应力强度因子计算
双材料界面裂纹应力强度因子计算

双材料界面裂纹应力强度因子计算双材料界面裂纹应力强度因子计算是固体力学中一项重要的研究内容。
在实际应用中,界面裂纹的存在常常会使材料的强度和稳定性受到严重影响。
因此,了解和计算双材料界面裂纹的应力强度因子对于材料的设计和预测裂纹扩展行为具有重要意义。
在进行双材料界面裂纹应力强度因子的计算之前,首先需要建立合适的模型和几何参数。
模型的建立可以通过软件包(如ABAQUS、ANSYS等)中的建模工具实现。
然后,需要指定裂纹的位置、长度和形状等几何参数。
这些参数可以通过实验或根据已有的理论和经验公式进行确定。
在进行有限元分析之前,还需要确定适当的边界条件和加载方式。
常见的边界条件包括固定边界条件(固定位移或固定应力)和加载边界条件(施加固定的力或位移)。
这些边界条件可以根据实际情况进行选择。
有限元分析的过程通常包括以下几个步骤:网格划分、材料属性和加载条件的定义、求解方程和计算应力和变形等。
根据得到的应力和变形结果,可以计算不同位置的应力强度因子。
常见的双材料界面裂纹应力强度因子包括模式I、模式II和模式III。
模式I是指裂纹为张开模式,模式II是指裂纹为横向滑动模式,模式III是指裂纹为剪切模式。
计算双材料界面裂纹应力强度因子的方法有很多种,例如Westergaard方法、Williams法和Newman-Raju法等。
不同的方法适用于不同的边界条件和裂纹形状。
根据具体情况选择合适的方法进行计算。
综上所述,双材料界面裂纹应力强度因子的计算是一个复杂的过程,需要建立适当的模型和几何参数,并选择适当的边界条件和计算方法。
通过计算得到的应力强度因子可以用于预测和仿真裂纹扩展行为。
这对于材料的设计和缺陷评估具有重要意义。
计算应力强度因子

基于ANSYS的断裂参数的计算本文介绍了断裂参数的计算理论,并使用ANSYS进展了实例计算。
通过计算说明了ANSYS可以用于计算断裂问题并且可以取得很好的计算结果。
1 引言断裂事故在重型机械中是比拟常见的,我国每年因断裂造成的损失十分巨大。
一方面,由于传统的设计是以完整构件的静强度和疲劳强度为依据,并给以较大的安全系数,但是含裂纹在役设备还是常有断裂事故发生。
另一方面,对于一些关键设备,缺乏对不完整构件剩余强度的估算,让其提前退役,从而造成了不必要的浪费。
因此,有必要对含裂纹构件的断裂参量进展评定,如应力强度因了和J积分。
确定应力强度因了的方法较多,典型的有解析法、边界配位法、有限单元法等。
对于工程上常见的受复杂载荷并包含不规如此裂纹的构件,数值模拟分析是解决这些复杂问题的最有效方法。
本文以某一锻件中取出的一维断裂试样为计算模型,介绍了利用有限元软件ANSYS计算应力强度因子。
2 断裂参量数值模拟的理论根底对于线弹性材料裂纹尖端的应力场和应变场可以表述为:其中K是应力强度因子,r和θ是极坐标参量,可参见图1,(1)式可以应用到三个断裂模型的任意一种。
图1 裂纹尖端的极坐标系应力强度因子和能量释放率的关系:G=K/E" (3)其中:G为能量释放率。
平面应变:E"=E/(1-v2)平面应力:E=E"3 求解断裂力学问题断裂分析包括应力分析和计算断裂力学的参数。
应力分析是标准的ANSYS线弹性或非线性弹性问题分析。
因为在裂纹尖端存在高的应力梯度,所以包含裂纹的有限元模型要特别注意存在裂纹的区域。
如图2所示,图中给出了二维和三维裂纹的术语和表示方法。
图2 二维和三维裂纹的结构示意图3.1 裂纹尖端区域的建模裂纹尖端的应力和变形场通常具有很高的梯度值。
场值得准确度取决于材料,几何和其他因素。
为了捕获到迅速变化的应力和变形场,在裂纹尖端区域需要网格细化。
对于线弹性问题,裂纹尖端附近的位移场与成正比,其中r是到裂纹尖端的距离。
关于管道裂纹应力强度因子的计算

是管道内半径 R i 和外 半径 R 0 比值 ∃= R i / R 0
第1期
&设计与研究& 考应力的作用下 , 其应力强度因子分别为: KB 1r =
B 2r = 0
3
