基坑变形监测方案

合集下载

基坑变形监测工程方案

基坑变形监测工程方案

基坑变形监测工程方案一、监测的内容基坑变形监测的内容主要包括基坑周边的地表沉降、基坑支护结构的变形、地下水位的变化和基坑周边建筑物的变形等。

在监测时需要对这些内容进行全面的监测,以及对监测数据进行分析和评估,发现问题及时采取应对措施。

1. 地表沉降监测地表沉降可以通过水准仪、全站仪或GPS进行监测。

监测站点应根据基坑的布置情况,合理设置在基坑周边并延伸至一定范围的地表上。

监测的频次应根据基坑施工工况和地质情况进行调整,以保证监测的准确性和及时性。

2. 基坑支护结构的变形监测基坑支护结构主要包括钢支撑、深基坑墙、桩墙等结构,在施工过程中容易发生变形。

可以通过支撑位移仪、变形测斜仪、钢筋应变计等仪器设备进行监测。

3. 地下水位的变化监测地下水位的变化会直接影响基坑的稳定性,因此需要对地下水位进行监测。

监测可以采用水位计、水压计等仪器设备,实时监测地下水位的变化情况。

4. 基坑周边建筑物的变形监测基坑施工可能会对周边建筑物造成影响,因此需要对周边建筑物的变形进行监测。

可以使用倾斜仪、位移计等仪器设备进行监测。

二、监测方法基坑变形监测的方法主要包括传统监测方法和新技术监测方法。

传统监测方法主要包括水准测量、测斜测量、倾斜测量、测量等方法;新技术监测方法主要包括全站仪测量、GPS 监测、激光扫描监测、遥感监测等方法。

在实际监测中需要根据基坑的特点和地质情况选择合适的监测方法。

三、监测仪器设备基坑变形监测需要使用一系列仪器设备进行监测,包括水准仪、全站仪、GPS、支撑位移仪、变形测斜仪、水位计、水压计、倾斜仪、位移计等仪器设备。

在选用仪器设备时需要考虑其精度、稳定性和可靠性,并且需要对仪器设备进行定期校准和维护。

四、监测周期基坑变形监测的周期需要根据基坑的施工工况和地质情况进行合理设置。

一般来说,基坑变形监测的周期应该是连续不断的,并且需要根据监测数据的变化情况进行调整监测周期。

五、实施方案基坑变形监测的实施方案主要包括监测方案的制定、监测点的设置、监测数据的处理和分析以及监测报告的编制等内容。

基坑支护变形测量监测方案

基坑支护变形测量监测方案

基坑支护变形观测方案Xx有限公司xx年xx月xx日1、工程概况Xx项目基坑支护项目位于xxxxxx,根据设计图纸要求,沿基坑四周布设水平及竖向位移观测点SS1--SS26共计26个、沉降观测点C1--C9共计9个。

2、执行的标准和技术依据①《工程测量标准》(GB50026—2020);②《国家一、二等水准测量规范》(GB12897—2006);③《建筑变形测量规范》(JGJ8—2016);④《建筑基坑工程监测技术标准》(GB50497-2019)⑤《建筑基坑支护技术规程》(JGJ120-2012)⑥《测绘成果质量检查与验收》(GB/T 24356-2009)⑦《数字测绘成果质量检查与验收》(GB/T 18316-2008)⑧委托人及设计单位有关技术要求;⑨项目技术设计书。

3、监测实施方案3.1、监测流程本工程监测工作按以下流程进行。

3.2、实施方案3.2.1、监测点位埋设本工程的基坑监测共需埋沉降观测基准点3个,位移观测基准点3个,基坑观测点详见《基坑支护变形监测点平面布置图》。

3.2.2、监测频率与周期在工程施工过程中,按以下频率进行监测。

①基坑开挖前,各监测点采集稳定的初始值,且不少于2次;②每层土方开挖后监测一次,基坑开挖至设计标高后,2~5天监测一次,半个月后5天监测一次,以后每15天观测一次。

