§常用逻辑用语.pptx

合集下载

常用逻辑用语课件

常用逻辑用语课件

谢谢聆听
基于逻辑的决策方法
逻辑决策方法
逻辑决策方法是指基于逻辑推理和数学分析的决策方 法,如概率决策、统计决策、线性规划等。这些方法 通过建立数学模型和逻辑关系,对各种可行方案进行 分析、比较和选择,从而得出最优方案。
逻辑决策方法的优点
逻辑决策方法具有客观性、准确性和可靠性等优点, 能够避免主观臆断和经验主义的错误,提高决策的科 学性和准确性。
直接论证
总结词
直接论证是通过直接陈述前提与结论之间的 联系来进行推理的逻辑用语。
详细描述
直接论证是一种常见的论证方式,它通过直 接陈述前提与结论之间的联系来进行推理。 在直接论证中,前提和结论之间的关系是明 确的,不需要引入其他概念或判断。例如, “所有人都会死亡,苏格拉底是人,因此苏 格拉底会死亡。”这个论证就是直接论证的 例子。
常用逻辑用语课件
目录
• 逻辑用语的基本概念 • 常用逻辑用语介绍 • 逻辑用语的基本规则 • 逻辑用语在推理中的应用 • 逻辑用语在论证中的应用 • 逻辑用语在决策中的应用
逻辑用语的基本概念
01
什么是逻辑用语
01
逻辑用语是指用于表达逻辑关系、 推理规则和论证结构的语言或符 号系统。
02
它包括各种命题、量词、联结词、 推理规则等基本概念,以及各种 逻辑公式和定理。
谓词逻辑
总结词
研究个体与谓词之间关系的逻辑。
详细描述
谓词逻辑是命题逻辑的扩展,它不仅研究命题之间的关系,还研究个体与谓词之 间的关系。谓词逻辑可以用来表达和推理关于个体的性质和关系。
量词逻辑
总结词
研究量化表达式之间关系的逻辑。
详细描述
量词逻辑是谓词逻辑的扩展,它引入了量词来表示全称和存在量词,从而可以表达和推理关于个体的全称和存在 命题。量词逻辑在数学、计算机科学和哲学等领域有广泛应用。

常用逻辑用语课件PPT

常用逻辑用语课件PPT
解析答案
12345
5.若“x<m”是“(x-1)(x-2)>0”的充分不必要条件,求m的取值范围. 解 由(x-1)(x-2)>0可得x>2或x<1, 由已知条件,知{x|x<m} {x|x>2或x<1}. ∴m≤1.
解析答案
课堂小结
1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进行判断. (2)等价法:利用逆否命题的等价性判断,即要证p⇒q,只需证它的逆否 命题綈q⇒綈p即可;同理要证q⇒p,只需证綈p⇒綈q即可. (3)利用集合间的包含关系进行判断. 2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、 必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系, 然后建立关于参数的不等式(组)进行求解.
答案
思考 (1)数学中的判定定理给出了结论成立的什么条件? 答案 充分条件. (2)性质定理给出了结论成立的什么条件? 答案 必要条件.
答案
返回
题型探究
题型一 充分条件、必要条件 例1 给出下列四组命题: (1)p:两个三角形相似,q:两个三角形全等; 解 ∵两个三角形相似⇏两个三角形全等, 但两个三角形全等⇒两个三角形相似, ∴p是q的必要不充分条件. (2)p:一个四边形是矩形,q:四边形的对角线相等; 解 ∵矩形的对角线相等,∴p⇒q, 而对角线相等的四边形不一定是矩形,∴q⇏p. ∴p是q的充分不必要条件.
知识梳理
自主学习
知识点 充分条件与必要条件 一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们 就说,由p可推出q,记作p⇒q,并且说p是q的 充分条件,q是p的 必要条件 . (1)p是q的充分条件与q是p的必要条件表述的是同一个逻辑关系,只是说法 不同.p是q的充分条件只反映了p⇒q,与q能否推出p没有任何关系. (2)注意以下等价的表述形式:①p⇒q;②p是q的充分条件;③q的充分条 件是p;④q是p的必要条件;⑤p的必要条件是q. (3)“若p,则q”为假命题时,记作“p⇏q”,则p不是q的充分条件,q不 是p的必要条件.

