中考数学三角形复习题

合集下载

中考数学复习《全等三角形》专题(卷1)

中考数学复习《全等三角形》专题(卷1)

《全等三角形》中考复习一. 选择题1. 如图,AB=AC,点D,E分别在AB,AC上,添加下列条件,不能判定△ABE≅△ACD的是( )A.BD=CEB.∠BDC=∠BECC.∠ACD=∠ABED.BE=CD2. 如下图,在△ABC中,∠C=90∘,∠B=30∘,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N 为圆心,大于12MN的长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D.则下列说法中正确的是()①AD是∠BAC的角平分线;②∠ADC=60∘;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.①②③④B.②③④C.①②D.①②③3. 如图,若△MNP≅△MEQ,则点Q应是图中的()A.点AB.点BC.点CD.点D4. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图①,若运动方向相反,则称它们是镜面合同三角形如图②,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合如图①,两个镜面合同三角形要重合,则必须将其中一个翻转180∘如图②,下列各组合同三角形中,是镜面合同三角形的是( )A. B. C. D.5. 对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理6. 如图,已知∠AOB,用直尺和圆规按照以下步骤作图:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画射线O′A′,以O′为圆心,OC的长为半径画弧,交O′A′于点C′③以C′为圆心,CD的长为半径画弧,与第②步中所画的弧相交于点D′④过点D′画射线O′B′根据以上操作,可以判定△OCD≅ΔO′C′D′,其判定的依据是()A.SSSB.SASC.ASAD.HL7. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD//OA交OB于点D,点I是△OCD 的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.180∘−βB.180∘−12β C.90∘+12β D.90∘+β8. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块二. 填空题三角形具有稳定性,所以要使六边形木架不变形,至少要钉上________根木条.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于12AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,−a+8),则a=________.如图,在菱形ABCD中,已知AB=4,∠ABC=60∘,∠EAF=60∘,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∼△EFC;④若∠BAE=15∘,则点F到BC的距离为2√3−2.正确序号________.如图,△ABC中,点A的坐标为(0, 1),点C的坐标为(4, 3),如果要使△ABD与△ABC全等,那么点D的坐标是________.三. 解答题如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE//CD,∠A=12∠C,∠B=120∘.(1)∠D+∠E=________度;(2)求∠A的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上________根相同宽度的木条.根据要求完成下列各题.(1)如图1,在∠AOB的内部有一点P.①过点P画直线PC//OA交OB于点C;②过点P画直线PD⊥OA,垂足为D.(2)如图2,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E在下面解答中填空.