关于初中毕业班数学综合测试试题
中考冲刺--初中毕业班综合测试(一)数学试题

2010年南沙区初中毕业综合测试(一)试题数学一、选择题(每小题3分,共30分)1.5-的相反数是(※).A.15B.5-C.5D.15-2.1亿可记作108,如果每人每天浪费0.01千克粮食,我国13亿人每天就浪费粮食(※)A.1.3×108千克B.1.3×107千克C.1.3×106千克D.1.3×105 千克3.我区某街道进行街边人行道路翻新,准备选用同一种正多边形地砖铺设地面.下列正多边形的地砖中,不能进行平面镶嵌的是(※).A.正三角形B.正方形C.正五边形D.正六边形4.下列运算正确的是(※)A.1243xxx=∙ B.623(6)(2)3x x x-÷-=C.22(2)4x x-=- D.23a a a-=-5.关于x的一元二次方程0122=+-xx根的情况是(※).A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定6. 在下面的四个几何体中,它们各自的左视图与主视图可能不相同的是( * )正方体长方体圆柱圆锥A B C D7.下列命题中,真命题是( ※ ).A .同位角相等B .内错角相等C .同旁内角互补D .对顶角相等8.如图,已知直线 25,115,//=∠=∠A C CD AB , 则=∠E ( ※ ).A .70ºB .80ºC . 90ºD .100º9. Rt ABC △中,90C ∠=,8AC =,6BC =,两个相等的圆⊙A,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( ※ )A .254π B .258π C .2516π D .2532π 10.如图,有一张直角三角形纸片,两直角边6AC cm =,9BC cm =,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 等于( )cm .A 、254B 、223C 、74D 、25第二部分 非选择题 (共120分)二、填空题(每小题3分,共18分) 11.在函数y x 的取值范围是 *** .12.方程121x x =+的解是 *** . 13.如果反比例函数的图象经过点(-3,2),那么这个函数的解析析式是 *** . 14.分解因式: 24x -= *** 。
初中数学毕业考试卷加答案

一、选择题(每题2分,共20分)1. 下列数中,哪个是整数?A. √4B. 2.5C. -√9D. 0.32. 一个长方形的长是8cm,宽是4cm,它的周长是多少?A. 20cmB. 24cmC. 32cmD. 16cm3. 下列方程中,哪个方程的解是x=3?A. 2x + 1 = 7B. x - 2 = 1C. 3x = 9D. 4x + 2 = 124. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 105. 下列图形中,哪个是轴对称图形?A. 等腰三角形B. 长方形C. 正方形D. 梯形6. 一个等腰三角形的底边长是10cm,腰长是8cm,这个三角形的面积是多少?A. 40cm²B. 50cm²C. 60cm²D. 80cm²7. 下列数中,哪个是有理数?A. √2B. πC. -1/3D. 无理数8. 一个圆的半径是5cm,它的周长是多少?A. 15πcmB. 25πcmC. 30πcmD. 35πcm9. 下列代数式中,哪个是单项式?A. 3x + 2yB. 4x² - 3xy + 5y²C. 2x³D. 3x + 4y - 5z10. 下列图形中,哪个是旋转对称图形?A. 正方形B. 等边三角形C. 矩形D. 圆二、填空题(每题2分,共20分)11. 2的平方根是______。
12. 一个等腰三角形的腰长是6cm,底边长是8cm,这个三角形的面积是______cm²。
13. 若a = 3,则a² + a = ______。
14. 一个数的倒数是1/5,这个数是______。
15. 下列方程的解是x = 2,方程是______。
16. 下列图形中,轴对称轴是______。
17. 下列代数式中,单项式是______。
18. 一个圆的直径是10cm,它的半径是______cm。
19. 下列数中,有理数是______。
初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案一、压轴题1.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.2.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)3.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON 的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).4.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?5.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值. 6.