常见电线电缆绝缘材料优缺点分析
电线电缆绝缘材料及护套材料的老化分析

电线电缆绝缘材料及护套材料的老化分析电线电缆是现代社会中电力传输、信息传递的必备工具,而绝缘材料和护套材料是电线电缆的重要组成部分,保障着电线电缆的安全稳定运行。
然而,绝缘材料和护套材料随着使用时间的增长会出现老化现象,从而影响着电线电缆的使用寿命和安全性。
因此,本文对电线电缆绝缘材料及护套材料的老化进行分析。
绝缘材料的选择对电线电缆的性能和寿命有着很大的影响,而绝缘材料的老化主要表现为热老化和光老化两种。
1. 热老化热老化是指在高温下,绝缘材料因受热引起化学反应而发生老化变化。
绝缘材料老化时,发生材料分子链断裂,氧化反应,导致化学结构的改变和物理性能的下降。
热老化的影响因素主要包括温度、时间和氧气。
一般来说,温度越高、时间越长、氧气越多,绝缘材料老化的速度就越快。
因此,选用具有较好的耐热性能的绝缘材料能够延长电线电缆的使用寿命。
光老化是指在太阳光照射下,绝缘材料因受紫外线、可见光和红外线等光线的照射而发生老化的变化。
光老化对电线电缆的影响主要表现在两个方面。
第一方面,光老化会导致绝缘材料的物理性能发生变化。
长时间受光照射的绝缘材料表面会出现龟裂、开裂、剥落等现象,从而降低绝缘材料的拉伸强度和断裂伸长率。
第二方面,光老化会影响绝缘材料的电学性能。
光照射会使绝缘材料的介电常数变化,增加介电损耗和耐受电场强度的下降。
护套材料是电线电缆的外层保护材料,主要起着防水、防腐、防晒等作用。
护套材料的老化对电线电缆的安全稳定运行也有着很大的影响,主要表现在以下几个方面。
1. 机械性能护套材料的机械性能主要包括拉伸强度、断裂伸长率、硬度等指标,老化后这些机械性能的指标都会下降,致使护套材料变得脆化,易于破裂或剥落,从而降低电缆的机械强度和耐久性。
2. 电学性能护套材料中所含的填料和添加剂,可能会对电气性能产生影响,如介电强度、电阻率等参数的变化,从而使电线电缆在使用过程中存在漏电、短路等故障风险。
护套材料在高温条件下,易出现老化变化。
常用的有机绝缘材料及其性能

组成原子只有C和F(全氟聚合物),相 当于PE中的H全部被氟取代,又简称为F4
具有如下主要特性: ① 优异的介电性能 极高的电阻率和击穿强度,低介电
常数和损耗,及优异的耐电弧能力 ② 化学稳定性极高 没发现什么物质会与它反应
③ 热稳定性非常高 在 -40 ~ 260 ℃间使用数月后机械性 能和电性能无变化,熔点~370 ℃
F 原子紧密地包裹着C链, 使其免受其它“攻击”
由于以上优异的特性, 被誉为塑料王
强的C-F意味着不易断键、分子枝化和交联的可能性小,因 此呈线型,分子如同一根棒、易结晶,结晶度可到80-85%
缺点:熔融体的粘性高、加工成型困难、 只能采用粉料模压工艺、材料本身贵
? 耐电晕和耐辐射性较差
它仍是最重要的电气绝缘材料之一,尤 其在高频、高温和高腐蚀环境中的应用
成为各类“高级(要求高的)”传送线 的绝缘层,如射频传输线、计算机传输 线
氟聚物家族中还有H未完全被F取代的:
聚氟乙烯(Polyvinyl Fluoride, PVF)
[ 由氟乙烯聚合而得,结构式: CH2 CHF ]n
聚偏氟乙烯( Poly(vinylidene Fluoride), PVDF or PVF2)
其在电气上的主要应用是电容器介质,由于其击穿场 强远高于电容器绝缘纸,储能密度(正比E2)提高许 多
聚氯乙烯(Polyvinyl Chloride, PVC) Cl
[ 由氯乙烯聚合而得,结构式: CH2 CH ]n
生产工艺简单、原料丰富、成本低,是广泛使用的高分子材料
