 5.(0,0)解析 2x +3y -6=0分别交x 、y 轴于A 、B 两点,则A (3,0)、B (0,2).B 关于y =-x 的对称点为B ′(-2,0).AB ′交直线y =-x 于点(0,0),则P (0,0)即为所求.6.x -y =0解析 由题意知,k PQ =-1,故直线l 的斜率k =1,又直线l 过线段PQ 的中点M (a +b 2,a +b 2),故直线l 的方程为y -a +b 2=x -a +b 2, 即x -y =0.7.x 2+(y -1)2=12解析 圆C 的标准方程为(x +1)2+(y -2)2=5-m ,由于圆C 与直线l 相切,故圆心C (-1,2)到l 的距离等于半径,即|-1-2+2|2=5-m ,解得m =92. 故5-m =12,又圆心C (-1,2)关于直线l :y =x +2的对称点为D (0,1), 所以圆D 的方程为x 2+(y -1)2=12. 8.136 解析 因为直线ax -y +2=0关于直线y =x 对称的直线是ay -x +2=0,即x -ay -2=0,所以直线x -ay -2=0与直线3x -y -b =0重合,所以13=-a -1=-2-b, 即a =13,b =6. 9.y 2-6x +2y -2=0解析由题意知,圆C 的圆心为C ⎝⎛⎭⎫a 2,-1,圆x 2+y 2=1的圆心为O (0,0),由两圆关于直线l 1对称,易得点(0,0)关于直线l 1:x -y -1=0对称的点(1,-1)即为点C ,故a =2,所以圆C 的标准方程为(x -1)2+(y +1)2=1,其半径为1.设动圆P 的圆心为P (x 0,y 0),半径为r ,由动圆P 与圆C 相外切可得:PC =r +1,由图可知,圆心P 一定在直线x =-1的右侧,所以由动圆P 与直线l 2:x =-1相切可得r =x 0-(-1)=x 0+1.代入PC =r +1,得:(x 0-1)2+(y 0+1)2=x 0+1+1=x 0+2,整理得:y 20-6x 0+2y 0-2=0.即圆心P 的轨迹方程为y 2-6x +2y -2=0.10.解 (1)B 关于l 的对称点B ′(3,3),l AB ′:2x +y -9=0, 由⎩⎪⎨⎪⎧ 2x +y -9=0,3x -y -1=0,解得⎩⎪⎨⎪⎧x =2,y =5,得P (2,5).(2)C 关于l 的对称点C ′(35,245), 由图象可知P A +PC ≥AC ′,当P 是AC ′与l 的交点P (117,267)时,等号成立, 所以P (117,267).。
解析几何中的对称问题

解析几何中的对称问题关键词:对称点、对称直线一、中心对称问题 1、点关于点对称 ①点(,)P a b 关于点00(,)M x y 的对称点1P 的坐标是 。
例1、点(3,A 关于点(2,7)M -对称点1A 的坐标是变式 点(13,2)A --关于点(3,5)M 对称点1A 的坐标是②直线0Ax By C ++=关于点00(,)M x y 的对称直线方程是 。
例2、直线:3520l x y -+=关于点(2,7)M -对称的直线方程是变式直线20l y -+=关于点(1,3)M -对称的直线方程是二、轴对称问题1、点关于直线对称 ⑴点(,)P a b 关于直线:0L Ax By C ++=的对称点'P 的坐标是 。
解法(一):由'PP ⊥L 知,'PP BK A=⇒直线'PP 的方程→()By b x a A -=-由0()Ax By C B y b x a A++=⎧⎪⎨-=-⎪⎩可求得交点坐标,再由中点坐标公式求得对称点'P 的坐标。
解法(二):设对称点'(,)P x y 由中点坐标公式求得中点坐标为(,)22a x b y ++把中点坐标代入L 中得到022a x b y A B C ++⋅+⋅+=;① 再由'PP B K A =得b y Ba x A -=-②,联立①、②可得到'P 点坐标。
对称轴:0L x y C ++=点(,)P a b 关于直线:0L x y C ++=的对称点'P 的坐标是 。
例3、点(2,7)M -关于直线:20L x y +-=点N的坐标是变式 3 点(3,5)P -关于直线:10L x y +-=的对称点'P 的坐标是 。
对称轴:0L x y C -+=点(,)P a b 关于直线:0L x y C -+=的对称点'P 的坐标是 。
例4、点(2,7)M -关于直线:20L x y --=点N的坐标是变式 4 点2(3,)P m-关于直线:30L x y -+=的对称点'P 的坐标是 。