式( 9) 、 ( 10) 中的参数 M iA 和 M iB 可根据两个参考 应力强度因子解和第三个条件确定。对于表面半椭圆 裂纹最深 点的权 函数, 确定参 数 M iA 的第 三个 条件 为
权函数, 则在任何应力条件下 , 应力强度因子均可通过 积分式( 1) 求得。下面分别讨论含轴向裂纹和纵向表 面半椭圆裂纹管道应力强度因子的权函数计算方法。
3
轴向裂纹的应力强度因子
如图 1 所示 , 管壁中有一轴向裂纹 , 类似于平板中
的边缘裂纹。对于这种类似的 边缘裂纹 , Pet roski 和 Achenbach 提出了裂纹张开位移的近似表达式!4∀ : u( a, x ) =
M 2B( x ) + M 3B ( x ) a a !a F = Q 1
dx
1+ M 1B + M 2B + M 3B= 0
选取均布应力和线形减少分布应力作为两个参考 x) = x) =
%
a 0
0( 1
x) a
1 2 1 + M 1B ( x ) 2+ a !x
0 0(
! x x 3 M 2B ( a ) + M 3B ( a ) 2 d x
ext
E∋ 2
!4f ( a / w )
a
a- x ( 3)
+ G ( a/ w )
( a - x ) 3/ 2 ∀ a
2
权函数法
由权函数理论可证明
应力强度因子的一般表达式和用途

应力强度因子的一般表达式和用途原题号:6假定某一物体内一个长度为a 2的小裂纹处于一个拉应力作用下,应力方向垂直于裂纹表面。
x 方向是预计的裂纹发展线,y 方向为垂直于裂纹方向。
r 、θ坐标系在x 、y 坐标平面内,它的原点在裂纹前缘。
如果假定材料是二维线弹性各向同性连续体,则裂纹尖端附近(r <<a )的应力(全部厚度的平均值)为:=− −= +=23cos 2cos 2sin 223sin 2sin 12cos 223sin 2sin 12cos 20θθθπτσθθθπσθθθπσr K rK rK I xy x I x Iy (2.1) 式中,I K 是参数“应力强度因子”;下角标I 表明是把裂纹表面直接拉开的应力系统,即张开型裂纹。
除张开型的裂纹变形之外,还有两种不同的形式,滑开型裂纹变形(II 型)和撕开型变形(III 型)(如图2.1)。
对于一条穿过物体的裂纹而言,裂纹的扩展通常用整个裂纹的平均应力来进行研究,而不考虑在厚度中心的断裂可能是张开型,而接近表面则可能是剪切型的这种事实、习惯上,对于这种混合型的断裂,整个有效应力强度因子是用K 来标明的,没有加下角标。
图2.1 裂纹表面位移的基本形式 对于一般的平面应力和平面应变状态,K 值的一般表达式为:a Y K πσ= (2.2)(c) I 型 (b) II 型(a) III 型式中σ——应力;a ——裂纹尺寸;Y ——应力强度因子修正系数,为裂纹形状和所考虑的有裂纹物体的函数,参考文献[1]对Y 值的计算公式进行了归纳。
K 是建立在线弹性断裂力学基础上的,它研究的是理想弹性体的低应力脆性断裂问题,其主要对象是高强度低韧性钢,这种材料认为其断裂没有塑性变形。
但实际一般钢结构在裂纹尖端或多或少存在塑性变形区(屈服区),塑性区的形状和尺寸因材料性质、几何形状和应力状态等因素而异。
当屈服区小于裂纹尺寸,称为小范围屈服。
研究表明对裂纹尖端的塑性区进行修正,小范围屈服的裂纹体仍可应用线弹性断裂力学。
abaqus计算应力强度因子

重庆大学课题: Abaqus 计算裂纹应力强度因子学院:专业:学号:姓名:一、计算裂纹应力强度因子问题描绘:以无穷大平板含有一单边裂纹为例,裂纹长度为 a=10mm,平板宽度 h=30,弹性模量 E=210000Pa,泊松比 v=,在远场受双向均布拉应力。
使用 Abaqus 计算该问题:1、进入 part 模块成立平板 part ,平板的尺寸相关于裂纹足够大,本例尺寸为50x30(mm);使用 Partation Face:sketch 工具,将 part 分开成如图 1 形式图 12、进入 property 模块成立弹性资料;截面选择平面问题的solid,homogeneous;给予截面。