常用逻辑用语课件

常用逻辑用语课件

模态逻辑的应用
哲学领域
模态逻辑被广泛应用于哲学推理和论证,特别是关于必然性和可 能性的问题。
人工智能领域
模态逻辑在人工智能领域也有广泛的应用,用于表示和推理不确定 性,例如在专家系统和决策支持系统中。
法律领域
模态逻辑在法律领域的应用主要涉及法律论证和法律解释,例如在 法律推理和法律解释中需要考虑必然性和可能性等问题。
危害
导致思维混乱、判断失误、决策失误 等。
如何避免逻辑错误
01
02
03
04
明确概念
准确理解概念的含义,避免混 淆和偷换概念。
全面分析
对问题进行分析时,要全面考 虑各种可能性,避免以偏概全

充分论证
在进行推断时要充分论证,避 免基于不充分的信息做出错误
判断。
客观分析
对信息进行客观分析,不带有 个人偏见和情感色彩。
模态推理规则
必然推理规则
如果p是必然的,那么¬p是不可能的。例如:如果明天必然下雨,那么明天不可能不下雨 。
可能推理规则
如果p是可能的,那么¬p是不确定的。例如:如果明天可能下雨,那么明天不确定不下雨 。
互为对偶的模态命题推理规则
如果p是必然的,那么¬p是不可能的;如果p是不可能的,那么¬p是必然的。例如:如果 明天必然下雨,那么明天不可能不下雨;如果明天不可能不下雨,那么明天必然下雨。
归纳方法及其应用
01
02
归纳方法:包括简单枚 举归纳、排除归纳、概 率归纳等。
归纳方法的应用
03
04
05
科学发现:科学家通过 观察实验数据,运用归 纳方法得出科学规律。
数据分析:在商业、社 会科学等领域,归纳方 法用于分析数据,发现 潜在规律。

常用逻辑用语课件ppt

常用逻辑用语课件ppt

解析答案
课堂小结
1.判断命题是全称命题还是特称命题,主要是看命题中是否含有全称 量词或存在量词,有些全称命题虽然不含全称量词,可以根据命题涉 及的意义去判断. 2.要确定一个全称命题是真命题,需保证该命题对所有的元素都成立; 若能举出一个反例说明命题不成立,则该全称命题是假命题. 3.要确定一个特称命题是真命题,举出一个例子说明该命题成立即可; 若经过逻辑推理得到命题对所有的元素都不成立,则该特称命题是假 命题.
知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
知识梳理
自主学习
知识点一 全称量词和全称命题 (1)全称量词:短语“对所有的”“对任意一个”在逻辑中通常叫做_全__称_ 量词 ,并用符号“ ∀”表示. (2)全称命题:含有全称量词的命题叫做全称命题.全称命题“对M中任意 一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M, 有p(x)成立”.
答案
思考 (1)在全称命题和特称命题中,量词是否可以省略? 答案 在特称命题中,量词不可以省略;在有些全称命题中,量词可以 省略. (2)全称命题中的“x,M与p(x)”表达的含义分别是什么? 答案 元素x可以表示实数、方程、函数、不等式,也可以表示几何图形, 相应的集合M是这些元素的某一特定的范围.p(x)表示集合M的所有元素 满足的性质.如“任意一个自然数都不小于0”,可以表示为“∀x∈N, x≥0”.
返回
第一章 § 1.4 全称量词与存在量词
1.4.1 全称量词 1.4.2 存在量词
学习 目标
1.通过生活和数学中的丰富实例理解全称量词与存在量词的含义, 熟悉常见的全称量词和存在量词. 2.了解含有量词的全称命题和特称命题的含义,并能用数学符号表示 含有量词的命题及判断其命题的真假性.