2025高考数学专项复习运用“对称变换”的思想方法解题含答案

运用“对称变换”的思想方法解题在中学数学中,对称的问题主要有以下4种形式:1.中心对称:①点关于点的对称;②曲线关于点的对称。
2.轴对称:①点关于直线的对称;②曲线关于直线的对称。
3.平面对称:①点关于平面的对称;②曲线关于平面的对称。
4.多项式对称:①一般轮换对称;②顺序轮换对称。
几何中的轴(面)对称和中心对称是最直观的对称,平面图形绕其内一定点旋转2πnn ∈N *的变换,也是常见的对称变换。
典型例题1定理一:函数y =f x 满足f a +x =f a -x 的充要条件是y =f x 的图像关于直线x =a 对称。
定理二:函数y =f x 满足f a +x -b =b -f a -x 的充要条件是y =f x 的图像关于点a ,b 成中心对称。
定理三:函数y =f x 满足F x =f x +a -f a 为奇函数的充要条件是y =f x 的图像关于点a ,f a 成中心对称(注:若a 不属于x 的定义域,则f a 不存在.依次解答如下问题:(1)设函数y =f x 的图像关于直线x =1对称,若x ≤1时,y =x 2+1,求x >1时y 的解析式;(2)若函数y =x 2+mx +1x的图像关于点0,1 中心对称,求m 的值;(3)已知函数f x 在-∞,0 ∪0,+∞ 上的图像关于点0,1 中心对称,且当x ∈0,+∞ 时f x =x 2+x +1.根据定理二求出f x 在-∞,0 上的解析式;(4)设函数y =f x ,y =g x 在定义域R 上的图像都是关于点a ,b 中心对称,则对于函数y =f x +g x ,y =f x -g x ,y =f x ⋅g x 及y =f xg x ,指出其中一个函数的图像一定关于点成中心对称,再指出其中一个函数的图像可以不关于点中心对称,并分别说明理由;(5)讨论函数f x =x -23 x +53 +x -3 -2x -83的图像的对称性。
(整理版)四种对称问题的解法

四种对称问题的解法几何图形的对称是美观的,又是根本的、常见的、重要的.我们一起来了解解析几何中的点与直线的四种对称问题及其解法.一、点关于点的对称点()P a b ,关于点()Q m n ,的对称点为(22)P m a n b '--,,特例,点()P a b ,关于点(00)O ,的对称点为()a b --,. 二、直线关于点的对称例1 求直线1:210l x y -+=关于点(21)P ,的对称直线2l 的方程. 解法一:因为为P 不在直线1l 上,且1l 与2l 关于点(21),对称,所以12l l ∥,故设 2:20l x y C -+=.由于点(21)P ,=所以7C =-,或1C =〔舍去〕,故所求的方程为270x y --=.解法二:直线2l 上任意一点()Q x y ,,关于(21)P ,的对称点(42)x y --,在直线 210x y -+=上,2(4)(2)10x y ---+=∴,2:270l x y --=∴.评注:解法一是利用线线平行及点到两直线距离相等来解;解法二是设动点,运用“轨迹法〞求解,这也是求解曲线方程的一般方法.一般地,直线0Ax By C ++=关于点()a b ,对称的直线方程为(2)(2)0A a x B b y C -+-+=.三、点关于直线的对称例2 直线:330l x y -+=,求点(45)P ,关于直线l 的对称点. 解法一:设(45)P ,关于直线l 的对称点为()P x y ''',,显然4x '≠,那么PP l '⊥,线段PP '的中点在直线l 上.45330225143x y y x ''++⎧⨯-+=⎪⎪⎨'-⎪=-⎪'-⎩,.∴27.x y '=-⎧⎨'=⎩,∴ (27)P '-,∴即为所求的点.评注:此解法最常用,其关键是利用“垂直〞、“平分〞.一般地,假设点00()P x y ,关于直线:0l Ax By C ++=的对称点为()P x y ''',,那么000222()A x x Ax By C A B'=-+++,000222()B y y Ax By C A B '=-+++. 解法二:设(45)P ,关于直线l 的对称点为()P x y ''',,那么PP l '⊥,故设直线:30PP x y C '++=.又点(45)P ,在直线PP '上,4350C +⨯+=∴,19C =-. ∴直线:3190PP x y '+-=. 由3190330x y x y +-=⎧⎨-+=⎩,,得16.x y =⎧⎨=⎩,此点即为PP '的中点,(27)P '-,∴. 四、直线关于直线的对称例3 求直线:20a x y --=关于直线:210l x y ++=对称的直线b 的方程.解法一:在直线a 上取一点(20),,运用例2介绍的方法,可求得点(20)P ,关于l 的对称 点41255P ⎛⎫'- ⎪⎝⎭,,由方程组20210x y x y --=⎧⎨++=⎩,,得直线a 与l 的交点(11)Q -,. 直线b 过点P '与Q ,由“两点式〞得直线b 的方程:780x y --=。