3、进入 Assembly 模块实体的种类( instance type)选择 independent 。
4、进入 mesh 模块区分单元格如图 2 所示。
图 25、进入 interaction 模块指定裂纹 special/creak/assign seam;生成裂纹 crack 1,special/crack/create ;special/crack/edit ,对两个裂纹进行应力奇怪的设置。
6、进入 step 模块在 initial 步以后成立 static , general 步;在output/history output requests/create/中创立输出变量。
7、进入 load 模块定义位移和荷载界限,如图 3 所示。
图 38、进入 job 模块,提交计算Mises 应力散布见图4,在 .dat 文件中(图 5)查察应力强度因子。
图 4图 5计算分析解:由公式F=- (a/h)+(a/h) 2- (a/h)3+(a/h)4计算得分析解为k=1001应力强度因子偏差为%二、偏差剖析改变板的长度,其余条件不变1.当长度L=100时偏差为 %2.当板长L=30偏差为 %结论:当板长改变,板长没法表现无穷大的状况,计算结果的偏差会变大。
应力强度因子的计算.doc

第二章 应力强度因子的计算K --应力、位移场的度量⇒K 的计算很重要,计算K 值的几种方法: 1.数学分析法:复变函数法、积分变换; 2.近似计算法:边界配置法、有限元法; 3.实验标定法:柔度标定法; 4.实验应力分析法:光弹性法.§2-1 三种基本裂纹应力强度因子的计算一、无限大板Ⅰ型裂纹应力强度因子的计算K Z ξ→=→ⅠⅠ计算K 的基本公式,适用于Ⅱ、Ⅲ型裂纹.1.在“无限大”平板中具有长度为2a 的穿透板厚的裂纹表面上,距离x b =±处各作用一对集中力p .Re Im x Z y Z σ'=-ⅠⅠRe Im y Z y Z σ'=+ⅠⅠRe xy y Z τ'=-Ⅰ选取复变解析函数:222()Z z b π=- 边界条件:a.,0x y xy z σστ→∞===.b.,z a <出去z b =±处裂纹为自由表面上0,0y xy στ==。
c.如切出xy 坐标系内的第一象限的薄平板,在x 轴所在截面上内力总和为p 。
y '以新坐标表示:Z=⇒lim()K Zξξ→==Ⅰ2.在无限大平板中,具有长度为2a的穿透板厚的裂纹表面上,在距离1x a=±的范围内受均布载荷q作用.利用叠加原理:微段→集中力qdx→dK=Ⅰ⇒K=⎰Ⅰ令cos cosx a aθθ==,cosdx a dθθ=⇒111sin()1cos22(cosaa aaaK daθθθ--==Ⅰ当整个表面受均布载荷时,1a a→.⇒12()aaK-==Ⅰ3.受二向均布拉力作用的无限大平板,在x轴上有一系列长度为2a,间距为2b 的裂纹.边界条件是周期的: a. ,y x z σσσ→∞==.b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内0,0y xy στ==c.所有裂纹前端y σσ> 单个裂纹时Z =又Z 应为2b 的周期函数⇒sinzZ πσ=采用新坐标:z a ξ=-⇒sin()a Z πσξ+=当0ξ→时,sin,cos1222bbbπππξξξ==⇒sin()sincos cos sin22222a a a bbbbbπππππξξξ+=+σcossin222a a bbbπππξ=+2222[sin()]()cos 2cos sin(sin)2222222a a a a a bbbbbb bπππππππξξξ+=++22[sin()](sin )2cos sin22222a a a a bbbbbπππππξξ⇒+-=sinaZ ξπσ→⇒=sinlim aK ξπσ→⇒===Ⅰ=取w M =修正系数,大于1,表示其他裂纹存在对K Ⅰ的影响. 若裂纹间距离比裂纹本身尺寸大很多(2125a b ≤)可不考虑相互作用,按单个裂纹计算.二、无限大平板Ⅱ、Ⅲ型裂纹问题应力强度因子的计算 1.