(完整word版)关于减速机高速轴断裂

合集下载

减速机轴断裂原因分析(案例)

减速机轴断裂原因分析(案例)

减速机轴断裂原因分析某煤矿从国外购进的减速机,安装使用30h余后,齿轮减速机轴发生弯曲,无法正常使用,在对弯曲的减速机轴进行冷校直时,轴突然发生断裂。

查阅减速机轴的有关技术资料,该轴采用17CrNiMo6钢制造,轴整体经调质处理后,表面进行中频处理,使轴表面及退刀槽根部洛氏硬度达到59~62HRC。

1理化检验1.1断轴宏观分析断裂位于减速机轴表面退刀槽根部,见图1。

图1轴断裂位置(mm)宏观断口见图2,断口表面有较明显的贝壳状花样,属于典型的疲劳断裂。

断口由疲劳裂源区、裂纹扩展区和瞬间断裂区三个区域组成。

图2宏观断口形貌仔细观察断口裂纹源区,其表面较平坦,尺寸在距表面5mm范围内(图2A处)。

裂纹扩展区贝纹线比较扁平。

瞬间断裂区在裂源的对面,呈椭圆形,断口形貌为纤维状,表明减速机轴主要受旋转弯曲应力。

断口瞬断区域较小、较圆约占整个断口面积的1/6,说明轴整体受力较小,属典型的高周疲劳断裂。

由疲劳区及贝纹线的形态可知,疲劳裂纹扩展过程中两侧较快,说明退刀槽根部有应力集中现象。

1.2断口微观分析用AMRAY21000B型扫描电镜观察样品断口,断裂起源于轴表面退刀槽根部,该处有机加工刀痕,见图3;裂纹扩展区可见疲劳条纹,见图4;瞬断区为细小韧窝。

图3断裂源形貌200×图4裂纹扩展区疲劳条纹400×1.3化学成分分析化学成分分析试样取自断口附近,分析结果(质量分数)列于表1,化学成分符合技术要求。

1.4洛氏硬度检测在断口附近取样,将横截面磨平,从边缘向心部逐点进行硬度测定,结果均在36~37HRC范围内;沿轴的纵向表面测定硬度,结果在38~39HRC范围内。

从硬度结果看出,轴的表面硬度与心部硬度相近,且均低于设计要求。

1.5金相检验在裂源附近取样进行金相分析,非金属夹杂物为A2,B1,D1e(按GB10561-1989评定);晶粒度7.5级(按GB6394-1986评定);疲劳源区及表面与心部显微组织均为回火索氏体,见图5。

浅述减速机高速齿轮轴断裂失效及处理

浅述减速机高速齿轮轴断裂失效及处理

浅述减速机高速齿轮轴断裂失效及处理摘要:减速机是现代企业生产过程中用途比较大的一种机械设备,如果发生故障付给企业生产带来严重损失。

某企业在生产过程中减速机高速齿轮轴出现了断裂现象,针对这一问题相关技术人员进行了专业的检测与分析后,确定了故障原因,进而制定了相应的解决处理措施,恢复了减速机的性能。

关键词:减速机;高速齿轮;断裂;检测;故障某生产企业所用减速机高速轴突然产生早期断裂现象,通过现场查看可知,电机和减速机间的耦合器均已完全脱离,且壳体破碎,其它和这一高速轴一同参与运转的齿轮轴,均在事故产生之后发生不同程度的弯曲变形。

此高速轴属于典型的齿轮轴,发生断裂后齿面依然保持完好,未发生变形与断齿。

现围绕这一减速机高速轴实际情况,对其断裂失效作如下深入分析。

1对高速齿轮轴断裂情况进行检测1.1减速机高速齿轮的基础资料基础资料的收集是进行减速机高速齿轮轴断裂检测工作的重要基础,对后续检测工作的正常开展,以及得到准确的检测结果均有重要作用和意义,应引起相关人员的重视。

此次研究的主要对象为3C710NE型减速机,其速比、输入功率和输入转速分别为1:2.034、710kW和741r/min。

根据生产单位提交的相关工艺图纸,其硬度需要达到59-62HRC的要求[1]。

1.2对齿轮成分的检测对于该减速机,其高速齿轮轴以17CrNiMo6钢为主要原材料,在取样后,用光谱测定仪与碳硫仪进行成分含量测定,测定结果为:碳含量0.18%、锰含量0.57%、硅含量0.27%、磷含量0.011%、硫含量0.003%、铬含量1.73%、镍含量1.55%、钼含量0.28%。