解析几何:直线中的对称问题

一:直线关于直线对称【结论】直线0ax by c ++=关于直线=0Ax By C ++对称的直线方程为:222+2ax by c aA bB Ax By C A B ++=+++ 如此对称漂亮的等式相信对于各位的记忆并不困难吧!当然最后你别忘了将之化成直线方程的标准形式二:直线关于点对称这个要简单好多,首先直线关于某点对称的直线,其斜率保持一致(前提是该直线不过此点),再借助点到两直线的距离相等即可解决问题。
由于距离公式涉及到绝对值符号,很多同学在处理这一步的时候走了点弯路,还去讨论情况什么的,甚至还有人进行两边平方,实际上我们很容易知道,绝对值符号内的部分肯定是互为相反数——因为相等的情况就是该直线本身。
【例】求直线0ax by c ++=关于点00P(x ,y )对称的直线方程解:设所求直线方程0ax by d ++=,其中d 由方程0000()(ax by c)0ax by d +++++=来求三:点关于直线已知点M(x 0,y 0)和直线 l :Ax+By+C=0(A≠0,B≠0),求点M 关于直线l 对称的对称点M′的坐标,这是高中数学教学中常见的问题。
其求法是简单的,设M′(x,y),利用直线l 是线段MM′的中垂线,列出方程组,解方程组便可求得M′点的坐标。
由于在教学中遇到此类问题很多,屡屡列方程组并解之不胜其烦,所以不如做一回傻事,就一般情况推导出其坐标公式,“毕其功于一役”,省得以后劳苦再三。
但需说明的是,此公式虽如此优美,但仅适合于教师使用。
而不提倡学生使用此公式(额外增加了记忆负担)。
定理:已知点M(x 0,y 0)和直线 l :Ax+By+C=0(A≠0,B≠0),点M 关于直线l 对称的对称点M′的坐标(x ,y),则 00022000222(x ,y )2(x ,y )Af x x A B Bf y y A B =-+=-+ 其中(x,y)Ax By f C =++证明:设点M 关于直线l 对称的对称点M′的坐标是(x ,y),∵ l⊥MM′,∴ [(y -y 0)/(x-x 0)](-A/B)=-1,∴ y=y 0+B(x-x 0)/A , ①∵ 线段MM′的中点在直线l 上,∴ A(x+x 0)/2+B(y+y 0)/2+C=0,∴Ax+By+C+Ax 0+By 0+C=0,即 Ax+By+C+f(x 0,y 0)=0, ②将①代入②,得Ax+B[y 0+B(x-x 0)/A]+C+f(x 0,y 0)=0,∴ A 2x+B[Ay 0+B(x-x 0)]+AC+Af(x 0,y 0)=0,∴ A 2x+ABy 0+B 2x-B 2x 0+AC+Af(x 0,y 0)=0,∴ (A 2+B 2)x-A 2x 0-B 2x 0+A 2x 0+ABy 0+AC+Af(x 0,y 0)=0,即 (A 2+B 2)x-(A 2+B 2)x 0+2Af(x 0,y 0)=0,∴ x=x 0-2Af(x 0,y 0)/(A 2+B 2),把上式代入①,得y=y 0+B[-2Af(x 0,y 0)/A(A 2+B 2)]=y 0-2Bf(x 0,y 0)/(A 2+B 2).(证毕)例1 已知点M(3,4)和直线 l : x-y=0,点M 关于直线l 对称的对称点M′的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何中的对称问题答案2007-11-161、D2、 A 3.B 4.C 5.C 6.C 7.C 8.A 9.B 10、B3.B .因为入射光线必过点P 所以将点P 坐标代入可排除A.C 即而求出点Q 关于直线x+y+1=0的对称点Q ’(-2,-2)则入射光线的斜率为45'=PQ k 可选B 。