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠________=90∘(________),∴AB//CD(________)∵∠1=∠2(已知),∴AB//EF(________),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(________)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF= BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.(3)当△ABC满足________条件时,四边形AFBD是正方形?(直接写出结论,不用说明理由)一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案)参考答案与试题解析一. 选择题1.【答案】D【解析】欲使△ABE≅△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.2.【答案】A【解析】①连接NP,MP,根据SSS定理可得△ANP≅△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30∘,根据直角三角形的性质可知∠ADC=60∘;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30∘,CD=12AD,再由三角形的面积公式即可得出结论.3.【答案】D【解析】此题暂无解析4.【答案】B【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.5.【答案】B【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.6.【答案】A【解析】此题暂无解析7.【答案】B 【解析】此题暂无解析8.【答案】B【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.二. 填空题【答案】3【解析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【答案】2【解析】此题暂无解析【答案】①②【解析】①只要证明△BAE≅△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.【答案】(4, −1)或(−1, 3)或(−1, −1)【解析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.三. 解答题【答案】180(2)五边形的内角和为(5−2)×180∘=540∘,由(1)可知,∠D+∠E=180∘,又∠B=120∘,∠A=12∠C.设∠A=x,则∠C=2x,∴∠A+∠B+∠C+∠D+∠E=540∘,即x+120∘+2x+180∘=540∘,解得x=80∘,∴∠A=80∘.2【解析】(1)根据平行线性质,两直线平行同旁内角互补即可得到180∘.先由AE//CD,根据平行线的性质得出∠E+∠D=180∘.再根据∠B=120∘,∠A=12∠C,设∠A=x∘,则∠C=2x∘.利用五边形的内角和为540∘列出方程x+120+2x+180=540,求解即可.根据五边形不具有稳定性,而三角形具有稳定性即可求解.【答案】解:(1)①如图,直线PC即为所求;②如图,直线PD即为所求;(2)解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠CDF=90∘(垂直的定义),∴AB//CD(同位角相等,两直线平行)∵∠1=∠2(已知),∴AB//EF(内错角相等,两直线平行),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(两直线平行,同位角相等)【解析】此题暂无解析【答案】解:(1)BD=CD.理由如下:依题意得AF // BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,{∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≅△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF // BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90∘,∴四边形AFBD是矩形.AB=AC,∠BAC=90∘【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90∘,由等腰三角形三线合一的性质可知必须是AB=AC.【答案】解:在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.如图所示:【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.。