③当变形超过有关标准或场地条件变化较大时,进行加密监测,观测时间间隔现场定;④当有危险事故征兆时,进行连续监测。

3.2.3、信息反馈在工程的监测过程中,监测数据报送的的及时性是发挥监测工作作用的一个重要因素,包括监测快报、周报、月报等。

(信息反馈流程图)具体各监测报告按以下要求进行报送。

3.2.4、检查验收(1)、实行二检一审制度1)、一级检查包括监测过程中作业组内的自检、互检技术负责人组织的队级质量检查。

对于本工程,作业组必须有至少另外一个技术人员的独立数据处理文件并进行比对方可提交二级检查和审定,独立数据处理人员需承担该工程技术负责人技术责任的50%,且在审核意见处理表上需两人共同签名确认。

基坑变形监测实施方案

基坑变形监测实施方案

基坑变形监测实施方案一、引言。

基坑工程是指在建筑、市政、交通等领域中,为了建设地下室、地下车库、地铁站等需要进行的挖土与支护工程。

基坑变形监测是指对基坑工程施工过程中的变形情况进行实时监测和分析,以保障施工安全和周边环境稳定。

本文将就基坑变形监测的实施方案进行探讨。

二、监测技术选择。

基坑变形监测技术包括全站仪监测、GPS监测、倾角仪监测、测斜仪监测、裂缝计监测等多种技术手段。

在实际应用中,应根据基坑工程的具体情况,选择合适的监测技术,并进行合理组合,以确保监测数据的准确性和全面性。

三、监测方案制定。

1. 监测点布设,根据基坑工程的特点和周边环境的影响,合理布设监测点,包括基坑内部、周边建筑物、地下管线等关键部位。

2. 监测频次,根据基坑工程的施工进度和变形情况,确定监测频次,一般情况下,应进行日常监测和重大施工节点的实时监测。

3. 监测数据处理,监测数据的采集和处理应当符合相关规范和标准,确保数据的准确性和可靠性。

4. 监测报告编制,监测数据应及时编制成监测报告,对基坑变形情况进行分析和评估,提出相应的处理意见和建议。

四、监测管理与应用。

1. 监测管理,建立健全的监测管理体系,包括监测责任人、监测设备管理、数据管理等内容,确保监测工作的有序进行。

2. 监测应用,监测数据的及时分析和应用,对基坑工程的施工安全和周边环境的影响进行预测和评估,及时采取相应的措施和对策。

五、监测成果评价。

监测成果的评价应当包括监测数据的准确性、监测方案的合理性、监测管理的有效性等方面,对监测工作进行全面评价和总结,为今后类似工程提供经验和借鉴。

六、结论。

基坑变形监测是基坑工程施工过程中的重要环节,对保障施工安全和周边环境稳定具有重要意义。

因此,应根据具体工程情况,制定科学合理的监测方案,保障监测数据的准确性和全面性,为基坑工程的施工和周边环境的保护提供可靠的技术支持。

基坑围护桩施工变形监测专项监控量测方案

基坑围护桩施工变形监测专项监控量测方案

基坑围护桩施工变形监测专项监控量测方案一、背景介绍基坑围护桩是基础建设中常用的一种施工方式,通过在基坑边缘打入桩体来支撑土壤,以防止边坡坍塌和基坑变形。

然而,基坑围护桩在施工过程中可能会出现变形现象,因此,对基坑围护桩的变形进行监测是非常重要的。

本文将介绍一种基坑围护桩施工变形监测专项监控量测方案。

二、监测设备的选择1.变形测量仪:用于测量基坑围护桩的变形情况,可以通过测量点位与参考点的相对位移来计算变形量。

2.倾斜仪:用于测量基坑围护桩的倾斜角度,可以通过倾斜角度来判断桩体的稳定性。

3.压力传感器:用于测量基坑围护桩的负荷压力,可以了解桩体所承受的力的大小。

4.GPS定位仪:用于确定监测点的位置,以便进行数据分析和处理。

三、监测点的设置为了全面了解基坑围护桩的变形情况,需要设置一系列的监测点。

监测点的设置应根据基坑围护桩的实际情况和施工要求进行确定,一般应包括以下几个方面的监测点:1.桩顶监测点:用于测量基坑围护桩的竖向位移和沉降情况。