4.C 点(7,3)与点(m ,n)关于直线y =x+2对称,∴m =1,n =9.5.C 由1l 过定点(0,2)M 知:直线2l 恒过M 关于直线1y x =+的对称点(1,1),选C 。
7.解析:选C .设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出AB ==本题考查直线与圆锥曲线的位置关系.11.y=3x -10 12.2x -y + 5=013.2246492200x x y -++= 14 .22228110x y y x -+--= 15.椭圆上两点(,)x y 11,(,)x y 22,代入方程,相减得31212()()x x x x +-+412()y y +()y y 120-=。
又x x x =+122,y y y =+122,k y y x x =--=-121214,代入得y x =3。
又由y xy x m==+⎧⎨⎩34解得交点(,)--m m 3。
交点在椭圆内,则有 ()()-+-<m m 224331。
得-<<2131321313m 。
16.两点所在直线y m =-+22与y mx =联立求出交点(,)-+-+m m m 2222,代入抛物线内,有()-++<-++m m m m 2212212,解得-<<20m 。
17.11,,00,3223k 骣骣骣珑鼢珑鼢???热+?珑鼢珑鼢珑鼢珑鼢桫桫珑桫桫 18.设抛物线上关于直线x+y=1对称的两点是M(x 1,y 1)、N(x 2,y 2),设直线MN 的方程为y=x+b.代入抛物线方程,得:x 2+(2b-2p)x+b 2=0.则x 1+x 2=2p-2b,y 1+y 2=( x 1+x 2)+2b=2p.则MN 的中点P 的坐标为 (p-b,p).因为点P 在直线x+y=1上,所以2p- b=1,即b=2p-1。
又 =(2b-2p)2-4b 2=4p 2-8bp>0,将b=2p-1代入得:4p 2-8p(2p-1)>0,3p 2-2p<0.解得: 0<p<32. 19.分析一 根据椭圆的定义,长轴长2a=|MF 1|+|MF 2|,从建立目标函数考虑,可设点M 的坐标为(t ,6-t ),设F 1(-2,0), F 2(2,0),则可建立2a 的目标函数。
但这时求函数2a 的最小值还很麻烦。
分析二 如图13-11,根据椭圆的定义,椭圆的长轴最短,就是椭圆与l 的公共点M 到焦点F 1和F 2的距离之和最短,若设椭圆和直线l 相切,那么除切点外的任何点都在椭圆外,到两焦点的距离之和均大于长轴,所以M 应为切点,椭圆应通过此切点。
解法一 由已知,a 2=9,b 2=5,∴ c=2,即两椭圆的公共焦点F 1(-2,0)和F 2(2,0)。
n 2x 2 + m 2(6-x )2=m 2n 2由已知,应有n 2=m 2-4,代入整理,得(2m 2-4)x 2-12m 2x+40m 2-m 4=0由于直线l 应与此椭圆相切,必须且只需Δ=144m 4-4(2m 2-4)(40m 2-m 4)=0 整理此方程,得 m 4-24m 2+80=0(m 2-20)(m 2-4)=0∴m 2=20或m 2=4,但n 2=m 2-4=0不合题意,只有m 2=20,且n 2=m 2-4=16,若存在椭圆c ′过直线l 的另一点M ′,由于M ′在椭圆外,则必有|M ′F 1|+|M ′F 2|>|MF 1|+|MF 2|分析三 由于椭圆的长轴最短时,应有 |MF 1|+|MF 2|最小,即M 点应为直线l 上距F 1和F 2的距离之和为最短,据平面几何的等价命题可知,这个最短的距离和应是线段|F 1F ′2|的长,其中F ′2是F 2关于直线l 的轴对称点,故可得解法二。
解法二 如图13-12,设F 2(2,0)关于直线l 的对称点/2F①又应有F 2F ′2⊥l ,则有 ②应有 |MF 1|+|MF 2|=|MF 1|+|MF ′2|=|F 1F ′2|=2a又由c=2得b 2=a 2-c 2=16,20.2222153x y -= 21.