2023年中考数学二轮复习之三角形(含解析)

2023年中考数学二轮复习之三角形(含解析)

2023年中考数学二轮复习之三角形一.选择题(共8小题)1.(2022秋•长沙县期末)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD =120°,则∠A=( )A.40°B.60°C.80°D.120°2.(2022秋•裕华区期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=2,EC=1,则BC的长是( )A.2B.3C.4D.53.(2022秋•长沙县期末)如图,在△ABC中,AB边上的垂直平分线分别交边AC于点E,交边AB于点D,若AC=14cm,BE=8cm,则EC的长为( )A.8cm B.6cm C.4cm D.2cm4.(2022秋•武汉期末)在等腰△ABC中,∠A=80°.则∠B的度数不可能为( )A.55°B.50°C.80°D.20°5.(2022秋•洪山区期末)如图,在△ABC中,∠B=∠C,D为BC边上的一点,点E在AC 边上,∠ADE=∠AED,若∠BAD=24°,则∠CDE的度数为( )A.12°B.14°C.16°D.24°6.(2022秋•裕华区期末)如图,CD⊥AB于点D,EF⊥AB于点F,CD=EF.要根据HL 证明Rt△ACD≌Rt△BEF,则还需要添加的条件是( )A.∠A=∠B B.∠C=∠E C.AD=BF D.AC=BE 7.(2022秋•鄞州区校级期末)如图,△AOB≌△ADC,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为( )A.α=βB.α=2βC.α+β=90°D.α+2β=180°8.(2022秋•镇海区校级期末)如图,分别以直角三角形的三边向外作等边三角形,然后将较小的两个等边△AFG和△BDE放在最大的等边△ABC内(如图),DE与FG交于点P,连结AP,FE.欲求△GEC的面积,只需要知道下列哪个三角形的面积即可( )A.△APG B.△ADP C.△DFP D.△FEG二.填空题(共8小题)9.(2022秋•海口期末)在三角形纸片ABC中,∠C=90°,AC=8,BC=6,若沿AB的垂直平分线DE线剪下(如图所示),则DE的长为 .10.(2022秋•海口期末)如图,在△ABC中,∠A=90°,BD平分∠ABC,BC=12,AD=4,则△DBC的面积为 .11.(2022秋•龙华区校级期末)如图,在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径向外作半圆,半圆的面积分别记为S1,S2,则S1+S2的值为 .12.(2022秋•武汉期末)下列结论:①两条边和一个角分别对应相等的两个三角形全等;②线段垂直平分线上的点到这条线段两个端点的距离相等;③a0=1;④0.00003用科学记数法表示为3×10﹣5;⑤无论a取何值,代数式(2a﹣1)2+8a的值都一定为非负数.其中正确的结论有: (将正确结论的序号填在横线上).13.(2022秋•裕华区期末)在等腰△ABC中,AC为腰,O为BC中点,OD∥AC交AB于点D,∠C=30°,则∠ADO的度数是 .14.(2022秋•龙华区校级期末)如图,在△ABC中,AB=AC,∠BAC=45°,AD、CE都是△ABC的高,它们交于点H,若BD=5,则AH的长为 .15.(2022秋•洪山区期末)如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC 的平分线分别交AC,AD于E,F两点,M为EF的中点,延长AM交BC于点N,连接DM.则下列结论:①AE=AF,②AM=DM,③DF=DN,④AF=EC;其中正确的有 .(填写正确结论的序号)16.