2.桩身监测点:用于测量基坑围护桩的水平位移和倾斜情况。

3.周边土体监测点:用于测量基坑围护桩周边土体的位移和变形情况。

4.基坑内土体监测点:用于测量基坑内土体的位移和变形情况。

四、监测频次和周期基坑围护桩施工变形监测应根据实际需要和施工进度来确定监测频次和周期。

一般情况下,可以将监测频次设置为每周一次,监测周期设置为施工周期的两倍。

这样可以及时了解基坑围护桩的变形情况,以便及时采取相应的措施来保证施工的顺利进行。

五、数据处理和分析监测数据的处理和分析是基坑围护桩施工变形监测的重要环节。

监测数据的处理和分析应包括以下几个方面的内容:1.数据处理:对采集到的监测数据进行整理和清洗,排除异常值和错误数据。

2.数据分析:对处理后的监测数据进行统计和分析,得出基坑围护桩的变形特征和趋势。

3.结果评估:根据分析结果对基坑围护桩的变形情况进行评估,判断是否需要采取进一步的措施。

基坑工程变形监测方案

基坑工程变形监测方案

基坑工程变形监测方案1. 背景介绍基坑工程是指在建筑施工中,为了在地下建造高层建筑或者地下结构,需要在地面上开挖较深的坑,并按照设计图纸对坑下进行倒土处理,同时基坑周边的建筑、道路等都会受到一定的影响。

为了确保基坑工程的安全施工,避免对周边建筑物和地下设施造成不可挽回的损害,需要进行变形监测。

基坑工程变形监测是指在基坑开挖、支护、降水和地下室施工等过程中,从土壤内部和地面上一定深度位置等环境中,连续或定期监测基坑四周变形情况,以获取变形数据,从而判断基坑周围环境的稳定性和安全性。

合理地选择监测点位,对基坑工程进行变形监测,可以有效地监测基坑开挖过程中的变形情况,提前发现潜在危险,保障基坑施工的安全。

2. 变形监测方案变形监测的主要目的是为了监测基坑工程周围环境的变形情况,从而保障基坑工程施工的安全。

变形监测的方案包括:监测内容、监测方法、监测点位、监测频率和监测报告。

2.1 监测内容基坑工程变形监测的内容主要包括:地表变形监测、地下水位监测、支护结构变形监测、周边建筑物变形监测、基坑倒土变形监测等内容。

通过监测这些内容,可以全面掌握基坑工程周围环境的变形情况,提前发现潜在危险,保障施工的安全。

2.2 监测方法基坑工程变形监测的方法主要包括:GPS定位法、倾斜仪法、水准仪法、测斜仪法、位移传感器法等。

通过这些监测方法可以有效地监测基坑工程周围环境的变形情况,提供准确的监测数据,从而保障基坑工程的施工安全。

2.3 监测点位基坑工程变形监测的点位主要包括:地表监测点位、地下水位监测点位、支护结构监测点位、周边建筑物监测点位、倒土监测点位等。

通过合理选择监测点位,可以全面掌握基坑工程周围环境的变形情况,提前发现潜在危险,保障施工的安全。

2.4 监测频率基坑工程变形监测的频率主要包括:连续监测、定期监测。

通过连续或者定期监测,可以不断地获取基坑工程周围环境的变形数据,及时发现潜在危险,保障施工的安全。

2.5 监测报告基坑工程变形监测报告是通过监测数据的分析和处理,得出基坑工程周围环境的变形情况,并提供有效的监测报告。

工程基坑变形监测方案

工程基坑变形监测方案

工程基坑变形监测方案一、前言随着城市化进程的不断加快,大型建筑工程基坑的开挖和支护工程成为城市建设的重要组成部分。

而基坑变形监测作为工程施工的一项重要内容,在工程实施过程中具有重要的意义。

因此,本文将从工程基坑变形监测的重要性、监测内容及监测方法等方面展开介绍,以期为相关工程施工提供参考。

二、基坑变形监测的重要性基坑工程开挖及支护过程中,受到土体变形、地下水位变化、周边建筑物影响等因素的影响,往往容易引发基坑结构变形,因此对基坑变形进行监测可以及时发现并解决基坑的变形问题。