结构单元中,Cl对H的取代赋予了高分子的极性,因 此介电常数和损耗(εr ~ 3.5, tanδ=10-2 ~ 10-3)较PE 大、电阻率较低,εr和 tanδ的温度变化也较大
电线电缆绝缘材料及护套材料的老化分析

电线电缆绝缘材料及护套材料的老化分析
1.材料老化机理
电线电缆绝缘材料及护套材料在长期使用过程中,受到温度、湿度、氧气、紫外线等
外界因素的影响,会发生老化现象。
常见的材料老化机理有热老化、氧化老化、紫外线老
化等。
在研究过程中,可以通过对老化前后样品的化学、物理性质进行对比分析,了解老
化机理。
2.老化性能测试
对于电线电缆绝缘材料及护套材料的老化性能,可以通过一系列的测试手段进行评价。
常见的老化性能测试方法有耐热性测试、耐氧化性测试、耐湿热性测试、耐紫外线性能测
试等。
通过这些测试,可以评估材料在不同环境条件下的老化性能,并对材料进行筛选和
改进。
3.老化机制研究
在材料老化的过程中,会发生一系列的物理、化学变化,从而导致材料性能的降低。
通过研究老化前后材料的化学、物理性质的变化规律,可以深入了解老化机制。
可以通过
拉伸试验、热分析等测试手段,了解材料的断裂强度、热性能和分子结构等变化。
4.老化评估方法
对于电线电缆绝缘材料及护套材料的老化评估,可以通过定期采样、加速老化试验、
实际使用环境下的老化评估等方法进行。
定期采样可以监测材料在实际使用过程中的老化
情况;加速老化试验通过提高温度、湿度等条件,使材料在短时间内发生老化,快速评估
材料的老化性能;实际使用环境下的老化评估可以对电线电缆进行长期的监测,评估材料
的老化程度。
通过以上研究方法,可以对电线电缆绝缘材料及护套材料的老化进行分析和评估,为
材料的选用和使用提供科学依据,从而提高电线电缆的使用寿命和安全性能。
电线电缆绝缘材料及护套材料的老化分析

电线电缆绝缘材料及护套材料的老化分析电线电缆是电力传输和信息传输的重要载体,而电线电缆的绝缘材料和护套材料对其使用寿命和安全性起着至关重要的作用。
随着电线电缆的使用时间的增长,绝缘材料和护套材料会受到各种外界因素的影响,从而引起老化现象。
本文将从老化的原因、影响、检测和预防等方面进行分析和探讨。
一、老化的原因1. 温度影响:高温会导致绝缘材料和护套材料中的聚合物分子链断裂、交联和剪切现象,使其性能发生改变,导致老化;2. 湿度影响:潮湿的环境会导致绝缘材料和护套材料中的水分渗透,从而引起水解反应,使材料发生脆化、劣化等现象;3. 氧化影响:氧气对绝缘材料和护套材料的氧化作用会导致材料表面产生氧化膜,使其性能降低;4. 紫外线影响:紫外线会使绝缘材料和护套材料的聚合物分子链断裂,从而导致老化;5. 机械应力影响:外界的挤压、拉伸、扭曲等机械应力会导致绝缘材料和护套材料发生形变、开裂等现象,从而引起老化。
二、老化的影响1. 绝缘性能下降:老化后的绝缘材料会导致绝缘性能下降,从而容易发生绝缘击穿、漏电等故障;2. 强度减小:老化会导致绝缘材料和护套材料的机械强度下降,使其耐磨性和抗拉伸性能减小;3. 耐候性降低:老化会使绝缘材料和护套材料的耐候性下降,易受外界环境的影响而发生劣化;4. 导热性增加:老化会导致绝缘材料的导热性增加,使其在电线电缆的使用过程中容易产生发热现象,影响电线电缆的安全性。
三、老化的检测1. 物理性能测试:通过测定绝缘材料和护套材料的拉伸强度、断裂伸长率、硬度、导热系数等物理性能参数,来判断其老化程度;2. 化学性能测试:通过测定绝缘材料和护套材料的耐热性、耐油性、耐酸碱性等化学性能参数,来判断其老化程度;3. 表面形貌观察:通过显微镜、电子显微镜等设备观察绝缘材料和护套材料的表面形貌变化,来判断其老化程度;4. 热老化试验:将样品置于高温环境中,模拟实际使用条件下的老化情况,通过测试其性能变化来判断老化程度。