(2022秋•南通期末)如图,Rt△ABC中,∠C=90°,BC>AC,以AB,BC,AC三边为边长的三个正方形面积分别为S1,S2,S3.若△ABC的面积为7,S1=40,则S2﹣S3的值等于 .三.解答题(共4小题)17.(2022秋•叙州区期末)如图,点B、E、C、F在一条直线上,AC∥DF,AC=DF.请你添加一个适当的条件: ,使得△ABC≌△DEF.结合所添加的条件证明△ABC≌△DEF.18.(2022秋•莲湖区期末)如图,在△ABC中,∠ACB=3∠B,AD平分∠BAC,CE⊥AD 于点E,若∠BAC=60°,求∠DCE的度数.19.(2022秋•南昌期末)如图,∠CAB和∠CBA的角平分线AF,BD相交点P,∠C=60°.(1)直接写出∠APB= °;(2)求证PD=PF;(3)若∠ABC=80°,求证AP=BC.20.(2022秋•武汉期末)(1)【问题背景】如图1,已知AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE.求证:△ABC≌△ADE;(2)【运用探究】如图2,△ABC与△ADE都是等边三角形,直线DE经过BC边的中点F,连接BD.求证:BD⊥AD;(3)【创新拓展】如图3,△ABC与△ADE都是等边三角形,直线DE经过BC边的中点F,连接CE,使DE=CE,连接BD.若P为△ABD内一点,当AP=AD,PB=PD时,直接写出∠PAD的度数 .(不需要写出求解过程)变式:【运用探究】如图2,△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,∠BAC =∠DAE,直线DE经过BC边的中点F,连接BD.求证BD⊥AD.2023年中考数学二轮复习之三角形参考答案与试题解析一.选择题(共8小题)1.(2022秋•长沙县期末)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD =120°,则∠A=( )A.40°B.60°C.80°D.120°【考点】三角形的外角性质;三角形内角和定理.【专题】三角形;推理能力.【分析】由∠A=∠ACD﹣∠B,直接可得答案.【解答】解:∵∠B=40°,∠ACD=120°,∴∠A=∠ACD﹣∠B=120°﹣40°=80°,故选:C.【点评】本题考查的是三角形的外角的性质,掌握“三角形的一个外角等于和其不相邻的两个内角之和”是解本题的关键.2.(2022秋•裕华区期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=2,EC=1,则BC的长是( )A.2B.3C.4D.5【考点】线段垂直平分线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】根据线段垂直平分线的性质可得BE=AE=2,进一步可得BC的长.【解答】解:∵AB的垂直平分线分别交AB、BC于点D、E,∴BE=AE,∵AE=2,∴BE=2,∵EC=1,∴BC=BE+EC=3.故选:B.【点评】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.3.(2022秋•长沙县期末)如图,在△ABC中,AB边上的垂直平分线分别交边AC于点E,交边AB于点D,若AC=14cm,BE=8cm,则EC的长为( )A.8cm B.6cm C.4cm D.2cm【考点】线段垂直平分线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】根据线段的垂直平分线的性质可得AE=BE=8 cm,从而可得解.【解答】解:∵DE是AB垂直平分线,∴AE=BE=8(cm),∴EC=AC﹣AE=14﹣8=6(cm),故答案为:B.【点评】本题主要考查垂直平分线的性质,熟记垂直平分线的性质(垂直平分线上的点到线段两个端点的距离相等)是解决本题的关键.4.(2022秋•武汉期末)在等腰△ABC中,∠A=80°.则∠B的度数不可能为( )A.55°B.50°C.80°D.20°【考点】等腰三角形的性质;三角形内角和定理.【专题】等腰三角形与直角三角形;推理能力.【分析】分∠A是顶角和底角两种情况分类讨论求得∠B的度数即可确定正确的选项.【解答】解:当∠A为顶角,;当∠B是顶角,则∠A是底角,则∠B=180°﹣80°﹣80°=20°;当∠C是顶角,则∠B与∠A都是底角,则∠B=∠A=80°,综上所述,∠B的度数为50°或20°或80°.