同时,基坑变形监测也可以为后续的支护施工提供实时的监测数据,确保施工过程安全可靠。

基坑变形监测的重要性主要包括以下几点:1. 可有效掌握基坑的变形情况,保障基坑支护施工的安全稳定;2. 可及时发现并解决基坑变形问题,避免引发安全事故;3. 可为后续支护工程提供实时监测数据,确保工程质量;4. 可为工程设计提供实际的变形数据,为相应的设计方式提供依据。

基于以上考虑,基坑变形监测方案的制定和实施显得尤为重要。

三、基坑变形监测内容基坑变形监测的内容主要包括:1. 水平变形监测:包括基坑的水平位移变形监测;2. 竖向变形监测:包括基坑内部各个深度处的沉降变形监测;3. 周边建筑物变形监测:包括周边建筑物的位移变形监测;4. 地下水位监测:包括基坑周围地下水位的变化监测。

通过对以上内容的监测,可以全面了解基坑的变形情况,为工程施工过程提供重要依据。

四、基坑变形监测方法1. 静力位移监测法通过在基坑周边设置一定数量的静力位移监测点,利用水平倾斜仪、水准仪等静力位移仪器进行定期的位移测量。

该方法操作简单、数据确切,能够有效地监测基坑的水平变形情况。

2. GPS监测法通过在基坑周边设置一定数量的GPS监测点,通过GPS定位技术获取基坑变形的信息。

该方法操作便捷、数据精确,适合进行基坑的大范围位移监测。

3. 沉降盘监测法通过在基坑内部设置一定数量的沉降盘,通过沉降盘的沉降变形情况来监测基坑的竖向变形。

基坑变形监测技术方案

基坑变形监测技术方案

基坑变形监测技术方案基坑变形监测是指对地下基坑在施工过程中或者使用过程中由于不均匀沉降、滑移、侧倾、地下水位变动等因素引起的变形进行实时、连续的监测和预警的技术手段。

基坑变形监测的目的是为了及时发现和评估基坑变形情况,为基坑的施工和使用提供科学依据。

1.监测点布置方案:根据基坑的形状、尺寸和地下结构的具体情况确定监测点的位置和数量。

一般来说,监测点应该均匀分布在基坑的不同位置以及周围的地表上,以保证监测结果的准确性和可靠性。

2.监测仪器选择方案:根据监测需求和具体情况选择合适的监测仪器设备。

常用的监测仪器包括测量仪器、位移传感器、应变传感器、倾斜传感器等。

这些仪器可以实时测量和记录基坑变形的各个参数,并将数据传输给监测系统进行分析和处理。

3.数据传输与处理方案:选择合适的数据传输方式和监测系统。

常见的数据传输方式包括有线传输和无线传输,可以根据具体情况选择合适的传输方式。

监测系统可以对传输过来的数据进行实时分析和处理,生成监测报告并进行预警处理。

4.监测报告与预警方案:根据监测结果生成监测报告,并根据预设的预警标准进行预警处理。

监测报告应包括基坑变形的具体情况、变形的趋势和可能的风险评估等内容,以便施工单位或者相关部门及时采取措施避免事故发生。

5.健全的管理与应急预案:建立健全的管理制度和应急预案,并进行培训和演练。

这样可以确保监测系统的正常运行和数据的准确性,同时也能够提高对基坑变形事故的应对能力和处理效率。

总之,基坑变形监测技术方案需要根据实际情况进行合理的选择和设计,并且要注重对监测结果进行分析和预警处理,以保证基坑的施工和使用的安全性和稳定性。

同时,还需要加强对相关技术人员的培训和管理,提高监测系统的使用效率和数据的可靠性。

基坑变形监测技术方案

基坑变形监测技术方案

基坑变形监测技术方案1. 概述基坑工程在建设过程中,由于土体的开挖、支护和工程荷载等因素,基坑周围土体会发生变形,进而对相邻的土体以及周边建筑物产生影响。

为了确保基坑工程的安全进行和及时预警,需要对基坑的变形进行监测。

本文提出了一种基坑变形监测技术方案,通过采用监测设备和数据处理方法,实现对基坑变形的实时监测和分析。

2. 监测设备和传感器为了实现基坑变形的监测,需要安装相应的监测设备和传感器。

以下是常用的监测设备和传感器的介绍:2.1 GNSS测量仪GNSS测量仪(全球导航卫星系统)可用于测量基坑中各个关键点的三维位移,通过比较测量结果与基准值,可以判断基坑是否发生变形。