常用逻辑用语PPT优秀课件4

常用逻辑用语PPT优秀课件4
当两个都是假命题时,
p 真
是假p命题q 。


有真“或”为真

q P或q
真√ 假√
真√ 假×
例2:对下列各组命题,用“或”构造新命题并判 断新命题的真假:
(1)p:正数的平方大于0;q:负数的平方大于0
(2)p:正数的平方大于0;q:0的平方大于0 例3:判断下列命题的真假: (1)3≥3
(2)周长相等的两个三角形全等或面积相等的
非:就是否定的意思。 我们把不含逻辑连接词的命题称为简单命题。 由简单命题与逻辑联结词联结而成的命题称为
复合命题。
复合命题的基本结构有:
p且q ( p q ) ;p或q ( p q ) ;非p ( p )
注意:今后常用小写字母p,q,r,s,…表示命题。
1、“且”命 题(1)定义:如果用联结词“且”将命题 p 和命题 q 联结起来,就得到了一个复合命题,记作pq
第一章 常用逻辑用语
开动脑筋
【例2】写出由下列命题构成的“p或q”、“p且q”以及 “非p”形式的命题. (1) p: 5是15的约数 q: 5是10的约数. (2) p:苹果都长在树上 q:苹果都长在地上. (3) p:方程x2+x-2=0的解是x=-2
q:方程x2+x-2=0的解是x=1
思考 命题”p或q”与命题”方程x2+x-2=0的解是
(1) 面积相等或周长相等的圆是等圆. (2) x2-4≠0时, x≠±2. (3) 5和7是30的约数. (4)对一切实数x,x2+x+1 ≥0
3.如果命题p是假命题,命题q是真命题,则下列错误的是
A.“p且q”是假命题 B.“p或q”是真命题
C.“非p”是真命题 D.“非q”是真命题

常用逻辑用语ppt课件

常用逻辑用语ppt课件

最新课件
28
变式训练 3 (2010·辽宁)为了比较注射 A,B 两种 药物后产生的皮肤疱疹的面积,选 200 只家兔做 试验,将这 200 只家兔随机地分成两组,每组 100 只,其中一组注射药物 A,另一组注射药物 B.表 1 和表 2 分别是注射药物 A 和药物 B 后的试验结 果.(疱疹面积单位:mm2)
所以 p⇒q 但 q⇒p,故 p 是 q 的充分不必要条件.
最新课件
11
题型分类 深度剖析
题型一 含有逻辑联结词命题的真假判断 例 1 写出由下列各组命题构成的“p∨q”、“p∧q”、
“綈 p”形式的复合命题,并判断真假. (1)p:1 是质数;q:1 是方程 x2+2x-3=0 的根; (2)p:平行四边形的对角线相等;q:平行四边形的对 角线互相垂直; (3)p:5≤5;q:27 不是质数.
解析 若 r>0,表示两个相关变量正相关,x 增大时,y
也相应增大,故①正确;r<0,表示两个变量负相关,
x 增大时,y 相应减小,故②错误;|r|越接近 1,表示
两个变量相关性越高,|r|=1 表示两个变量有确定的关
系(即函数关系),故③正确.
最新课件
24
题型分类 深度剖析
题型一 线性回归分析 例 1 假设关于某种设备的使用年限 x(年)与所支出的维修
➢ 难点
(1)2的意义及推导;
(2)相关系数r的意义。
最新课件
15
§10.4 统计案例
基础知识 自主学习
要点梳理
1.回归分析 (1)定义:对具有 相关关系 的两个变量进行统计分析
的一种常用方法.
(2)样本点的中心
对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…, (xn,yn),其回归直线 y=bx+a 的斜率和截距的最小

高中数学第一章常用逻辑用语1.4逻辑联结词“且”“或”“非”课件北师大版选修2_1

高中数学第一章常用逻辑用语1.4逻辑联结词“且”“或”“非”课件北师大版选修2_1

若 p 为假 q 为真,则 a≤0 或 a≥1,且 a>12,所
以 a≥1.
综上所述,a 的取值范围为a0<a≤12或a≥1

.