Ⅱ型裂纹应力强度因子的普遍表达形式(无限大板):lim (K Z ξξ→=Ⅱ2.无限大平板中的周期性的裂纹,且在无限远的边界上处于平板面内的纯剪切力作用.τsin()zZ z πτ=sin()()a Z πτξξ+=lim ()K ξξ→⇒==Ⅱ3.Ⅲ型裂纹应力强度因子的普遍表达形式(无限大板):lim ()K ξξ→=Ⅲ4.周期性裂纹:K =§2-2 深埋裂纹的应力强度因子的计算1950年,格林和斯内登分析了弹性物体的深埋的椭圆形裂纹邻域内的应力和应变,得到椭圆表面上任意点,沿y 方向的张开位移为:1222022(1)x z y y a c=--其中:202(1)ay E μσ-=Γ.Γ为第二类椭圆积分.有φϕ= (于仁东书) 1222220[sin ()cos ]a d cπϕϕϕ=+⎰(王铎书)1962年,Irwin 利用上述结果计算在这种情况下的应力强度因子σ原裂纹面11cos ,sin z x ρϕρϕ==又222222221111221x z c x a z a c a c+=⇒+= ⇒ρ=假设:椭圆形裂纹扩展时,其失径ρ的增值r 与ρ成正比.r f ρ= (f 远小于1)r f ρ⇒==边缘上任一点(,)p x z ''',有:1()sin (1)sin (1)x r f f x ρϕρϕ'=+=+=+1()cos (1)z r f z ρϕ'=+=+11(,),(,)p x z p x z '''⇒均在0y =的平面内. 222242222(1)c x a z f a c a c ''''''⇒+=+=⇒新的裂纹面仍为椭圆.长轴(1)c f c '=+,短轴(1)a f a '=+. ⇒y 向位移22002(1)2(1)(1)(1)a f a y f y E E μσμσϕϕ'--+'===+原有裂纹面:222220()1x z ya c y ++=扩展后裂纹面:222220()1x z y a c y '''++='''以1x x '=,1z z '=,代入⇒原有裂纹面的边缘y 向位移y ',有2222211112222222011(1)(1)x z x z y y a c f a f c'=-+=--'''++。
dyna 应力强度因子

dyna 应力强度因子Dyna 应力强度因子应力强度因子是研究材料断裂行为和疲劳寿命的重要参数之一。
在动态加载下,应力强度因子的计算对于分析材料的疲劳寿命和断裂行为具有重要意义。
本文将重点介绍Dyna 应力强度因子的概念、计算方法以及其在工程实践中的应用。
一、概念Dyna 应力强度因子是指在动态加载条件下,应力场中应力的局部最大值与裂纹尖端处的应力强度之比。
它是描述材料断裂行为的重要参数,可以用于预测材料的断裂韧性和疲劳寿命。
二、计算方法计算Dyna 应力强度因子的方法有多种,常用的方法包括应力分析法、能量法和位移法等。
其中,应力分析法是最常用的计算方法之一。
该方法基于弹性理论,通过对裂纹周围应力场的分析,计算得到裂纹尖端处的应力强度因子。
三、应用Dyna 应力强度因子在工程实践中有着广泛的应用。
首先,它可以用于评估材料的断裂韧性。
通过计算Dyna 应力强度因子,可以得到材料在不同加载条件下的断裂韧性参数,进而评估材料的断裂性能。
其次,Dyna 应力强度因子还可以用于预测材料的疲劳寿命。
根据Dyna 应力强度因子和材料的疲劳裂纹扩展速率,可以预测材料在不同加载条件下的疲劳寿命。
此外,Dyna 应力强度因子还可以用于优化工程设计。
通过对Dyna 应力强度因子的计算和分析,可以得到不同结构参数对应的应力分布情况,从而优化工程设计,提高结构的安全性和可靠性。
总结:Dyna 应力强度因子是研究材料断裂行为和疲劳寿命的重要参数,它可以用于评估材料的断裂韧性、预测材料的疲劳寿命以及优化工程设计。
在工程实践中,通过计算和分析Dyna 应力强度因子,可以得到材料在不同加载条件下的断裂性能和疲劳寿命,为工程设计提供科学依据。
因此,研究Dyna 应力强度因子的计算方法和应用具有重要意义。
使用ABAQUS计算应力强度因子