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+;(2)当1-≤2x <时,原式()()123x x =+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ;(2)化简式子324x x -++.7.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示).(4)直接写出点B 为AC 中点时的t 的值.8.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______;(2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.9.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒.(1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.10.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.11.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S 表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n 的式子列式,并计算第n 个图的钢管总数.12.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3.问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.13.已知线段30AB cm(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.14.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.15.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
初中毕业考数学试卷及答案

一、选择题(每题4分,共40分)1. 已知函数f(x) = x^2 - 2x + 1,则f(3)的值为()A. 4B. 5C. 6D. 7答案:A解析:将x=3代入函数f(x) = x^2 - 2x + 1,得到f(3) = 3^2 - 23 + 1 = 4。
2. 下列哪个数是负数?()A. -1/2B. 0C. 1/2D. 2答案:A解析:负数是小于0的数,只有A选项的-1/2是负数。
3. 已知等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 20cmB. 22cmC. 24cmD. 26cm答案:C解析:等腰三角形的两腰相等,所以周长=底边长+两腰长=6cm+8cm+8cm=24cm。
4. 下列哪个图形是轴对称图形?()B. 长方形C. 等腰三角形D. 等边三角形答案:A解析:轴对称图形是指通过某条直线将图形分成两部分,两部分完全重合。
正方形满足这个条件。
5. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解为()A. x1=2,x2=3B. x1=3,x2=2C. x1=-2,x2=-3D. x1=-3,x2=-2答案:A解析:通过因式分解或配方法解得方程的解为x1=2,x2=3。
二、填空题(每题5分,共50分)6. 若a+b=5,ab=6,则a^2+b^2的值为______。
答案:37解析:根据公式(a+b)^2 = a^2 + 2ab + b^2,可得a^2+b^2 = (a+b)^2 - 2ab = 5^2 - 26 = 25 - 12 = 13。
7. 在直角三角形ABC中,∠A=90°,∠B=30°,则sinC的值为______。
答案:√3/2解析:在直角三角形中,sinC = 对边/斜边。
∠C=90°-∠B=60°,所以sinC = √3/2。
8. 若一个正方形的边长为a,则该正方形的面积为______。
解析:正方形的面积=边长×边长=a×a=a^2。
2024年福建省莆田市初中毕业班质量检查数学试卷 和答案

2024年莆田市初中毕业班质量检查试卷数学(满分150分;考试时间:120分钟)友情提示:本试卷分为“试题”和“答题卡”两部分,答题时,请按答题卡中的“注意事项”认真作答,答案写在答题卡上的相应位置。
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.小华5月份体重增长2kg,记作+2kg.小颖体重减少1kg,记作A.+1kg B.-1kg C.-2kg D.-3kg2.2024年2月17日,全球首架C919大型客机从上海起飞参加第九届新加坡国际航空航天与防务展.商飞C919是中国首款按照国际通行适航标准自行研制、具备自主知识产权的喷气式中程干线客机.如图是C919大型客机的实物图,其俯视图是A.B.C.D.3.在2023中国正能量网络精品征集展播活动中,《16频道》以世界听得懂、看得见的表达方式,讲述海军故事,诠释了人类命运共同体理念.海外传播量超过3000万次,数据3000万用科学记数法表示是A.3000×104B.3×106C.3×107D.3×1084.