数学 选修2-1
第一章 常用逻辑用语
学课前预习学案
讲课堂互动讲义
练课后演练提升
◎已知命题p:f(x)=-(5-2m)x是减函数,若非p为 真,求实数m的取值范围.
【错解】 ∵命题 p:f(x)=-(5-2m)x 是减函数, ∴非 p:函数 g(x)=-(5-2m)x 为增函数, ∴0<5-2m<1,∴2<m<52, ∴实数 m 的取值范围是2,52.
第一章 常用逻辑用语
学课前预习学案
讲课堂互动讲义
练课后演练提升
(2)“p 或 q”:Q R 或 0∈Z; “p 且 q”:Q R 且 0∈Z; “¬p”:Q R. (3)“p 或 q”:x2+1≠x-4; “p 且 q”:x2+1>x-4,且 x2+1<x-4; “¬p”:x2+1≤x-4.
数学 选修2-1
()
A.p或q C.非p 答案: B
B.p且q D.以上都不对
数学 选修2-1
第一章 常用逻辑用语
学课前预习学案
讲课堂互动讲义
练课后演练提升
2.若p:3+2=5,q:2>3,则下列正确的是( ) A.p或q为真,非p为假 B.p且q为假,非q为假 C.p且q为假,非p为假 D.p且q为假,p或q为假 解析: 因为命题p为真,q为假,所以p且q为假,p 或q为真,非p为假. 答案: A
[思路导引] p真,求a的范围 ―→ q真,求a的范围 ―→ p,q一真一假,求a ―→ 结果
数学 选修2-1
第一章 常用逻辑用语
学课前预习学案

高一数学《第一章 常用逻辑用语》课件(人教B版2-1)1-2-2“非”(否定) 43张

高一数学《第一章 常用逻辑用语》课件(人教B版2-1)1-2-2“非”(否定)  43张

• 写出下列命题的否定,并判断真假:
• (1)p:y=sinx是周期函数;
• (2)p:3<2;
• [解析] (1)綈p:y=sinx不是周期函数,
命题p是真命题,綈p是假命题;
• (2)綈p:3≥2.命题p是假命题,綈p是真命
题.
• [例2] (1)命题“对任意的x∈R,x3-x2+
1≤0”的否定是
没有截距.
• (2)假命题,存在一个二次函数的图象不与
x轴相交.
• 写出下列全称命题的否定: • (1)p:所有能被3整除的整数是奇数; • (2)p:每一个四边形的四个顶点共圆; • (3)p:对任意x∈Z,x2的个位数字不等于3.
• [解析] (1)綈p:存在一个能被3整除的整数
不是奇数.
• (2)綈p:存在一个四边形的四个顶点不共
圆.
• (3)綈p:∃x∈Z,x2的个位数字等于3.
绝对值相等;
• (4)a>0,或b≤0.
• [解析] (1)命题的否定是:3不是9的约数,
也不是18的约数;
• (2)命题的否定是:菱形的对角线不相等或
不互相垂直;
• (3)方程x2+x-1=0的两实数根符号不相
同且绝对值不相等;
• (4)a≤0,且b>0.
• [说明] “p∨q”命题的否定为“(綈
• C.綈p∶∃x∈R,sinx>1
• D.綈p∶∀x∈R,sinx>1
• [ 分 析 ] “ ∀ x∈D , p(x)” 的 否 定 是
“∃x∈D,綈p(x)”.注意本题中的“≥” 的否定是“<”.
• [答案] (1)C (2)C
• [说明] 全称命题的否定为存在性命题,即:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档