2.2 倾斜仪倾斜仪可以用于测量基坑支撑体的倾斜情况,倾斜仪的安装位置通常选择在支撑体的关键部位上。

2.3 压力传感器压力传感器可用于测量基坑周边土体的压力变化,通过监测压力的变化,可以判断土体的变形情况。

2.4 监测网络为了实现对监测设备的集中管理和远程监控,可以通过建立监测网络来实现,监测网络可以将各个监测设备的数据传输到监测中心,实现对数据的实时监测和分析。

3. 数据处理方法基坑变形监测的数据处理方法对于实时监测和预警具有重要意义,以下是常用的数据处理方法:3.1 数据采集与存储监测设备通过传感器采集到的数据需要进行有效的存储,可以采用数据库或者云存储的方式,确保数据的安全和可靠。

3.2 数据分析与处理通过采用数据处理算法和数学模型,对监测数据进行分析和处理,可以得到基坑变形的趋势和变形量,进而判断基坑是否存在安全隐患。

3.3 预警与报警基于数据分析结果,可以设置相应的预警和报警机制,当监测数据超过预设阈值时,即发出预警信号,便于及时采取措施避免事故的发生。

4. 方案优势通过采用基坑变形监测技术方案,可以实现以下优势:4.1 实时监测监测设备可以对基坑变形进行实时监测,及时获取监测数据并进行分析,保证工程施工过程的安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

佳・5.4克拉项目基坑变形监测方案编制:______________甘肃统建建筑装饰工程集团有限公司佳・5.4克拉项目部二O年九月二十日目录一、编制依据 (1)二、工程概况 (1)(一)工程简介 (1)(二)地层岩性 (1)(三)气象 (2)(四)地下水 (2)三、施工部署 (3)(一)人员部署 (3)(二)监测管理程序 (3)(三)测量检测部署 (3)四、深基坑监测要求 (3)(一)监测要求 (3)(二)、监测过程控制要求 (4)(三)、监测数据结果的要求 (4)五、监测方法 (4)(一)监测仪器及要求 (5)(二)巡视检查 (5)(三)监测点的布置 (5)六、监测期和监测频率 (5)七、监测报警及异常情况下的监测措施 (6)八、资料整理和分析反馈 (6)九、作业安全及其它注意事项 (6)十、雨季施工技术措施 (6)十一、应急预案 (7)(一)应急救援部署 (7)(二)突发事件风险分析及预防 (8)附图一:基坑监测点平面布置图、编制依据1、佳・5.4克拉基坑开挖图;2、佳・5.4克拉岩土工程勘察报告;3、兰州理工大学建筑勘察设计院《佳• 5.4克拉项目基坑支护结构设计》《佳• 5.4克拉项目基坑降水设计》;4、《工程测量规范》GB50026-20075、《建筑工程施工质量验收统一标准》GB50300-20136、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009;7、《建筑基坑工程检测技术规范》GB50497-20098、《建筑变形测量规范》JGJ8-2007;9、基坑监测强制性条文。

二、工程概况(一)工程简介工程名称:佳• 5.4克拉。

工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。

东侧为吴家崖村,南临山水嘉园1#地块,西临佳•水岸华庭C地块。

拟建场地近南北宽约59.3m-82.7m,东西长约48.7m-118.5m。

本工程士0.000绝对标高为1198.000。

地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。

结构形式主楼为剪力墙结构,裙楼为框架结构。

本工程基础采用筏板,东塔筏板厚度为1800mm开挖深度为11.77m;西塔筏板厚度为1 500mm开挖深度为11.47m,,商铺为300厚的防水板,开挖深度为10.27m。

本基坑安全级别属于一级基坑。

(二)地层岩性在勘察深度范围内,拟建场地地层自上而下依次分布为:①粉质粘土(Q al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑;土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为1.50~23.20m,层面标高1195.19m~1214.05m②圆砾(Q4al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色,重型动力触探试验修正值N63.5=14.6~23.4 击,中密- 密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中风化,圆砾一般粒径为0.20~2.00cm,偶含卵石及漂石。