通过对相关资料的查证可知,该原材料为德国牌号,成分方面的技术要求为:碳含量在0.15~0.19%范围内、锰含量在0.40~0.60%范围内、硅含量在0.15~0.40%范围内、磷含量不得小于0.025%、硫含量不得小于0.025%、铬含量在1.50~1.80%范围内、镍含量在1.40~1.70%范围内、钼含量在0.25~0.35%范围内。

图解减速机高速轴断裂的5个原因分析及7个预防措施

图解减速机高速轴断裂的5个原因分析及7个预防措施

图解减速机高速轴断裂的5个原因分析及7个预防措施在生产实践经验得知,硬齿面减速机高速轴很容易发生断裂,如某国外减速机的高速轴经常在两处发生断裂:图1 减速机高速轴断裂实例一处在联轴器同高速轴的配合端面部位:图2 断轴A另一处在轴承同轴的配合端面部位:图3 断轴B1. 减速机高速轴断裂原因图4 断轴A的断口这是高速轴断裂的A断口形貌,从图中可以看到疲劳源位于键槽底部的尖角处。

断口具有疲劳源区、疲劳扩展区和静断区,高速轴是典型的疲劳断裂。

图5 断轴B的断口这是高速轴断裂的B断口形貌,这也是一个疲劳断裂断口,静断区很小,说明轴中的名义应力并不大。

断裂轴的断口特征:•断口是疲劳断口,轴是疲劳断裂。

•轴的断裂部位大部分正好位于联轴器与轴过盈配合的边缘处。

•最早的疲劳裂纹大都发生在平键键槽的尖角处或过渡圆角处。

•轴的断口垂直于轴的轴线,基本上是一种高强度钢弯曲扭转型断口。

正常情况下,减速机高速轴通常仅承受转矩作用。

对以往多次断轴案例进行疲劳强度计算结果表明,疲劳强度安全系数通常可达2以上,高速轴应该是安全的,轴不可能断裂。

经检查轴的材料、热处理质量也都符合技术要求。

但是,高速轴还是经常断裂,可以说是减速机的多发病了!原因一:键槽的应力集中观察很多带键槽的断轴断口,可以看到最早的疲劳裂纹往往发生在平键键槽尖角处,很明显键槽的应力集中和轴的截面面积减小影响了轴的强度。

特别是键槽底部的圆角r(图6)对应力集中的影响很大。

图中所示是某矿用减速机高速轴的键槽,键槽底部的圆角r就很小,加大了键槽的应力集中。

图6 带键槽的断轴断口轴受纯扭转时,键槽和配合边缘处的有效应力集中系数Kτ见图7所示。

当轴的抗拉强度Rm=900MPa时,键槽的有效应力集中系数Kτ=2。

因此键槽对轴的削弱是很大的。

图7 过盈连接的应力集中和接触应力分布原因二:联轴器同轴的过盈配合当轴断裂部位正好是联轴器同轴过盈配合的边缘处,过盈配合对轴的强度影响很大。

减速机高速齿轮轴断裂失效分析 杨尚兵

减速机高速齿轮轴断裂失效分析     杨尚兵

减速机高速齿轮轴断裂失效分析杨尚兵摘要:为了让减速机能够更好的为我们的生产服务,在日常维护过程中,要严格的按照相关注意要点去对减速机的各部分进行认真维护和保养,同时也要避免通气孔出现断齿断轴等现象,而且要对容易积累污垢的死角进行认真清洁,这样对延长减速机使用寿命,提高工作效率具有重要的意义。

关键词:减速机;高速齿轮轴;断裂失效引言:减速机是一种在工业生产中较为常见的设备,被广泛的应用于煤炭工程、机械工程等多个领域当中,减速机在生产中的应用有效提升了生产力。

但是减速机高速齿轮在应用当中经常会发生轴断裂的现象,从而导致生产无法有效进行。

为了避免减速机高速齿轮轴断裂现象对以下进行了分析。

1 失效原因分析1.1 轴的失效在附加载荷作用下,轴的挠度和扭转角增大,将引起弯曲应力和扭转应力增加,加快轴的疲劳失效,随着时间的推移,造成轴的弯曲和扭转变形。

同时,轴颈和轴承内圈形成边缘接触式运转,接触面积减小,加快轴颈的磨损。

1.2 轴承引起的失效齿轮减速器使用的轴承为滚动轴承,主要失效形式有疲劳点蚀、磨损和塑性变形。

疲劳点蚀是滚动体和内外圈接触处受脉动循环应力的作用产生的;磨损是滚动体和内外圈相互摩擦运动、点蚀剥落下来的金属微粒进入摩擦表面、润滑不良等原因造成的;塑性变形是轴承受过载或过大的冲击载荷,使轴承元件永久变形产生的。