电线电缆绝缘及护套材料的技术分析及质量控制

电线电缆绝缘及护套材料的技术分析及质量控制电线电缆是现代电力传输和通信的重要组成部分,其安全可靠、耐用使用至关重要。
电线电缆的绝缘和护套是保证其安全可靠的重要因素之一,因此,绝缘和护套材料的质量及其技术分析和质量控制显得尤为重要。
绝缘材料是电线电缆中的重要材料,其主要功能是提供电气绝缘,防止电线电缆内部导体之间和导体与外壳之间发生电弧放电。
绝缘材料的选择一般基于以下几个因素:一、介电强度介电强度是电缆绝缘材料的重要性能指标,指材料在电场作用下的电阻耐压试验中的最大电场强度值。
对于不同的电力电缆,其介电强度要求也会有所不同。
对于高压电缆来说,其介电强度要求相对较高。
二、耐热性耐热性是指绝缘材料在高温环境下的性能稳定性,并防止绝缘材料发生变形或者熔化。
对于高温环境下使用的电缆,绝缘材料的耐热性尤为重要。
三、耐腐蚀性电缆在使用过程中可能会遇到化学腐蚀,因此,绝缘材料要具有一定的耐腐蚀性,以提高电线电缆的使用寿命。
四、机械强度从绝缘材料的发展历程和趋势上看,目前主要有以下三种类型的绝缘材料:一、天然橡胶天然橡胶绝缘电缆具有良好的柔韧性、耐热性和良好的介电性能,但其耐久性和耐化学腐蚀性能相对较差,成本也较高,因此现在逐渐被合成橡胶材料所代替。
二、合成橡胶合成橡胶绝缘材料具有良好的导电性能、化学稳定性和高度绝缘性能,广泛应用于电线电缆制造中。
三、塑料绝缘材料塑料绝缘材料种类丰富,如聚酯、聚酰亚胺、聚丙烯、聚氯乙烯等,具有导电性能好、耐热、耐腐蚀、机械强度高等特点,广泛应用于中低压电线电缆中。
护套材料是电线电缆外层的保护层,其主要功能是防水、防腐、防鼠咬防紫外线照射等,其质量和技术指标也需要遵循一些要求:一、耐老化性防护套材料在使用过程中可能会受到氧化、紫外线等环境影响而老化,因此,其耐老化性能尤为重要。
电线电缆在安装过程和使用过程中都需要受到一定程度的拉伸、压缩和弯曲,因此护套材料需要具有较高的机械强度,以提高电线电缆的耐用性。
电线电缆绝缘及护套材料的技术分析及对策

电线电缆绝缘及护套材料的技术分析及对策电线电缆的绝缘及护套材料是保障电线电缆安全运行的重要组成部分。
本文将对电线电缆绝缘及护套材料的技术进行分析,并提出相应的对策。
电线电缆绝缘材料的技术分析:1. PVC绝缘:聚氯乙烯(PVC)是目前使用最广泛的电线电缆绝缘材料之一。
它具有机械强度高、耐化学腐蚀性能好、绝缘性能稳定的优点,但抗温度能力较差,在高温环境下易软化、熔融甚至燃烧。
对策:研发高温稳定的PVC材料,提高其抗温度能力,降低其燃烧性能。
可以考虑在PVC绝缘层的外层添加耐高温的包覆层,提高整体的温度耐受能力。
3. XLPE绝缘:交联聚乙烯(XLPE)是近年来发展起来的一种绝缘材料。
其具有机械强度高、耐腐蚀性好、绝缘性能稳定且抗高温能力较强的特点。
对策:继续研究XLPE材料的交联机理,提高其交联密度和稳定性,进一步提升其电气性能和高温耐受能力。
2. PE护套:聚乙烯(PE)也常被用作电线电缆的护套材料。
其具有机械强度高、耐腐蚀性好的特点,但其抗压和抗张能力相对较低。
对策:通过改变聚乙烯的分子结构和添加增强剂,提高其机械强度和抗压抗张能力。
3. 橡胶护套:橡胶材料具有良好的弯曲性和抗老化能力,适用于环境恶劣和机械应力较大的场合。
对策:研究橡胶材料的交联技术,提高其耐高温和耐压能力,扩大其应用范围。
总结:电线电缆绝缘及护套材料的技术分析主要包括PVC、PE、XLPE和橡胶等材料。
针对这些材料的技术缺陷,可以通过研发高温稳定剂、增强剂等改性材料,改善其抗高温、抗老化、抗压抗张等性能。
对于PVC材料可以考虑在外层添加耐高温的包覆层,提高其整体的温度耐受能力。