故选:A.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.5.(2022秋•洪山区期末)如图,在△ABC中,∠B=∠C,D为BC边上的一点,点E在AC 边上,∠ADE=∠AED,若∠BAD=24°,则∠CDE的度数为( )A.12°B.14°C.16°D.24°【考点】三角形内角和定理.【专题】三角形;推理能力.【分析】根据三角形的外角性质得到∠ADC=∠B+∠BAD=∠ADE+∠CDE,∠AED=∠C+∠CDE,再根据题设条件得到2∠CDE=∠BAD即可求解.【解答】解:∵∠ADC是△ABD的一个外角,∴∠ADC=∠B+∠BAD=∠ADE+∠CDE,∵∠AED是△CDE的一个外角,∴∠AED=∠C+∠CDE,∵∠ADE=∠AED,∠B=∠C,∴∠C+∠BAD=∠C+∠CDE+∠CDE,∴2∠CDE=∠BAD=24°,∴.故选:A.【点评】本题考查三角形内角和定理及三角形外角的性质、角的运算,熟练掌握三角形的外角性质是解答的关键.6.(2022秋•裕华区期末)如图,CD⊥AB于点D,EF⊥AB于点F,CD=EF.要根据HL 证明Rt△ACD≌Rt△BEF,则还需要添加的条件是( )A.∠A=∠B B.∠C=∠E C.AD=BF D.AC=BE【考点】直角三角形全等的判定;全等三角形的判定.【专题】等腰三角形与直角三角形;推理能力.【分析】根据直角三角形全等的判定方法进行判断.【解答】解:∵CD⊥AB于点D,EF⊥AB于点F,∴∠ADC=∠BFE=90°,∵CD=EF,∴当添加AC=BE时,根据“HL”判断Rt△ACD≌Rt△BEF.故选:D.【点评】本题考查了直角三角形全等的判定:斜边和一条直角边对应相等的两个直角三角形全等.7.(2022秋•鄞州区校级期末)如图,△AOB≌△ADC,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为( )A.α=βB.α=2βC.α+β=90°D.α+2β=180°【考点】全等三角形的性质.【专题】图形的全等;推理能力.【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.【解答】解:∵△AOB≌△ADC,∴AB=AC,∠BAO=∠CAD,∴∠BAC=∠OAD=α,在△ABC中,,∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴,整理得,α=2β.故选:B.【点评】本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,解题的关键是熟记各性质并准确识图理清图中各角度之间的关系.8.(2022秋•镇海区校级期末)如图,分别以直角三角形的三边向外作等边三角形,然后将较小的两个等边△AFG和△BDE放在最大的等边△ABC内(如图),DE与FG交于点P,连结AP,FE.欲求△GEC的面积,只需要知道下列哪个三角形的面积即可( )A.△APG B.△ADP C.△DFP D.△FEG【考点】等边三角形的性质.【专题】三角形;推理能力.【分析】先根据勾股定理得S△ABC=S△AFG+S△BDE,FG∥BC,CG∥PE,则四边形CEPG 是平行四边形,再由S四边形ECGP=S△DFP,可以得到.【解答】解:由题意得S△ABC=S△AFG+S△BDE,FG∥BC,CG∥PE,∴四边形CEPG是平行四边形,∴,∵S△ABC=S△AFG+S四边形BFPE+S四边形ECGP,∴S四边形ECGP=S△DFP,∴.故选:C.【点评】本题主要考查的是等边三角形的性质及以直角三角形三边组成的图形的面积,平行四边形的性质与判定,解题的关键在于能够正确理解题意.二.填空题(共8小题)9.(2022秋•海口期末)在三角形纸片ABC中,∠C=90°,AC=8,BC=6,若沿AB的垂直平分线DE线剪下(如图所示),则DE的长为 .【考点】线段垂直平分线的性质.【专题】图形的相似;运算能力;推理能力.【分析】根据勾股定理可求出AB=10,由线段垂直平分线的性质可得∠ADE=90°,AD =BD,再证明△ADE∽△ACB,最后根据相似三角形的性质即可求解.【解答】解:∵∠C=90°,AC=8,BC=6,∴由勾股定理得,∵DE垂直平分线段AB,∴∠ADE=90°,AD=BD=5,∵∠A=∠A,∠ADE=∠C=90°,∴△ADE∽△ACB,∴,即,∴DE=.