1.3 断口原因分析带式输送机使用中,用来输送物料,物料从料斗中掉落在带式输送上,所以带式输送机载荷一直是在变化的,同时带式输送机因工作需要随时停止和启动,存在重载启动现象。

经现场人员调查测量,现场其他同批带式输送机安装存在问题,驱动轴安装同心度存在超差。

结合试验,该高速轴工作时除受到扭力外,还受到由于安装不同心造成的较大旋转弯曲力,同时存在重载启动现象。

致使该轴受到较大的额外应力,在表面过早产生疲劳裂纹源,随着时间的推移,该轴在工作中受到不断变化载荷影响,疲劳裂纹不断扩大,直至最终断裂。

2 减速机高速齿轮轴断检测结果的分析和研究2.1 端口宏观相貌的观察结果减速机高速齿轮轴最容易发生断裂的位置就是轴和轴之间的结构过渡位置和连接位置。

减速机高速齿轮轴断齿及断轴的分析与对策

减速机高速齿轮轴断齿及断轴的分析与对策

减速机高速齿轮轴断齿及断轴的分析与对策作者:李刚来源:《科学与财富》2018年第22期摘要:通过对回转窑主减速机高速齿轮的断齿和断轴进行详细的分析和计算,从而帮助大家真正找出事故的原因所在和相关的错误,并及时地提出相应的改进措施,以便更好地避免同类的事故再次发生,并在最后保证生产正常有序地进行。

关键词:减速机;高速齿轮;齿轮轴断齿;齿轮轴断轴;策略分析引言:减速机的高速齿轮断轴和高速齿轮断齿本身对于回转窑的正常运转都有着非常重要的作用和影响力。

因此,如果想要保证企业能够始终正常维持生产,从而使得其经济效益有所提升,那么就一定要对减速机的高速齿轮断轴和高速齿轮断齿的原因和对策进行全面的分析,这样才能够保证之后所有的生产都能够更好地进行。

1.回转窑结构示意在炼钢的过程中,活性石灰是非常重要的造渣材料,其本身也是一种非常活泼和反应能力强的材料,从长远的角度来看,活性石灰也在烧结中占据着非常重要的地位[1]。

某公司总共布置了4条回转窑,其规格为4m*60m。

其中第一期的两条石灰于2015年建造投入使用,其所生产的活性石灰为转炉炼钢的重要材料,其规格大于5mm,而被用作烧结的石灰大都小于3mm。

整个回转窑的结构主要又筒体、支撑装置、传动装置、窑尾、密封窑头和窑头罩子组成。

其主要的特点包括:第一,整体采用的是与制造规模相适应的直径和长度都比较适中的窑型;第二,在主传动的过程中,采用的是调速电机来进行加工,并在工作的过程中设有辅助的电机,整体工作稳定且灵活;第三,整个窑头和窑尾都设有完整的密封结构,不仅密封效果非常好,而且结构也不复杂。

整个回转窑的示意图如下图所示:2.相关参数与断齿断轴的情况某企业采用了YSNP255M2-6型号的回窑主转机,其内部额定功率为16kW,内部转速为980r/min。