解:(Ⅰ)( i ) 当0=k 时,此时A 点与D 点重合, 折痕所在的直线方程21=y ,( ii ) 当0≠k 时,设A 点落在线段DC 上的点)1,(0x A ',CDy)20(0≤≤x ,则直线A O '的斜率001x A k =', ∵,A O '折痕所在直线垂直平分 ∴1-=⋅'k k A O ,∴11-=⋅k x ,∴k x -=0 又∵折痕所在的直线与A O '的交点坐标(线段A O '的中点)为)21,2(k M -, ∴折痕所在的直线方程)2(21k x k y +=-,即2122k y kx =++,由( i ) ( ii )得折痕所在的直线方程为:2122k y kx =++)02(≤≤-k(Ⅱ)折痕所在的直线与坐标轴的交点坐标为)0,21(,)21,0(22kk F k E +-+由(Ⅰ)知,0x k -=,∵200≤≤x ,∴02≤≤-k ,设折痕长度为d ,所在直线的倾斜角为θ,( i ) 当0=k 时,此时A 点与D 点重合, 折痕的长为2 ; ( ii )当02<≤-k 时,设k k a 212+-=,212+=k b ,20=≤<AB a 时,l 与线段AB 相交,此时322+-≤≤-k , 2=>AB a 时,l 与线段BC 相交,此时032<<+-k , 10≤<b 时,l 与线段AD 相交,此时01<≤-k , 1>b 时,l 与线段DC 相交,此时12-<≤-k ,∴将k 所在的分为3个子区间:①当12-<≤-k 时,折痕所在的直线l 与线段DC 、AB 相交,折痕的长11||11||1|sin |1222+=+=+==kk k k k d θ,∴225<≤d , ②当321+-≤≤-k 时,折痕所在的直线l 与线段AD 、AB 相交,折痕的长4341434)21()21(2242222+++=+++-=k k k k k k d 令0)(≥'x g ,即0212333≥-+kk k ,即013246≤-+k k , 即 0)21()1(222≤-+k k ,∵321+-≤≤-k ,∴解得3222+-≤≤-k 令0)(≤'x g , 解得 221-≤≤-k , 故当221-≤≤-k 时,)(x g 是减函数,当3222+-≤≤-k 时,)(x g 是增函数,∵2)1(=-g ,)348(4)32(-=+-g , ∴)32()1(+-<-g g ,∴当32+-=k 时,)348(4)32(-=+-g ,)26(23482)32(-=-=+-=g d ,∴当321+-≤≤-k 时, )26(2-≤d ,③当032<<+-k 时,折痕所在的直线l 与线段AD 、BC 相交, 折痕的长2212112|cos |2k k d +=+==θ,∴34822-<<l ,即)26(22-<<l ,综上所述得,当32+-=k 时,折痕的长有最大值,为)26(2-. 22.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B的坐标分别是2222222.,,1,).,0(),0,(b a c a b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由.所以点M 的坐标是(a b c 2,-). 由).,(),(2a e aa b e a c λλ=+-=得即 证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a e a -设M 的坐标是),,(),(),,(0000a eay e a x AB AM y x λλ=+=得由所以⎪⎩⎪⎨⎧=-=.)1(00a y ea x λλ 因为点M 在椭圆上,所以 ,1220220=+b y a x 即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e 解得.1122e e -=-=λλ即(Ⅱ)当43=λ时,21=c ,所以.2c a = 由△MF 1F 2的周长为6,得.622=+c a所以.3,1,2222=-===c a b c a 椭圆方程为.13422=+y x (Ⅲ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e e e =+- 所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 23.