通过这些技术对策,可以不断提升电线电缆绝缘及护套材料的性能,确保电线电缆的安全运行。
常用绝缘材料

常用绝缘材料绝缘材料是一种用于阻止电流流动的材料,它在电气设备和电子器件中起着至关重要的作用。
在工业和家庭用电中,绝缘材料的选择和使用直接关系到电气设备的安全和可靠性。
常见的绝缘材料包括橡胶、塑料、玻璃、陶瓷等,它们在不同的场合和环境中发挥着各自独特的作用。
橡胶是一种常用的绝缘材料,它具有良好的柔韧性和耐磨性,能够在一定程度上抵抗电流的流动。
橡胶通常用于电线电缆的外护套和绝缘层,以及电气设备的密封件和防水件。
在户外电气设备中,橡胶绝缘材料能够有效地抵御日晒雨淋和氧化腐蚀,保障设备的安全和可靠运行。
塑料是另一种常见的绝缘材料,它具有优良的绝缘性能和耐化学腐蚀性能,能够在高温和潮湿环境中保持稳定的绝缘性能。
塑料通常用于制造绝缘子、绝缘胶带、绝缘板等电气设备和器件,以及电线电缆的绝缘层和外护套。
在现代电子器件中,各种高性能塑料材料被广泛应用于绝缘材料,以满足小型化、轻量化和高频化的需求。
玻璃和陶瓷是常用的高温绝缘材料,它们具有优异的耐高温性能和耐热性能,能够在高温环境中保持稳定的绝缘性能。
玻璃通常用于制造绝缘子、绝缘套管、绝缘杯等高压电气设备和电子器件,以及高温炉窑、电炉等工业设备的绝缘材料。
陶瓷通常用于制造绝缘子、绝缘管、绝缘瓷件等高温电气设备和电子器件,以及航空航天、军工等领域的高温绝缘材料。
除了上述常见的绝缘材料外,还有许多新型的绝缘材料正在不断涌现,如纳米复合材料、聚合物复合材料、高分子复合材料等,它们具有优异的绝缘性能、耐热性能和耐化学腐蚀性能,能够满足现代电气设备和电子器件对绝缘材料的高性能要求。
总的来说,绝缘材料在电气设备和电子器件中起着不可替代的作用,它们的选择和使用直接关系到设备的安全和可靠性。
随着科技的不断进步和创新,新型的绝缘材料将不断涌现,为电气设备和电子器件的发展提供更加可靠和高性能的绝缘保障。
关于交联聚乙烯绝缘电缆常见的问题及其原因分析

关于交联聚乙烯绝缘电缆常见的问题及其原因分析一、交联的三种方式1、交联电缆性能交联就是将聚乙烯的线型分子结构通过化学交联或高能射线的辐照交联,转变成立体网状分子结构。
从而大大地提高了它的耐热性和耐环境应力开裂,减少了它的收缩性,使其受热以后不再熔化。
交联聚乙烯绝缘电缆其长期允许工作温度可达90βc o2、交联方法交联绝缘的品种虽多,但主要分为物理交联和化学交联两大类。
物理交联也称为辐照交联一般适用于绝缘厚度较薄的低压电缆。
中高压电缆一般采用过氧化物交联即用化学交方法是将线性分子通过化学交联反应起来,转化为立体网状结构。
化学交联一般还可分为过氧化物交联和硅烷交联接枝交联两种。
2.1 辐照交联辐照是采用高能粒子射线照射线性分子聚合物,在其链上打开若干游离基团,简称为接点。
接点活性很大,可把两个或几个线性分子交叉联接起来。
它的优点为:生产速度快,占用空间小;可加工材料种类多,几乎所有聚合物,产品品种多;产品用更好的耐热、耐磨和较高电气性能;可阻燃;电耗低。
但存在一些问题:设备一次投资大;对大截面电缆的辐照不均匀,经反复照射后电缆弯曲次数太多;设备开工率低。
2.2 过氧化物交联交联聚乙烯料是以低密度聚乙烯、过氧化物交联剂,抗氧剂等组成的混合物料。
加热时,过氧化物分解为化学活性很高的游离基,这些游离基夺取聚乙烯分子中的氢原子,使聚乙烯主链的某些碳原子为活性游离基并相互结合,即产生C-C交联键,形成了网状的大分子结构。
它主要优点是适合各种电压等级和各种截面的交联聚乙烯绝缘电力电缆生产,特别是35kV及以上的中高压电缆。
2.3 硅烷交联硅烷交联又称温水交联也是化学交联的一种,它有两步法、一步法和共聚法等多种方法。