辅助传动电器的额定功率为18.6kW,平均转速为1480r/min。

此外,该企业采用了YNS1240-80VIBD-L型号的减速机,中心距为1240mm,整体速度比为80。

断轴关键在分析原因

断轴关键在分析原因

断轴关键在分析原因减速机高速轴断裂是一种经常会出现的严重事故,导致的原因也有多种,或者是由几种因素共同导致的结果。

常见的原因有如下几种:1.耦合器选型偏大,减速机选型偏小,使得减速机高速轴承担的径向荷载较大;2.耦合器平衡有问题,在高速旋转时给减速机和电机轴施加了较大的交变附加荷载;3.减速机高速轴轴材质、热处理的问题-存在内应力或裂纹;4.驱动单元组装或运输过程中甚至是驱动装置底座基础不平焊接后使底座变形导致电机轴和减速机轴的同心度超差;5.设备使用过程中的野蛮操作和维护不到位也可能造成设备的损坏......因此,仅从减速机高速轴断裂的表面现象还不能准确的判断原因所在,需根据实际情况进行分析:1.根据胶带机的参数校核部件的选型:胶带机轴功率、电机功率、电机转速-看耦合器规格、减速机额定功率和使用系数等参数,检验部件选型是否正确;2.了解胶带机工作过程中的噪音、震动、设备温升等情况,看是否存在耦合器平衡问题、电机轴和减速机轴不同心等问题;3.可以从中控室调取该胶带机的电流记录,反算胶带机的实际消耗功率,看是否存在严重超载或其它原因导致的减速机服务系数不够的情况;4.查看安装调试记录或安装指导书,看该耦合器内所加液体量是否过多,导致启动曲线过硬同时增加了减速机轴的径向荷载。

关于驱动单元的一点建议:1.设备部件规格并非越大越有利,尤其是耦合器的规格常参考电机功率,目前好多设计院在计算胶带机功率时的系数选择很保守,导致耦合器规格偏大;2.目前SEW、FLENDER公司的竞争也非常激烈,所以在设备选型时的服务系数裕度不大,尤其是电厂胶带机的工作条件相对较好的情况下,其服务系数更小,导致高速轴很细;3.耦合器作为传递扭矩的联轴器,其重心靠近减速机侧,这对难以承受径向力的减速机高速轴不利(部分厂家采取将耦合器反装的方法来改善该矛盾,但会破坏耦合器的功率传递曲线,使耦合器充油量与传递功率偏离说明书给出的曲线);4.胶带机安装调试说明书和运行维护手册中应强调指出:严格控制每条胶带机耦合器的充油量,并根据功率曲线给出具体数值,保证胶带机启动曲线的平滑同时控制轴端的径向荷载;5.电机轴可承受径向荷载,减速机高速轴一般不承担径向荷载,所以电机轴的直径要比减速机轴颈粗,再加上进口材料的性能较好,使得减速机高速轴的直径更细,因此在与减速机厂家签订技术协议时一定要明确:耦合器的重量由减速机和电机共同承担,以避免断轴事故发生时减速机厂家推诿责任(实际上减速机不承担耦合器重量是无法实现的,目前耦合器的正确安装方发就是将重型靠近减速机侧);6.减速机的具体选型型规格建议由减速机厂家来确定,胶带机厂家要提供正确的轴功率、电机功率、速比等选型所必须的参数,以引起减速机厂家在选型时的重视程度-避免因竞争激烈,人为降低设备规格的情况发生;7.在设备安装调试结束后,转交业主和培训的过程中一定明确设备的正常使用要求,严禁超载并进行正常的维护和巡检,从使用和维护的角度避免断轴等恶性事故的发生-设备是否正常只有使用者才最清楚!这个问题已经讨论了一年多了,大家还在关心和热议。

减速机高速齿轮轴断裂失效分析

减速机高速齿轮轴断裂失效分析

减速机高速齿轮轴断裂失效分析摘要:本文通过分析减速机高速轴位置的断口的宏观上的特性,及表面的金相组织,化学成分以及硬度等方面的物理性质加以观察和分析,同时进行相关的测试。

由实验所得数据结果显示出,减速机的高速轴并未按照图纸上的要求选用42crmo钢;在使用之前也没有按照所规定的进行调制处理。

由于键槽并未按照规定的位置设计以及原材料组织上的缺陷导致其发生早期断裂现象而导致最终失效。

关键词:高速轴;魏氏体组织;;断裂;失效中图分类号:tg115 文献标识码:a 文章编号:1674-7712 (2013)02-0151-01在某工厂二辊压机构中的减速机高速轴上线运行13天后出现了断裂的现象。

在之前给出的图纸样例中提到了,这个轴的制造图纸上对于原材料的要求是42crmo锻钢,硬度为270~300hb,调质热处理。

同时还要对端口位置的宏观上的形态,金相组织,物理性质如硬度以及化学成分等进行相应的观察和测试,进而为今后这类轴零件的生产量的提升,以及在具体应用时候的使用提供有效的理论参考。