------------------------------------------------------------------------------------------------------- 如何使用ABAQUS计算应力强度因子Simwefanhj(fanhjhj@)2011.9.9------------------------------------------------------------------------------------------------------- 问题描述:以无限大平板含有一贯穿裂纹为例,裂纹长度为10mm(2a),在远场受双向均布拉应力σ=100N/mm2。
按解析解,此I型裂纹计算出的应力=396.23(N.mm-3/2)强度因子πσaK=I以下为使用ABAQUS6.10的计算该问题的过程。
第一步:进入part模块①建立平板part(2D Planar;Deformation;shell),平板的尺寸相对于裂纹足够大,本例的尺寸为100×50(mm)。
②使用Partation Face:sketch工具,将part分隔成如图1形式。
图1第二步:进入property模块①建立弹性材料;②截面选择平面问题的solid,homogeneous;③赋予截面。
第三步:进入Assembly模块不详述。
需注意的是:实体的类型(instance type)选择independent。
第四步:进入mesh模块除小圈内使用CPS6单元外,其它位置使用CPS8单元离散(图2)。
裂纹尖端的奇异在interaction模块中(图4)考虑。
图2第五步:进入interaction模块①指定裂纹special/creak/assign seam,选中示意图3中的黄色线,done!②生成裂纹crack 1,special/crack/create,name:crack 1,type: contour integral.当提示选择裂纹前端时,选则示意图的红圈区域,当提示裂纹尖端区域时选择红圈的圆心,用向量q表示裂纹扩展方向(示意图3绿色箭头)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应力强度因子计算
FRANC3D使用M-积分来计算应力强度因子,M-积分又称为交互积分,与J-积分具有相似的数学表达形式,能考虑温度、裂纹面接触、裂纹面牵引及残余应力等因素的影响,并能实现多工况的应力强度因子的叠加。
FRANC3D对围绕裂纹尖端的两个单元环执行守恒积分计算,积分域包括一个15节点奇异楔形单元的内环和一个20节点六面体单元的外环。
FRANC3D的自适应网格划分技术,还会在裂纹尖端周围布置第三个六面体单元环,但不参与积分计算。
M-积分在FRANC3D中的实现
利用M-积分可同时计算出三种断裂模式的应力强度因子(KI、KII和KIII),其中,KII 用来预测裂纹扭转角度以确定裂纹前缘的扩展方向。
FRANC3D可计算各项同性和一般各向异性材料中的三种模式的应力强度因子,也是目前唯一一款可以计算一般各向异性材料中三种断裂模式应力强度因子的软件。
同时,还能提供J-积分、T-Stress、Kink Angle等断裂力学参数的结果。
FRANC3D计算应力强度因子时可以考虑温度、裂纹面牵引、裂纹面接触以及它们的组合的影响,还提供多种选项来定义结构中的残余应力或初始条件,包括:
●恒定的裂纹面压强载荷
●1维径向分布的残余应力
●2维(轴向和径向)分布的残余应力
●表面处理后的残余应力
●基于网格的残余应力(将有限元应力分析结果映射到裂纹网格上,FRANC3D自动
计算并转换为裂纹面牵引力)
FRANC3D还提供位移法(COD)来计算应力强度因子,也可使用VCCT技术来计算获得能量释放率(GI、GII、GIII)的结果。
计算应力强度因子
FRANC3D可以图形化和以列表形式显示应力强度因子的计算结果,能同时显示K I、K II、K III的结果,同时还能显示J-积分和T-应力的结果,并提供多种选项供用户输出想要的结果和数据格式。
结果显示和输出。