(I )解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②221a a c e e e b a a l l l ìïï-=ïïï=-íïï=ïïïî解得)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλΘ(II )解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分Θ代入椭圆方程,整理得.04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得).3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当Θ假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆 解法2:由(II )解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分Θ代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλ)21233,23123(-------+=λλλλ计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上. 又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD )24.解:(I )由题意设双曲线方程为12222=-by a x ,把(1,3)代入得13122=-ba ① ……1分 又x y 522=的焦点是(25,0),故双曲线的45222=+=b a c ……2分 与①联立,消去2b 可得0521424=+-a a ,0)5)(14(22=--a a∴ 412=a ,52=a (不合题意舍去) 于是12=b ,∴ 双曲线方程为1422=-y x ……3分(II )由⎩⎨⎧=-+=14122y x kx y 消去y 得022)4(22=---kx x k ②当0>∆,即2222<<-k (2±≠k )时,l 与C 有两个交点A 、B ……5分设A (1x ,1y ),B (2x ,2y ), 因⊥,故0=⋅,即02121=+y y x x , ……6分由②知22142k k x x -=+,22142k x x --=, 代入可得014242422222=+-⋅+--⋅+--kk k k k k 化简得22=k ,∴ 2±=k , 检验符合条件,故当2±=k 时,⊥ ……8分(III )若存在实数k 满足条件,则必须121212121(1)()2(2)(3)22km y y k x x y y x x m ⎧⎪=-⎪+=++⎨⎪++⎪=⋅⎩ ……10分 由(2),(3)得2)()(2121++=+x x k x x m (4)把22142k kx x -=+代入(4)得4=mk ……11分这与(1)的1-=mk 矛盾,故不存在实数k 满足条件 ……12分 25.(1)证明:由抛物线的光学性质及题意知光线PQ 必过抛物线的焦点F (2p,0), 设直线PQ 的方程为y =k (x -2p)①由①式得x =k 1y +2p ,将其代入抛物线方程y 2=2px 中,整理,得y 2-k p 2y -p 2=0,由韦达定理,y 1y 2=-p 2.当直线PQ 的斜率角为90°时,将x =2p代入抛物线方程,得y =±p ,同样得到y 1·y 2= -p 2.(2)解:因为光线QN 经直线l 反射后又射向M 点,所以直线MN 与直线QN 关于直线l 对称,设点M (441,4)关于l 的对称点为M ′(x ′,y ′),则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+'⨯-+'⨯-=⨯-'-'017244244121214414y x x y 解得⎪⎩⎪⎨⎧-='='1451y x 直线QN 的方程为y =-1,Q 点的纵坐标y 2=-1,由题设P 点的纵坐标y 1=4,且由(1)知:y 1·y 2=-p 2,则4·(-1)=-p 2, 得p =2,故所求抛物线方程为y 2=4x .(3)解:将y =4代入y 2=4x ,得x =4,故P 点坐标为(4,4) 将y =-1代入直线l 的方程为2x -4y -17=0,得x =213, 故N 点坐标为(213,-1) 由P 、N 两点坐标得直线PN 的方程为2x +y -12=0, 设M 点关于直线NP 的对称点M 1(x 1,y 1) ⎪⎩⎪⎨⎧-==⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+++⨯-=-⨯--14101224244121)2(4414111111y x y x x y 解得则又M 1(41,-1)的坐标是抛物线方程y 2=4x 的解,故抛物线上存在一点(41,-1)与点M 关于直线PN 对称.26.解法一:由e =22=a c ,得21222=-ab a ,从而a 2=2b 2,c =b . 