进而防止断裂一类的事件发生。

一、对于检测结果的分析和研究(一)端口宏观相貌的观察结果。

轴同轴间的过渡和链接的位置是减速机高速轴发生断裂的最主要的地方。

此处直径大小发生突变,最为关键的是这是轴的直径最小的地方。

结构圆角的常见现象由于截面形状的变化以及轴间和轴的相交位置的几何关系处于垂直的状态而导致必将会出现的应力集中现象。

端口经常见到的形貌特点便是具有很高的脆性以及较为平整,例如一种极为常见的是扭转应力所导致的断裂口。

只有受力的地方才是裂纹出现的根源,及轴键槽的受力的一面。

应力的大小和半径的大小呈现反比的关系,也就是说半径较小的地方应力则很大。

半径最小的便是轴键槽的根部位置,在此处经常出现应力集中地现象从而承受很大的拉应力;如果不进行强化处理就会提高出现裂纹(这种裂纹是由于疲劳产生的),对于轴类具有很强的破坏性,出现提前失效,很大程度上减少了其寿命。

煤磨主减速机高速轴断裂的分析和处理

煤磨主减速机高速轴断裂的分析和处理

煤磨主减速机高速轴断裂的分析和处理摘要:我国经济水平和我国煤矿行业的快速发展,煤矿产业中常见的皮带运输机在实际使用时会发生故障,如减速机输入轴断裂,这种故障是煤矿用皮带机故障中最常见也是最严重的故障,对煤矿开采人员的生命安全有严重影响。

在煤矿作业时,导致减速机断轴的因素较多,为此,需结合煤矿设施情况与皮带机的应用实践,进行断轴原因的分析,并采取改进措施,降低减速机断轴问题的发生几率。

关键词:减速机;高速轴;断裂;过盈对接引言减速机是一种由封闭在刚性壳体内的蜗杆传动、齿轮传动、齿轮-蜗杆传动所组成的独立部件。

减速机是一种相对精密的机械,常作为原动件与工作机之间的减速传动装置。

一般说来,减速机在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,使用它可以降低转速,增加转矩。

按照传动的布置形式又可分为展开式、分流式和同进轴式减速机;按照传动级数不同可分为单级和多级减速机;按照齿厂轮形状可分为圆柱齿轮减速机、圆锥齿轮减速机和圆锥-圆柱齿引轮减速机。

1减速机概述减速机是煤矿生产中最重要的设备,从某种程度上来说,减速机的运行状况直接影响着煤矿生产的稳定性与安全性,如果减速机运行中出现各种故障或者其他问题,将直接影响着煤矿生产的运行状况,进而威胁着人们的生命财产安全。

具体来说,减速机指的是一种以多种形式的将能源转化成电能的机械设备,在当前社会中,减速机被广泛应用到各个行业中,比如农业生产建设、国防、科技以及日常生活中。

减速机的内部结构十分复杂,主要是由原动机、压缩机机以及其他动力机械驱动组成的,其工作原理主要是根据电磁力和电力感应定理,借助对空气施加压力来提升气体的运行速度,并且通过导电材料和电磁感应进行电路和磁路的相互交换,以此达到能源转换,满足不同领域的需求。

伴随着空气动力学研究的不断深化以及科学技术的不断发展,减速机的应用范围进一步扩大,减速机能够将气体沿着一定方向流向叶轮的压缩机当中,总之,减速机是一种转换能量与压力的一种机械设备,因此,探究减速机的断齿原因以及检修管理具有现实意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于减速机高速轴断裂
一、不同心出现的断轴问题
有的用户在设备运行一段时间后,驱动电机的输出轴断了。

为什么驱动电机的输出轴会扭断?当我们仔细观查驱动电机折断的输出轴横断面,会发现横断面的外圈较明亮,而越向轴心处断面颜色越暗,最后到轴心处是折断的痕迹(点状痕)。

这一现象大多是驱动电机与减速机装配时两者的不同心所致。

当驱动电机和减速机间装配同心度保证得较好时,驱动电机输出轴所承受的仅仅是转动力(扭矩),运转时也会很平顺,没有脉动感。

而在不同心时,驱动电机输出轴还要承受来自于减速机输入端的径向力(弯矩)。

这个径向力的作用将会使驱动电机输出轴被迫弯曲,而且弯曲的方向会随着输出轴转动不断变化。

如果同心度的误差较大时,该径向力使电机输出轴局部温度升高,其金属结构不断被破坏,最终将导致驱动电机输出轴因局部疲劳而折断。

两者同心度的误差越大时,驱动电机输出轴折断的时间越短。

在驱动电机输出轴折断的同时,减速机输入端同样也会承受来自于驱动电机输出轴方面的径向力,如果这个径向力超出减速机输入端所能承受的最大径向负荷的话,其结果也将导致减速机输入端产生变形甚至断裂或输入端支撑轴承损坏。