硅烷接枝和挤出分在两道工序进行的称为二步法,硅烷接枝交联工艺,它是接枝和挤出分成两个工序进行,第一步由绝缘料厂将硅烷交联剂与基料在挤出机上接枝和挤出造粒,该料称为A料,同时还提供催化剂和着色剂的母料,称B料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)具有非常良好的阻燃性能,故 PVC 绝缘电线极易达到各类标准规 定的阻燃等级。
3)在耐温方面,通过对材料配方优化改进,目前常用的 PVC 绝缘类型主 第 1 页 共 10 页
但是,凭借其优良的加工性能和低廉的成本。 PVC 线缆在家用电器, 照明灯饰,机械装备,仪器仪表,网络通讯, 楼宇布线等领域仍得到广泛的使 用。
二) 交联聚乙烯电线电缆绝缘 交联聚乙烯(Cross-linke PE,以下简称 XLPE)是聚乙烯受到高能射线
或交联剂的作用,在一定条件下能从线型分子结构转变成体型三维结构。同 时由热塑性塑料转变成不溶的热固性塑料。目前在电线电缆绝缘运用中,主 要交联方法有三种:
对于 UL758 系列的电子线及高温特种线,其主要绝缘材料为聚氯乙烯、 交联聚烯烃、硅橡胶和氟塑料等。由于不同绝缘材料之间的差异,在电线 电缆生产和线材加工方面呈现各自不同的特点,充分认识这些特点,将有 利于材料的选型和产品质量的控制。 一) PVC 聚氯乙烯电线电缆绝缘
PVC 聚氯乙烯(以下简称 PVC)绝缘材料是在 PVC 粉中添加稳定剂、 增塑剂、阻燃剂、润滑剂及其它助剂的混合物。针对电线电缆不同应用与不 同的特性需求,其配方做相应的调整。经过几十年的生产和使用,目前 PVC 制造及加工技术已经非常成熟。PVC 绝缘材质在电线电缆领域有着非常广 泛的应用,并有着显著的自身特点:
常见电线电缆绝缘材料优缺点分析
其使用: 1)耐热粘连性能较差。在超过电线额定温度情况下加工使用电线,容
易造成电线之间相互粘连情况,严重可导致绝缘破皮形成短路. 2)耐热切通性能较差。在超过 200℃的温度下,电线绝缘变的异常柔软,
受外力挤压碰撞容易导致电线切通短路. 3)批次之间色差难控制。加工过程易刮花发白,印字脱落等问题 4)耐温等级 150℃XLPE 绝缘,做到完全不含卤素并且能通过 UL1581 规
能见度,并产生一些致癌物质和 HCl 气体,对环境造成严重危害。随着低烟
无卤绝缘材料制造技术的发展,逐步取代 PVC 绝缘已成为线缆发展的必
然趋势。目前一些有影响力及社会责任感较强的企业,在公司技术标准中明
确提出了替代 PVC 材料的时间表。
第 2 页 共 10 页
常见电线电缆绝缘材料优缺点分析
2) 普通 PVC 绝缘耐酸碱,耐热油,耐有机溶剂性能较差,根据相似相溶 的化学原理,PVC 线材极易在所述特定环境中出现破损和开裂。
柔韧性优良,可以超薄壁绝缘电线生产, XLETFE 可长期在 200℃环境下工作, 优良耐腐蚀和机械性能,在航空和航天 领域使用广泛. 柔韧性良好,超薄绝缘,替代漆包线使用
常见电线电缆绝缘材料优缺点分析
摘要 绝缘材料性能的优劣直接影响电线电缆的质量、加工效率、应用范围。结合多年电
线电缆设计开发与生产经验,笔者将对常用电线电缆绝缘材料性能之优缺点作简要分析, 旨在与业界共同探讨,并逐步缩短与国际线缆方面的差距。
鉴于现行的国际标准众多,本文将重点从 UL 标准角度作集中描述,权当抛砖引玉, 不周之处,请业界同仁不吝赐教。 关键词:电子线、高温特种线
3)硅橡胶具有很高的电阻率且在很宽的温度和频率范围内其阻值保持 稳定。同时硅橡胶对高压电晕放电和电弧放电具有很好的抵抗性。