层面埋深1.50m~23.20m, 厚度2.00~5.20m,层面标高1187.80~1196.23m。

③强风化泥岩(N):该层分布于整个场地,半成岩,褐红色-灰绿色,微裂隙及风华裂隙较发育,中密-密实,矿物成分以蒙脱石、绿泥石,高岭石、白云母等为主,泥钙质胶结,碎屑结构,中厚层状构造,岩芯呈短柱状,具有遇水易软化的特点,强风化泥岩岩体基本质量等级V级。

层面埋深 3.50~25.60m,厚度1.20~6.70m,层面标高1187.20~1196.43m。

④中风化泥岩(N):该层分布整个场地,半成岩,褐红色-灰绿色,见微裂隙,致密;矿物成分以蒙脱石、绿泥石、高岭石、白云母、长石、石英等为主, 泥钙质胶结,碎屑结构,巨厚层状构造,岩芯呈短桩状,具有遇水易软化的特点,未经扰动时坚硬,岩体基本质量等级为W级。

层面埋深 5.70~28.10 m,勘察厚度3.4~14.0 (未揭穿),层面标高1185.50~1191.45m。

(三)气象天水市气候类型属暖温带轻冰冻中湿区,据天气气象局资料,本区多年平均气温10.9 C,极端最高气温37.2 C,极端最低气温-19.2 C,历年最冷月相对湿度平均62%最热月平均湿度73%年最大降水量537.5mm降水多集中在7、8、9 月份多暴雨夏季多东北风夏季平均风速1.2m/s 冬季多东风冬季平均风速1.3m/s 30年遇最大风速21.8m/s 年雷暴日16.2 天年沙暴日1.0天年雾日数2.1 天历年最大积雪厚度15cm 地表有季节性冻土标准冻土深度0.61m 场地内无地表水。

(四)地下水根据区域水文地质资料和勘察结果拟建场地地下水为第四系松散岩类孔隙潜水,②圆砾层为主要含水层,③强风化泥岩层为次要含水层(岩层裂隙水),④中风化泥岩层为相对隔水底板。

场地地下水接受大气降水和地下水侧向径流的补给。

地下水静止水位埋深3.00~22.50m,相应水位标高1190.05~1192.80m,水位年变幅约1.00米,地下水由北向南径流三、施工部署(一)人员部署项目部组织机构(二)监测管理程序项目部技术负责人、施工员负责本工程的基坑变形监测工作;监测工作必须严格执行项目部制定的一系列监测管理制度,做到持证上岗(三)测量检测部署根据本工程施工特点,配置经纬仪、水准仪、大钢尺等检测仪器设备, 按规定进行检定、周检和对比校核,使之保持良好的使用状态,并持续保持受控状态,保证计量、检测的准确性,为确保工程质量打好基础。

四、深基坑监测要求(一)监测要求1、基坑监测工作须按照计划进行。

计划性是监测数据完整性的保证。

2、监测数据须是真实可靠的。

数据的可靠性由测试元件安装或埋设的可靠性、监测仪器的精度、可靠性以及监测人员的素质来保证。

监测数据真实性要求所有数据须以原始记录为依据,原始记录任何人不得更改、删除。

3、监测数据必须是及时的。

监测数据需在现场及时计算处理,计算有问题可及时复测,尽量做到当天报表当天出。

因为基坑开挖是一个动态的施工过程,只有保证及时监测,才能有利于及时发现隐患,及时采取措施。

4、基坑监测应整理完整的监测记录表、数据报表、形象的图表和曲线,监测结束后整理出监测报告。

(二)、监测过程控制要求每次观测采用相同的观测方法和观测线路;观测期间使用同一仪器,同一人操作,不能更换。

(三)、监测数据结果的要求对当天测得的数据,当天整理上报。

由施工员复杂监测数据的采集,以所附的各表格形式上报给项目技术负责人; 每次将观测结果详细记入汇总表。

每周向监理工程师上报观测成果汇总表和变形情况;项目技术负责人要组织相关人员对观测结果进行讨论和分析,分析变形是否过大或是否趋于稳定,及时发现问题并确定是否需采取必要的补救措施。