故答案为:.【点评】本题主要考查线段垂直平分线的性质、勾股定理、相似三角形的判定与性质,熟练掌握相似三角形的性质是解题关键.10.(2022秋•海口期末)如图,在△ABC中,∠A=90°,BD平分∠ABC,BC=12,AD=4,则△DBC的面积为 24 .【考点】角平分线的性质.【专题】线段、角、相交线与平行线;运算能力.【分析】过点D作DE⊥BC于点E,根据角平分线的性质可得AD=DE,根据△DBC的面积=即可求解.【解答】解:过点D作DE⊥BC于点E,如图,∵BD平分∠ABC,∠A=90°,DE⊥BC,∴AD=DE=4,∴==24.故答案为:24.【点评】本题主要考查角平分线的性质,正确作出辅助线,再借助角的平分线上的点到角的两边的距离相等是解题关键.11.(2022秋•龙华区校级期末)如图,在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径向外作半圆,半圆的面积分别记为S1,S2,则S1+S2的值为 2π .【考点】勾股定理.【专题】等腰三角形与直角三角形;与圆有关的计算;运算能力.【分析】根据图形得到,,根据勾股定理可以得出结论.【解答】解:由题意,得,,∵AC2+BC2=AB2,∴,故答案为:2π.【点评】此题考查勾股定理的应用,观察图形理解各部分图形的面积的关系,利用勾股定理解决问题是解题的关键.12.(2022秋•武汉期末)下列结论:①两条边和一个角分别对应相等的两个三角形全等;②线段垂直平分线上的点到这条线段两个端点的距离相等;③a0=1;④0.00003用科学记数法表示为3×10﹣5;⑤无论a取何值,代数式(2a﹣1)2+8a的值都一定为非负数.其中正确的结论有: ②④⑤ (将正确结论的序号填在横线上).【考点】全等三角形的判定与性质;线段垂直平分线的性质;非负数的性质:偶次方;科学记数法—表示较小的数;零指数幂.【专题】图形的全等;推理能力.【分析】根据全等三角形的判定定理、线段垂直平分线的性质、零指数幂的运算、科学记数法、完全平方公式,即可一一判定.【解答】解:①有两条边和它们的夹角分别对应相等的两个三角形全等,故该说法错误;②线段垂直平分线上的点到这条线段两个端点的距离相等,故该说法正确;③a0=1(a≠0),故该说法错误;④0.00003用科学记数法表示为3×10﹣5,故该说法正确;⑤无论a取何值,代数式(2a﹣1)2+8a=(2a+1)2的值都一定为非负数,故该说法正确,故其中正确的结论有:②④⑤,故答案为:②④⑤.【点评】本题考查了全等三角形的判定定理、线段垂直平分线的性质、零指数幂的运算、科学记数法、完全平方公式,熟练掌握和运用各运算的法则及各图形的性质是解决本题的关键.13.(2022秋•裕华区期末)在等腰△ABC中,AC为腰,O为BC中点,OD∥AC交AB于点D,∠C=30°,则∠ADO的度数是 60°或23.79° .【考点】三角形中位线定理;等腰三角形的判定与性质.【专题】三角形;推理能力.【分析】分AB=AC,AC=BC两种情况,利用等腰三角形的性质,勾股定理和三角函数的定义进行分析求解.【解答】解:如图,当AB=AC时,∵O为BC的中点,∴AO⊥BC,∵OD∥AC,∠C=30°,∴∠DOB=∠C=∠B=30°,∴∠AOD=∠OAC=60°;如图,当AC=BC时,过B作BE⊥OD,OF⊥BD,设OB=a,∴BC=AC=2a,∵O是BC的中点,OD∥AC,∴D为AB的中点,∠DOB=∠C=30°,∴,∵OF⊥AB,∴,∵∠DOB=30°,BE⊥OB,∴,∴,∴,∴,,∵,∴,∵,∴∠OAF≈51.21°,∴∠AOD=90°﹣∠OAF﹣∠DOF≈23.79°,故答案为:60°或23.79°.【点评】本题考查了等腰三角形的性质,解直角三角形,勾股定理的应用,直角三角形的性质等知识,运用分类讨论思想求解是解答本题的关键.14.(2022秋•龙华区校级期末)如图,在△ABC中,AB=AC,∠BAC=45°,AD、CE都是△ABC的高,它们交于点H,若BD=5,则AH的长为 10 .【考点】全等三角形的判定与性质.【专题】图形的全等;推理能力.【分析】根据等腰三角形的性质及全等三角形的判定得出△AEH≅△CEB,然后求解即可.【解答】解:∵AC=AB,AD⊥BC,∴BD=CD=5,BC=10,∵∠BAC=45°,CE⊥AB,∴AE=EC,∵∠BAD+∠B=90°,∠BAD+∠AHE=90°,∴∠AHE=∠B在△AEH和△CEB中,,∴△AEH≅△CEB(AAS),∴AH=BC=10.