硅橡胶绝缘电线电缆具有以上一系列优点,在电视机高压装置线、微波 炉耐高温用线、电磁炉用线、咖啡壶用线、灯具引线、UV 设备、卤素灯 具、烤炉和风扇内部连接线等特别是小家电领域有着广泛的应用,但自身一 些缺点也限制更广泛的运用。如
以上三种不同的交联方式,具有不同的特点和应用(见表 II): 第 3 页 共 10 页
常见电线电缆绝缘材料优缺点分析
表 II
交联类别 过氧化物交联
硅烷交联
辐照交联
特点
交联过程中要严格控制 温度,通过热蒸汽交联 管道,产生交联. 硅烷交联可采用通用的 设备,挤出不受温度限 制,接触水分即开始交 联,温度越高交联速度 越快. 因辐射源能量的关系, 用于不太厚绝缘, 绝缘 太厚时,易存在照射不 均匀现象.
范的 VW-1 燃烧实验,并保持优良的机械电气性能,在制造技术上还存在一 定瓶颈,成本高昂。
5)该类材料绝缘线材在电子电器连接线方面,尚无国家相关标准。 三) 硅橡胶(Silicone rubber)电线电缆绝缘
硅橡胶亦聚物分子是由 SI-O(硅-氧)键连成的链状结构。SI-O 键是 443.5KJ/MOL,比 C-C 键能(355KJ/MOL)高得多。硅橡胶电线电缆大 部分采用冷挤和高温硫化工艺,在众多的合成橡胶电线电缆中,因其独 特分子结构,使得硅橡胶比其他普通橡胶具有更优良的性能:
所以线束加工时应注意:压轮压力不可过大,最好使用胶材质,防止 生产过程中压裂导致耐压不良。同时需注意:玻璃纤维纱在生产过程中需 采取必要的防护措施,防止吸入肺部,影响员工健康。 四) 交联三元乙丙烯橡胶(XLEPDM)电线绝缘
交联三元乙丙烯橡胶,是由乙烯、丙烯以及非共轭二烯烃的三元共聚 物,通过化学或者辐照方式交联。交联三元乙丙橡胶绝缘电线综合聚烯烃绝 缘电线和普通橡胶绝缘电线两种电线的优点:
4)在额定电压方面,一般使用于额定 1000V AC 及其以下电压等级,
可广泛应用于家用电器、仪器仪表、照明、网络通讯等行业。
5)琦富瑞塑胶事业部成功开发的无毒无味 PVC 绝缘线,广泛使用于
空调,冰箱等电器配线。
PVC 也有一些自身缺点,限制了其使用:
1) 由于含有大量氯元素,燃烧时会散发出大量浓烟会让人窒息,影响
第 8 页 共 10 页
常见电线电缆绝缘材料优缺点分析
表 III 名称 PTFE PFA FEP
(XL)ETFE PVDF
额定温度(最大) 250℃ 250℃ 200℃
150℃ 150℃
特性及其应用
燃烧后无残留,热温度性好,军事上有广 泛应用,连续加工困难,接头多,效率低 热稳定性好,相对 PTFE 易加工,主要应 用高温导线,成本较高. 可长期在 200℃环境下工作,相对 PTFE 易加工,在电子连接线领域使用最为广 泛
电机引线,变压器引线,矿山移动电缆,钻探,汽车,医疗器械,船泊以 及一般的电器内部布线等领域都有运用。
XLEPDM 电线主要缺点是: 1)同 XLPE 和 PVC 电线,抗撕裂能力较差。 2)粘合性和自粘性较差,影响后续加工性。 五) 氟塑料(Fluoroplastic)电线电缆绝缘 相对于常见的聚乙烯、聚氯乙烯电缆而言,氟塑料电缆有着如下突出 特点: 1)耐高温 氟塑料有着超乎寻常的热稳定性,使得氟塑料电缆能适应 150~250℃的 高温环境。在同等截面导体的条件下,氟塑料电缆可以传输更大的许用电流, 从而大大提高了该类绝缘线材的使用范围。由于这种独特的性能,氟塑料电 缆常用于飞机、舰艇、高温炉以及电子设备的内部布线、引接线等。 2)阻燃性好 氟塑料的氧指数高,燃烧时火焰扩散范围小,产生的烟雾量少。用其制
应用 适用于生产高电压、大长度、 大截面电缆, 生产小规格浪 费多. 适用于小尺寸、小规格、低 电压的电缆。交联反应要在 有水或潮气的条件下才会完 成, 适用于低压电缆的生 产. 适用于绝缘厚度不太厚,耐 高温阻燃电缆.