红团是莆田的特色小吃,在以下红团图案中,既是中心对称图形,又是轴对称图形的是A.B.C.D.5.下列运算结果为x3的是A.x+x2B.x4-x C.x·x2D.x6÷x26.将一块含30°角的直角三角板ABC按如图方式放置在A4纸片上,其中点A,B分别落在纸片边上.若∠1=105°,则∠2的度数为A.15°B.60°C.65°D.75°7.若a =20242-2023×2024,2024420252⨯-=b ,20222024⨯=c ,则a ,b ,c 的大小关系是A .a <b <cB .a <c <bC .b <c <aD .c <b <a8.用一张正方形纸板,制成一副七巧板,如图1.在矩形区域内将它拼成一幅“火箭”图案,如图2.若在矩形区域内随机取点,则这个点落在“火箭”图案部分的概率为A .12B .22C .47D .389.如图,在Rt △ABC 中,∠ACB =90°,∠B =60°,求作∠ACB 的三等分线.阅读以下作图步骤:(1)分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧分别交于点D ,E ,作直线DE交AB 于点F ,交AC 于点H ,画射线CF ;(2)以点C 为圆心,适当的长为半径画弧,交BC 于点M ,交CF 于点N ;(3)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠BCF 的内部交于点G ,画射线CG ,则射线CF ,CG 即为所求.下列说法不正确的是A .AF =CF B .12FH CH=C .CG ⊥ABD .△BCF 为等边三角形10.为了解全班学生的身高情况,王老师测量了班上在场学生的身高,经计算后发现男生的平均身高是170cm ,女生的平均身高是160cm ,当天有两名学生缺课.第二天这两名学生均到校上课,老师也测量了他们的身高.有趣的是,重新计算后全班男、女生的平均身高都不变.下列说法正确的是A .全班学生的平均身高不变B .缺课的两名学生身高相同C .若缺课的两名学生都是男生,则身高都是170cmD .若缺课的学生是男、女生各一名,则男生身高170cm ,女生身高160cm 二、填空题:本大题共6小题,每小题4分,共24分。
2023黄埔区一模试卷及评分标准

2023年黄埔区初中毕业班综合测试(一)数学参考答案及评分标准第1页共12页2023年黄埔区初中毕业班综合测试(一)数学参考答案及评分标准(讨论稿)1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题3分,满分30分.二、填空题:本大题考查基础知识和基本运算.共6小题,每小题3分,满分18分.题号111213141516答案(3)m m +22x y =⎧⎨=-⎩15π乙381第16题:取BC 中点S ,连接AS 、AM ,易证△ABD 与△ASM 相似, 45=∠=∠∴ASM ABD ,所以点M 在ASC ∠的角平分线上运动,MN 最小值即为N 到该直线的距离,易求得为1.类题演练:16.在梯形ABCD 中,9022=∠==DAB ,CD AB ,CD //AB ,△ABC 为等边三角形,点M 为AB 直线上的动点,以线段CM 为边在其上方作等边△CMN (如图),连接DN ,则线段DN 的最小值为*.题号12345678910答案B B D B C D A A B D2023年黄埔区初中毕业班综合测试(一)数学参考答案及评分标准第2页共12页易知△ACM 与△BCN 全等, 60=∠=∠∴CBN CAM ,所以点N 在直线BN (设该直线与DA 延长线交于E )上运动,且 60=∠=∠ABE NBM ,DN 最小值即为D 到直线BN 的距离DF.在Rt △ABE 中AB=2,可得AE=32;在Rt △DEF 中DE=33, 30=∠BED ,可得DF=233.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分4分)解:解不等式①得:x ≤2,……………………1分解不等式②得:x >1,……………………2分∴不等式组的解集是:1<x ≤2.……………………4分【点评】本题考查了一元一次不等式组的解法18.(本题满分4分)方法一:∵四边形ABCD 是菱形,∴∠B =∠D,BC=CD .……………………………………………1分∵CE ,CF 是边AB 、AD 上的高,∴∠BEC =∠DFC=90°.……………………………………………2分在△BEC 和△DFC 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CD BC D B DFC BEC ∴△BEC ≌△DFC (AAS ).…………………………………………3分∴BE =DF .…………………………………………………………4分2023年黄埔区初中毕业班综合测试(一)数学参考答案及评分标准第3页共12页方法二:∵四边形ABCD 是菱形,∴AB =BC=CD=AD .…………………………………………………1分∵CE ,CF 是边AB ,AD 上的高,∴CF AD CE AB S ABCD ⋅=⋅=菱形,∠BEC =∠DFC=90°.即CE =CF …………………………………………………………2分在Rt△BEC 和Rt△DFC 中,⎩⎨⎧==CFCE CDBC ∴Rt△BEC ≌Rt DFC (HL ).………………………………………3分∴BE =DF .…………………………………………………………4分方法三:∵四边形ABCD 是菱形,∴AB =BC=CD=AD .…………………………………………………1分∵CE ,CF 是边AB ,AD 的高,∴CF AD CE AB S ABCD ⋅=⋅=菱形,∠BEC =∠DFC=90°,即CE =CF .…………………………………………………………2分在Rt△BEC ,Rt△DFC 中,由勾股定理得:2222CF CD DF CE BC BE -=-=,,…………………………3分∴BE =DF .…………………………………………………………4分说明:几何表述过程不唯一,其他答案可参考以上评分标准给分。