因此,在装配时保证同心度至关重要!
从装配工艺上分析,如果驱动电机轴和减速机输入端同心,那么驱动电机轴面和减速机输入端孔面间就会很吻合,它们的接触面紧紧相贴,没有径向力和变形空间。

而装配时如果不同心,那么接触面之间就会不吻合或有间隙,就有径向力并给变形提供了空间。

同样,减速机的输出轴也有折断或弯曲现象发生,其原因与驱动电机的断轴原因相同。

但减速机的出力是驱动电机出力和减速比之积,相对于电机来讲出力更大,故减速机输出轴更易被折断。

因此,用户在使用减速机时,对其输出端装配时同心度的保证更应十分注意!
二、减速机出力太小出现的断轴问题
如果不是驱动电机轴断,而是减速机的输出轴折断,除了减速机输出端装配同心度不好的原因以外,还会有以下几点可能的原因。

首先,错误的选型致使所配减速机出力不够。

有些用户在选型时,误认为只要所选减速机的额定输出扭矩满足工作要求就可以了,其实不然。

一是所配驱动电机额定输出扭矩乘上速比,得到的数值原则上要小于减速机产品样本提供的相应额定输出扭矩;二是同时还要考虑其驱动电机的过载能力及实际应用中所需最大工作扭矩。

理论上,用户所需最大工作扭矩一定要小于减速机额定输出扭矩的2倍。

尤其是有些应用场合必须严格遵守这一准则,这不仅是对减速机内部齿轮和轴系的保护,更主要的是避免减速机的输出轴被扭断。

如果没有考虑到这些因素,一旦设备安装有问题,减速机的输出轴被负载卡住,这时驱动电机的过载能力依然会使其不断加大出力,直到减速机的输出轴所承受的力超过其最大输出扭矩,轴就会扭断。

如果减速机额定输出扭矩有一定的裕量,那么扭断输出轴的槽糕情况就会避免。

其次,在加速和减速的过程中,减速机输出轴所承受瞬间的冲击扭矩如果超过了其额定输出扭矩的2倍,并且这种加速和减速又过于频繁,那么最终也会使减速机断轴。

如果有这种情况出现,应仔细计算考虑加大扭矩裕量。

三、减速机的正确安装
正确的安装、使用和维护减速机,是保证机械设备正常运行的重要环节。

因此,在您安装行星减速机时,请务必严格按照下面的安装顺序,认真地装配。

第一步:安装前应确认电机和减速机是否完好无损,并且严格检查驱动电机与减速机相连接的各部位尺寸是否匹配。

这里指的是驱动电机法兰的定位凸台和轴径与减速机法兰的定位凹槽和孔径间的尺寸及配合公差;擦拭处理配合表面的污物与毛刺。

第二步:旋下减速机法兰侧面的工艺孔上的螺堵,旋动减速机的输入端,使抱紧内六角螺钉帽与工艺孔对齐,插入内六角工具旋松抱紧内六角螺钉。

第三步:手持驱动电机,使其轴上之键槽与减速机输入端孔抱紧螺钉垂直,将驱动电机轴插入减速机输入端孔。

插入时必须保证两者同心度一致和二侧法兰平行。

如同心度不一致或二侧法兰不平行必须查明原因。

另外,在安装时,严禁用锤击,即可以防止锤击的轴向力或径向力过大损坏两者轴承,又可以通过装配手感来判断两者配合是否合适。

判断两者配合同心度和法兰平行的方法为:两者相互插入后,两者法兰基本贴紧,缝隙一致。

第四步:为保证两者法兰连接受力均匀,先将驱动电机紧固螺钉任意旋上,但不要旋紧;然后按对角位置逐渐旋紧四个紧固螺钉;最后旋紧减速机输入端孔抱紧螺钉。

一定要先旋紧驱动电机紧固螺钉后再旋紧减速机输入端孔抱紧螺钉。

注意:减速机与机械设备间的正确安装类同于减速机与驱动电机间的正确安装。

关键是要必须保证减速机输出轴与所驱动部分输入轴同心度的一致。

相关文档
最新文档