设椭圆方程为x 2+2y 2=2b 2,A (x 1,y 1),B (x 2,y 2)在椭圆上.则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,(x 12-x 22)+2(y 12-y 22)=0,.)(221212121y y x x x x y y ++-=--设AB 中点为(x 0,y 0),则k AB =-002y x ,又(x 0,y 0)在直线y =21x 上,y 0=21x 0,于是-002y x = -1,k AB =-1,设l 的方程为y =-x +1.右焦点(b ,0)关于l 的对称点设为(x ′,y ′),⎩⎨⎧-='='⎪⎪⎩⎪⎪⎨⎧++'-='=-''b y x b x y bx y 11 1221解得则 由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2,b 2=89,1692=a . ∴所求椭圆C 的方程为2291698y x + =1,l 的方程为y =-x +1.解法二:由e =21,22222=-=ab a ac 得,从而a 2=2b 2,c =b . 设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =k (x -1), 将l 的方程代入C的方程,得(1+2k 2)x 2-4k 2x +2k 2-2b 2=0,则x 1+x 2=22214k k +,y 1+y 2=k (x 1-1)+k (x 2-1)=k (x 1+x 2)-2k =-2212kk+. 直线l :y =21x 过AB 的中点(2,22121y y x x ++),则2222122121kk k k +⋅=+-,解得k =0,或k = -1.若k =0,则l 的方程为y =0,焦点F (c ,0)关于直线l 的对称点就是F 点本身,不能在椭圆C上,所以k =0舍去,从而k =-1,直线l 的方程为y =-(x -1),即y =-x +1,以下同解法一. 27.解:(1)由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.故椭圆方程为92522y x +=1. (2)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=59.因为椭圆右准线方程为x =425,离心率为54,根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2),由|F 2A |、|F 2B |、|F 2C |成等差数列,得54(425-x 1)+54(425-x 2)=2×59,由此得出:x 1+x 2=8. 设弦AC 的中点为P (x 0,y 0),则x 0=221x x +=4.(3)解法一:由A (x 1,y 1),C (x 2,y 2)在椭圆上.得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x①-②得9(x 12-x 22)+25(y 12-y 22)=0, 即9×)()2(25)2(21212121x x y y y y x x --⋅+++=0(x 1≠x 2) 将k x x y y y y y x x x 1,2,422121021021-=--=+==+ (k ≠0)代入上式,得9×4+25y 0(-k1)=0 (k ≠0)即k =3625y 0(当k =0时也成立). 由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m ,所以m =y 0-4k =y 0-925y 0=-916y 0. 由点P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称)的内部,得-59<y 0<59,所以-516<m <516.解法二:因为弦AC 的中点为P (4,y 0),所以直线AC 的方程为y -y 0=-k1(x -4)(k ≠0) ③将③代入椭圆方程92522y x +=1,得(9k 2+25)x 2-50(ky 0+4)x +25(ky 0+4)2-25×9k 2=0 所以x 1+x 2=259)4(5020++k k =8,解得k =3625y 0.(当k =0时也成立) (以下同解法一). 28.