初三数学综合测试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 已知等腰三角形底边长为8cm,腰长为10cm,则其面积为()A. 32cm²B. 40cm²C. 48cm²D. 80cm²3. 下列函数中,一次函数是()A. y = 2x² - 3x + 1B. y = √x + 1C. y = 2x + 3D. y = 3/x4. 已知一元二次方程x² - 5x + 6 = 0,则其解为()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = 6, x₂ = 1D. x₁ = 1, x₂ = 65. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)6. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 4,7,10,137. 若直角三角形的两条直角边长分别为3cm和4cm,则斜边长为()A. 5cmB. 6cmC. 7cmD. 8cm8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a² > b²D. 若a > b,则ac > bc9. 已知正方形的边长为a,则其对角线长为()A. aB. √2aC. 2aD. a√210. 在等腰三角形ABC中,若底边BC=8cm,腰AB=AC=10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm二、填空题(每题4分,共40分)11. 分数 3/4 与 -1/2 的差是 ________。
初中毕业测试题数学pdf及答案
初中毕业测试题数学pdf及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 0.1252. 一个等腰三角形的底角是45°,那么它的顶角是多少度?A. 45°B. 90°C. 60°D. 75°3. 已知一个数列的前三项为1,2,3,第四项是?A. 4B. 5C. 6D. 74. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π5. 一个长方体的长、宽、高分别是3厘米、4厘米、5厘米,那么它的体积是多少立方厘米?B. 120C. 180D. 2406. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = x/2D. y = x^3 - 27. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 108. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 3D. 以上都是9. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?A. 14B. 17C. 20D. 2310. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的斜边是多少厘米?B. 6C. 7D. 8二、填空题(每题3分,共30分)1. 一个数的平方根是2,那么这个数是______。
2. 一个数的立方根是8,那么这个数是______。
3. 一个数的倒数是1/4,那么这个数是______。
4. 一个数的绝对值是3,那么这个数可能是______或______。
5. 一个等差数列的首项是1,公差是2,那么它的第三项是______。
6. 一个等比数列的首项是2,公比是3,那么它的第四项是______。
7. 一个直角三角形的两条直角边分别是5厘米和12厘米,那么它的斜边是______厘米。
8. 一个圆的直径是10厘米,那么它的周长是______厘米。
初三毕业班数学试题及答案