XLPE 绝缘与热塑性聚乙烯比较,有以下优点: 1)提高了耐热变形性,改善了高温下的力学性能,改进了耐环境应力龟 裂与耐热老化的性能. 2)增强了耐化学稳定性和耐溶剂性,减少了冷流性,基本保持了原来的 电气性能,长期工作温度可达 125℃和 150℃,交联聚乙烯绝缘的电线电缆,也 提高了短路的承受能力,其短时承受温度可达 250℃,同样厚度的电线电缆, 交联聚乙烯的载流量就大得多.
1)抗撕裂能力差。加工或使用过程中受外力挤压,刮磨易破损,造成 短路。目前的防护措施是是在硅胶绝缘外加上玻璃纤维或者高温聚酯纤维 编织层,但加工过程中仍需尽可能避免外力挤压所致的伤害。
2)硫化成型添加的硫化剂目前主要使用双二四。该硫化剂含有氯元素, 完全无卤素的硫化剂(如铂金硫化)对生产环境温度要求严格,而且成本高 昂。
在电子仪器中,有不少接线是采用焊接方法进行连接,由于一般塑料的熔 融温度低,在高温时易融化,需要熟练的焊接技术,而有些焊点必须要有一定 的焊接时间,这也成为氟塑料电缆受到欢迎的原因。如通信设备和电子仪器的 内部接线。
氟塑料系列绝缘材料在电线电缆领域有着广泛运用,参考 UL1581、UL758 规 定,电线电缆中常使用的氟塑料绝缘(见表 III):
1)柔软、曲挠、弹性、高温不粘连、长期的耐老化性、耐恶劣的气
第 6 页 共 10 页
常见电线电缆绝缘材料优缺点分析
候(-60~125℃)。 2)耐臭氧、耐紫外线、耐电气绝缘性能、耐化学腐蚀性。 3)耐油和耐溶剂性能与通用型氯丁橡胶绝缘不相上下,普通热挤出的加
工设备进行加工,采用辐照交联,加工简便、成本低廉。 交联三元乙丙橡胶绝缘电线有上述诸多优点,在制冷压缩机引线,防水
1) 过氧化物交联。是先用聚乙烯树脂配合适当的交联剂和抗氧剂,根 据需要添加其它成份,制成可交联的聚乙烯混合物颗粒。挤出过程中,通 过热蒸汽交联管道产生交联。
2)硅烷交联(温水交联)。也是一种化学交联的方法,其主要机理是将 有机硅氧烷和聚乙烯在特定的条件下产生交联,交联度一般能达到 60%左 右。
3)辐照交联是利用高能射线如 r 射线,α射线,电子射线等能量,使聚乙烯 大分子中的碳原子激发活性而交联,电线电缆常用的高能射线为电子加速器 产生的电子射线,因该交联是依靠物理能量进行的,故属物理交联。
电缆比较,氟塑料电缆的衰减更小,更适合于高频信号传输。当今电缆的使用 频率越来越高已经成为潮流,同时又由于氟塑料能耐高温,所以常用作传输通 信设备的内部接线、无线发射馈线与发射机之间的跳线和视频音频线。此外, 氟塑料电缆的介电强度、绝缘电阻好,适合作重要仪表仪器的控制电缆。