故答案为:10.【点评】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,证明△AEH≅△CEB(AAS)是解题的关键.15.(2022秋•洪山区期末)如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC 的平分线分别交AC,AD于E,F两点,M为EF的中点,延长AM交BC于点N,连接DM.则下列结论:①AE=AF,②AM=DM,③DF=DN,④AF=EC;其中正确的有 ①②③ .(填写正确结论的序号)【考点】全等三角形的判定与性质;等腰直角三角形;三角形中位线定理.【专题】图形的全等;推理能力.【分析】①证明∠AEB=∠AFE,即可得到AE=AF;②先根据ASA证明△ABM≌△NBM,则可得AM=MN.然后在Rt△ADN中,根据“直角三角形中斜边上的中线等于斜边的一半”即可得到AM=DM;③根据ASA证明△BDF≌△ADN,则可得DF=DN;④根据已知条件可判断AF≠EC.【解答】解:①∵BE平分∠ABC,∴∠ABE=∠DBF,∵∠BAE=90°,∴∠ABE+∠AEB=90°,∵∠ADB=90°,∴∠DBF+∠BFD=90°,∴∠AEB=∠BFD,又∵∠BFD=∠AFE,∴∠AEB=∠AFE,∴AE=AF,∴①正确.②∵AE=AF,M为EF的中点,∴AN⊥BE,∴∠BMA=∠BMN=90°,又∵BM=BM,∠ABM=∠NBM,∴△ABM≌△NBM(ASA),∴AM=MN,∴M是AN中点,在Rt△ADN中DM是斜边AN的中线,∴,∴AM=DM,∴②正确.③∵AD⊥BC,∴∠BDF=∠ADN=90°,∵△ABC中AB=AC,∠BAC=90°,∴,∴∠ABC=∠BAD,∴BD=AD,∵∠DBF+∠BNM=90°,∠DAN+∠BNM=90°,∴∠DBF=∠DAN,在△BDF和△ADN中,,∴△BDF≌△ADN(ASA),∴DF=DN,∴③正确.④BE平分∠ABC,但AE≠EC,∵AF=AE,∴④不正确.综上,正确的有①②③.故答案为:①②③.【点评】本题难度较大主要考查了等腰三角形的性质,全等三角形的判定和性质,以及直角三角形的性质,熟练掌握以上知识是解题的关键.16.(2022秋•南通期末)如图,Rt△ABC中,∠C=90°,BC>AC,以AB,BC,AC三边为边长的三个正方形面积分别为S1,S2,S3.若△ABC的面积为7,S1=40,则S2﹣S3的值等于 4 .【考点】勾股定理.【专题】等腰三角形与直角三角形;矩形菱形正方形;推理能力.【分析】结合正方形面积公式,平方差公式,勾股定理,三角形面积公式,可知,BC2+AC2=40,BC⋅AC=14,然后运用完全平方公式(a±b)2=a2+b2±2ab求解即可.【解答】解:根据题意,,,,∴,在Rt△ABC中,根据勾股定理,BC2+AC2=AB2,∴BC2+AC2=40,∵S Rt△ABC=7,∴•BC•AC=7,∴BC•AC=14,∴BC+AC====2,BC﹣AC===2,∴,即,故答案为:.【点评】本题考查勾股定理与三角形、正方形的面积,完全平方公式与平方差公式的灵活应用,掌握并熟练应用勾股定理和各类公式是解题的关键.三.解答题(共4小题)17.(2022秋•叙州区期末)如图,点B、E、C、F在一条直线上,AC∥DF,AC=DF.请你添加一个适当的条件: ∠A=∠D(答案不唯一) ,使得△ABC≌△DEF.结合所添加的条件证明△ABC≌△DEF.【考点】全等三角形的判定.【专题】图形的全等;推理能力.【分析】根据全等三角形的判定定理求解即可.【解答】解:添加∠A=∠D,∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),故答案为:∠A=∠D(答案不唯一).【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.18.(2022秋•莲湖区期末)如图,在△ABC中,∠ACB=3∠B,AD平分∠BAC,CE⊥AD 于点E,若∠BAC=60°,求∠DCE的度数.【考点】三角形内角和定理.【专题】三角形;推理能力.【分析】根据三角形内角和定理求得∠ACB+∠B,再由∠ACB=3∠B,求得∠ACB,根据角平分线定义求得∠CAD,由三角形内角和定理求得∠ACE,进而由角的和差求得结果.