初三毕业班数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…(循环)B. πC. √2D. 1/3答案:C2. 如果一个二次方程的解为x1 = 2和x2 = -3,那么这个方程可以表示为:A. x^2 - 5x + 6 = 0B. x^2 + 5x - 6 = 0C. x^2 - 5x - 6 = 0D. x^2 + 5x + 6 = 0答案:A3. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 下列哪个表达式是正确的?A. (-2)^3 = -8B. (-2)^4 = 16C. (-2)^5 = 32D. (-2)^6 = -64答案:A5. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不等边三角形答案:B6. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 10答案:A7. 一个多项式P(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. x = 1, 2, 3B. x = 2, 3, 4C. x = -1, 2, 5D. x = 1, 3, 5答案:B8. 一个正方体的体积是27立方厘米,它的棱长是:A. 3厘米B. 6厘米C. 9厘米D. 12厘米答案:A9. 如果函数f(x) = 2x - 3,那么f(5)的值是:A. 7B. 10C. 12D. 14答案:A10. 下列哪个选项不能表示一个函数?A. y = x^2B. y = √xC. y = |x|D. y = x + 1/x答案:D二、填空题(每题2分,共20分)11. 一个数的平方根是2,这个数是________。
答案:412. 如果一个数的立方是-8,那么这个数是________。
答案:-213. 一个直角三角形的两条直角边分别是3和4,斜边的长度是________。
2022年莆田市初中毕业班质量检查数学试卷与答案
2022年莆田市初中毕业班质量检查数学试卷(满分150分;考试时间:120分钟)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若(-2022)×□=1,则“□”内应填的实数是A .-2022B .2022C .20221-D .202212.(a 2)3可以表示成A .3个a 2相加B .5个a 相乘C .2个a 3相加D .3个a 2相乘3.某立体图形的表面展开图如图所示,这个立体图形是A .B .C .D .4.北京冬奥吉祥物冰墩墩集中国文化的精华和特色于一身,成为中国北京2022年冬奥会的杰出大使.如图,将“冰墩墩”图标放在平面直角坐标系中,已知鼻子所在点P 的坐标是(2,3),将“冰墩墩”图标向右平移1个单位,向下平移2个单位,则点P 的对应点坐标是A .(0,2)B .(3,5)C .(1,1)D .(3,1)5.如图,AB 是⊙O 的直径,BC 是⊙O 的切线,若∠ACB =55°,则∠BAC 的大小为A .25°B .35°C .45°D .55°6.一次函数y =kx -2k 的图象经过点A ,且y 随x 的增大而增大,则点A 的坐标可以是A .(1,1)B .(-1,3)C .(0,-1)D .(3,-1)7.如图,某数学实践小组想要测量市政广场中心的旗杆AB 的高度,他们做了如下的操作:①在点C 处放置测角仪,测得旗杆顶的仰角∠ACE =α;②量得测角仪的高度CD =a ;③量得测角仪到旗杆的水平距离BD =b .则旗杆的高度可表示为A .a +b tan αB .a +b sin αC .αtan b a +D .αsin b a +8.近期,某社区的“党建+”邻里中心组织居民进行核酸检测,每天安排的志愿者人数如图所示.统计数据后,工作人员发现星期三实际上有21位志愿者,那么下列关于平均数和中位数的变化情况的叙述中,正确的是A.平均数增加了1,中位数不变B.平均数增加了1,中位数增加了1C.平均数增加了5,中位数增加了1D.平均数增加了1,中位数增加了59.P是线段AB上一点(AP>BP),且满足AP BP,则称点P是线段AB的黄金分割点.大自然是美的设AB AP计师,即使是一片小小的树叶,也蕴含着“黄金分割点”.如图,一片树叶的叶脉AB长度为10cm,P 为AB的黄金分割点(AP>BP),求叶柄BP的长度.设BP=x cm,则符合题意的方程是A.(10-x)2=10x B.x2=10(10-x)C.x(10-x)=102D.10(1-x)2=10-x10.平面直角坐标系中,对于不在坐标轴上的P(x1,y1),Q(x2,y2)两点,规定其坐标“积和”运算为:P⊕Q=x1y1+x2y2.若A,B,C,D四个点的“积和”运算满足:A⊕B=B⊕C=C⊕D=D⊕B,则以A,B,C,D为顶点的四边形不可能是A.等腰梯形B.平行四边形C.矩形D.菱形二、填空题:本大题共6小题,每小题4分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于初中毕业班数学综合测试试题
一、选择题:(10小题,每小题3分,共30分)
1、在下列实数中,无理数是()
A.B.C.D.
2、已知直角三角形的一个锐角为25°,则它的另一个锐角的度数为()
A.25°B.65°C.75° D.不能确定
3、下列各图中,是中心对称图案的是()
4、已知⊙O的半径为1,⊙O外有一点C,且CO=3。
以C为圆心,作一个半径为r 的圆,使⊙O与⊙C相交,则()
A.B.C.D.
5、解不等式组,得()
A.B.C.D.无解
6、为检测某种新型汽车的安全性,出厂时从中随机抽取5辆汽车进行碰撞试验。
在这个问题中,5是()
A.个体B.总体C.样本容量D.总体的一个样本
7、平行四边形ABCD的两条对角线相等,则□ABCD一定是()
A.菱形B.矩形C.正方形D.等腰梯形
8、下列计算中,正确的是()
A.B.C.D.