五、监测方法基坑工程的现场检测应采用仪器检测与巡视检查相结合的方法(一)监测仪器及要求经纬仪(JTD212AL、水准仪(DSZ-32。

监测仪器必须满足观测精度和量程的要求,且应具有良好的稳定性和可靠性;应经过校准或标定,且校准记录和标定资料齐全,并应在规定的校准有效期内使用;监测过程中应定期进行监测仪器、设备的保养、检测以及监测元件的检查。

(二)巡视检查肉眼观察是凭经验观察获得对判断基坑稳定和环境安全性有用的信息,这是一项十分重要的工作,需在进行其他使用仪器的监测项目前由有一定工程经验的监测人员进行。

主要观察围护体系是否有渗漏水及其渗漏水的位置和多少、施工条件的改变情况、坑边堆载的变化、管道渗漏和施工用水的不适当排放以及降雨等气候条件的变化等对基坑稳定和环境安全性关系密切的信息。

同时需密切注意基坑周围的地面裂缝、围护结构的工作失常情况、邻近建筑物和构筑物的裂缝、流土或局部管涌现象等工程隐患的早期发现,以便发现隐患苗头及时处理,尽量减少工程事故的发生。

这项工作每天早晚进行,并将观测到的内容详细地记录在监测日记中,同时记录施工进度与施工工况,重要的信息则需要写在监测报表的备注栏内,发现重要的工程隐患则要专门出监测备忘录。

(三)监测点的布置基坑边坡顶部的水平和竖向位移监测点应沿基坑周边布置,周边中部、阳角处应布置监测点。

监测点水平间距不宜大于20 米,每边监测点数目不应少于3 个。

由于本工程基坑形状不规则,基坑共布置14 个监测点(详见基坑监测平面图)。

六、监测期和监测频率基坑工程监测工作应贯穿于基坑工程和地下工程施工全过程。

基坑开挖过程中每一步土方开挖都应观测,每天二次,基坑开挖完7 天后,可由每天二次到两天一次,开挖完成15天后且当连续三次观测位移值累计增加量不大于2mnfl寸, 每三天观测一次。

当出现下列情况时,应提高检测频率:1 、监测数据达到报警值。

2、监测数据变化较大或者速率加快。

3、存在勘察未发现的不良地质。

4、基坑及基坑周边大量积水、长时间连续降雨、市政管道出现泄漏。

5、基坑附近地面荷载突然增大或超过设计限值。

6、周边地面突发较大沉降或出现严重开裂。

7、领近建筑突发较大沉降、不均匀沉降或出现严重开裂。

8、基坑底部、侧壁出现管涌、渗漏或流沙等现象。

七、监测报警及异常情况下的监测措施在深基坑施工过程中,只有对基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行。

该边坡的位移量报警值取基坑深度的2%。

或倾斜速度连续3d大于0.0001H/d (H为基坑深度)。

如果观测数据超过此监控值或出现异常情况时进行危险报警,监测人员应立即向项目总工汇报,项目技术负责人则应立即通知勘察、设计、建设单位,组织技术人员一起进行原因分析,商讨和提出解决措施,从而确保基坑边坡的安全。

八、资料整理和分析反馈监控资料按照图表格式进行整理,凡在当天监测得到的数据,必须当天处理完毕。

如支护结构的变形量-时间曲线,并将数据和分析结果当天公布。

监测人员必须在当天向施工单位技术工程主管人员进行口头提醒,如有必要应向其主管部门进行通报。

监测变形分为安全、注意和危险3个等级。

每周将本周的报表进行处理,做成分析成果表进行周报,上报监理。

九、作业安全及其它注意事项基坑边5m 内,均布荷载不得大于设计荷载值。

基坑四周作好防、排水工作,严防地下管道渗水。

坑上轴线控制点或水准基点每1 个月复核一次,以保证其精度。

十、雨季施工技术措施在雨季施工时,应作好防雨雪、防风、防雷、防电、防汛等工作,基坑的周围要做好排水设施,并配备相应的排污泵,以便及时能将积水抽走,以确保基坑的安全。

1、一切机械设备应设置在地势较高,防潮避雨雪的地方,要搭设防雨雪棚。

机械设备的电源线路要绝缘良好,要有完善的保护接零。

相关文档
最新文档