(1)设 ,则 ,即 ,得 ,或 因为 所以03>-v ,得8=v ,故 (2)由 ,得B (10,5),于是直线OB 方程: 由条件可知圆的标准方程为:10)1()3(22=++-y x得圆心(3,1-),半径为10设圆心(3,1-)关于直线OB 的对称点为(x ,y ),则 ,得 故所求圆的方程为10)3()1(22=-+-y x①②20AB OA AB OA ìï=ïïíïï?ïîu u u r u u u ru u u r u u u r 22100430u v u v ìï+=ïíï-=ïî68u v ì=ïïíï=ïî68u v ì=-ïïíï=-ïî{}43OB OA AB u v =+=+-u u u r u u u r u u u r ,{}68AB =u u u r,{}105OB =u u u r ,12y x =312022123x y y x ì+-ïï-?ïïíï+ï=-ïï-ïî13x y ì=ïïíï=ïî{}AB u v =u u u r ,(3)设)(11y x P ,,)(22y x Q ,为抛物线上关于直线OB 对称的两点,则,得 即21x x 、为方程 的两个相异实数则302a\D >? 29.解:(Ⅰ)设1F '的坐标为),(n m ,则211-=+m n 且032212=+--⋅nm .……2分 解得52,59=-=n m , 因此,点 1F '的坐标为)52,59(-. …………………4分(Ⅱ)11PF F P ='Θ,根据椭圆定义, 得||||||22121F F PF F P a '=+'=22)052()159(22=-+--=,……………5分 2=∴a ,112=-=b .∴所求椭圆方程为1222=+y x . ………………………………7分 (Ⅲ)22=ca Θ,∴椭圆的准线方程为2±=x . …………………………8分 设点Q 的坐标为)32,(+t t )22(<<-t ,1d 表示点Q 到2F 的距离,2d 表示点Q 到椭圆的右准线的距离. 则10105)32()1(2221++=++-=t t t t d ,22-=t d .22221)2(225210105-++⋅=-++=t t t t t t d d , ……………………………10分 令22)2(22)(-++=t t t t f )22(<<-t ,则3422)2()86()2()2(2)22()2()22()(-+-=--⋅++--⋅+='t t t t t t t t t f , Θ当0)(,342<'-<<-t f t ,0)(,234>'<<-t f t , 34-=t ,0)(='t f .∴ )(t f 在34-=t 时取得最小值. ………………………………13分1212121220222x x y y y y x x ì++ïï-=ïïïí-ïï=-ïï-ïî121222522x x a a x x a ìïï+=-ïïíï-ï=ïïïî2225202a x x a a -++=因此,21d d 最小值=22)34(5=-⋅f ,此时点Q 的坐标为)31,34(-.…………14分注:)(t f 的最小值还可以用判别式法、换元法等其它方法求得.30.(1)离心率e 的取值范围是122<≤e . (2)①当离心率e 取最小值22时,椭圆方程可表为22222by b x +=1 设),(y x H 是椭圆方程上的一点,则182)3()3(22222+++-=-+=b y y x HN,其中b y b ≤≤-.若30<<b ,则当b y -=时,2NH 有最大值50962=++b b ,所以由50962=++b b 解得253±-=b (均舍去)若3≥b ,则当3-=y 时,2NH 有最大值1822+b ,所以由1822+b =50解得162=b所求椭圆方程为1163222=+y x . ②设),(),,(),,(002211y x Q y x B y x A ,则由⎪⎪⎩⎪⎪⎨⎧=+=+116321163222222121y x y x 两式相减得0200=+ky x ①又直线PQ ⊥直线l ,所以PQ 的方程331--=x k y ,将),(00y x Q 代入得33100--=x k y ②由①②解得)33,332(k Q -,而点Q 必在椭圆的内部,所以116322020<+y x ,由此得2472<k ,又0≠k ,所以0294<<-k 或2940<<k . 故当)294,0()0,294(⋃-∈k 时,A 、B 两点关于过点P 、Q 的直线对称。