9、设是方程的两个不相等的实数根,且,则函数的图像经过()
A.一、二、三象限 B.二、三、四象限 C.一、三、四象限 D.一、二、四象限
10、如图,直角梯形ABCD中,∠ADC=90°,AB=6,AD=2,BC=4,你可以在CD 边上找到多少个点,使其与点A、B构成一个直角三角形()
A.1个B.2个C.3个D.无数多个
第二部分非选择题共120分
二、填空题:(6小题,每小题3分,共18分)
11、-3的相反数是。
12、如图,等腰梯形ABCD中,∠A=130°,则∠C=__________度。
13、要使代数式有意义,则实数a的取值范围是。
14、方程的根为。
15、某几何体的正视图与左视图是全等的等腰三角形,则该几何体是(填写该几何
体的名称)。
16、如图,正方形ABCD边长为1,E、F、G、H分别为其各边的中点,则图中阴影部
分的面积为。
三、解答题:(9小题,共102分)
17、(本小题满分9分)第29届奥运会于2021年8月在北京举行,我国健儿奋力
拼搏,在本届奥运会中取得了举世瞩目的优异成绩,共获得了100枚奖牌。
其中各项目所
获得奖牌情况如下图:
(1)请问除了“其他”项外,各项目所获奖牌数的中位数是多少?
(2)哪些项目所获的奖牌数超过了各项奖牌数的平均数?
(3)中国羽毛球队在本届奥运会中夺取了8枚奖牌,占球类奖牌数的百分比是多少?(保留3个有效数字)
18、(本小题满分9分)化简:
19、(本小题满分10分)如图,等腰三角形ABC中,AB=AC
(1)若点D与点A关于BC所在的直线成轴对称,请你作出点D的图像。
(尺规作图,保留作图痕迹,不用写作法)
(2)连结(1)中的AD、BD、CD,求证:△ABD与△CAD全等
20、(本小题满分10分)小红和小明用印有1、2、3、4的.四张纸牌玩数学游戏。
小红先在四张纸牌中随机抽取一张作为个位数,小明再在剩下的牌中随机抽取一张作为十
位数,组成一个两位数。
(1)组成的这个两位数是奇数的概率是多少?
(2)组成的这个两位数比33大的的概率是多少?
21、(本小题满分12分)如图,的半径为2,、是的切线,,为切点,.
(1)求的度数;
(2)求的面积.
22、(本小题满分12分)反比例函数的图像如图所示,点A是其图像上一点,过
点作轴于点B,△AOB的面积为2。
(1)求该反比例函数的函数表达式;
(2)若点都在此反比例函数的图像上,且,请你比较的大小。
23、(本小题满分12分)五一期间某校组织七、八年级的同学到某景点郊游,该景
点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票。
已知参加郊游的七年级同学少于50人、八年级同学少于100人。
若七、八年级分别购票,两个年级共计应付门票费1575元,若合在一起购买折扣票,总计应付门票费1080元.
(1)请你判断参加郊游的八年级同学是否也少于50人.
(2)求参加郊游的七、八年级同学各为多少人?
24、(本小题满分14分)抛物线与坐标轴交点如图所示,一次函数的图像与该抛
物线相切(即只有一个交点)。
(1)该一次函数图像所经过的定点的坐标为;
(2)求该抛物线所表示的二次函数的表达式;
(3)求该一次函数的表达式。
25、(本小题满分14分)如图,⊙O的直径EF= cm,Rt△ABC中,∠ACB=90°,
∠BAC=30°,AB= cm.E、F、A、B四点共线。
Rt△ABC以1cm/s的速度沿EF所在直线由
右向左匀速运动,设运动时间为t s,当t=0s时,点B与点F重合。
(1)当t为何值时,Rt△ABC的直角边与⊙O相切?
(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01)。
感谢您的阅读,祝您生活愉快。