【解答】解:∵∠ACB+∠B+∠BAC=180°,∠BAC=60°,∴∠ACB+∠B=120°,∵∠ACB=3∠B,∴∠B=30°,∠ACB=90°,∵AD平分∠BAC,∴∠CAD=∠CAB=30°,∵CE⊥AD,∴∠ACE=90°﹣∠CAD=60°,∴∠DAE=∠ACB﹣∠ACE=30°.【点评】本题考查了三角形的内角和定理,角平分线定义,关键是根据三角形的内角和定理求得∠ACB的度数.19.(2022秋•南昌期末)如图,∠CAB和∠CBA的角平分线AF,BD相交点P,∠C=60°.(1)直接写出∠APB= 120 °;(2)求证PD=PF;(3)若∠ABC=80°,求证AP=BC.【考点】等腰三角形的判定.【专题】图形的全等;推理能力.【分析】(1)根据角平分线的定义得到,,再利用三角形内角和定理计算即可;(2)过P作PE⊥AB,PG⊥AC,PH⊥BC,根据角平分线的性质得到PE=PG,PE=PH,可得PH=PG,再证明△PDG≌△PFH(AAS),即可证明结论;(3)作∠CBD的平分线交AC于点N,则,先分别求出∠CAB,∠CBD,∠ABD,∠CAF,∠BDC,∠CBN,∠DBN,∠ANB的度数,得到AD=BD,∠ANB=∠BDC=80°,BD=BN,再根据AAS证明△APD≌△CBN即可证明结论.【解答】(1)解:∵AF,BD分别平分∠CAB和∠CBA,∴,,∴∠APB=180°﹣(∠PAB+∠PBA)===120°.故答案为:120;(2)证明:过P作PE⊥AB,PG⊥AC,PH⊥BC,∵AF,BD分别平分∠CAB和∠CBA,∴PE=PG,PE=PH,∴PH=PG,∵PH⊥BC,PG⊥AC,∴∠PGC=∠PHC=90°,∴∠GPH=360°﹣90°﹣90°﹣60°=120°,∴∠GPH=∠APB=120°=∠DPF,∴∠DPG=∠FPH,在△PDG和△PFH中,,∴△PDG≌△PFH(AAS),∴PD=PF;(3)证明:如图,作∠CBD的平分线交AC于点N,则,∵∠ABC=80°,∠C=60°,∴∠CAB=180°﹣60°﹣80°=40°,,∴,∠CAB=∠ABD=40°,∴AD=BD,∠BDC=∠CAB+∠ABD=80°,∴,∴∠ANB=∠C+∠CBN=60°+20°=80°,∴∠ANB=∠BDC=80°,∴BD=BN,∴AD=BN,在△APD和△BCN中,,∴△APD≌△CBN(AAS),∴AP=BC..【点评】本题考查了全等三角形的判定和性质,角平分线的性质,三角形的内角和,证明三角形全等是解题的关键.20.(2022秋•武汉期末)(1)【问题背景】如图1,已知AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE.求证:△ABC≌△ADE;(2)【运用探究】如图2,△ABC与△ADE都是等边三角形,直线DE经过BC边的中点F,连接BD.求证:BD⊥AD;(3)【创新拓展】如图3,△ABC与△ADE都是等边三角形,直线DE经过BC边的中点F,连接CE,使DE=CE,连接BD.若P为△ABD内一点,当AP=AD,PB=PD时,直接写出∠PAD的度数 30° .(不需要写出求解过程)变式:【运用探究】如图2,△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,∠BAC =∠DAE,直线DE经过BC边的中点F,连接BD.求证BD⊥AD.【考点】三角形综合题.【专题】几何综合题;推理能力.【分析】(1)由∠BAD=∠CAE,得∠BAC=∠DAE,利用SAS即可证明△ABC≌△ADE;(2)连接CE,延长DF至G,使DF=FG,连接CG,由(1)可知,△ABD≌△ACE,易知BD=CE,∠ADB=∠AEC,由F是BC边的中点,可得BF=FC,可证△BDF≌△CGF,可得BD=CG=CE,∠BDF=∠G,设∠CEF=α,可知∠G=∠CEF=∠BDF=α,∠AEC =∠AED+∠CEF=60°+α,由平角可得∠ADB=180°﹣(∠ADE+∠BDF),根据∠ADB =∠AEC,可得α=30°,进而可得∠ADB=90°,即得证BD⊥AD;(3)作PM⊥AD,PN⊥BD,垂足分别为M、N,易知△PMD≌△DNP,进而可得由(2)易证△ABD≌△ACE,,则AD=CE=BD=AP,则,如图①所示,作∠PMO=∠P交PA于点O,连接MO,可证△PMO为等边三角形,即可得∠A =30°,即得∠PAD=30°,(另外一种方法:如图②,延长PM至Q,使PM=MQ,连接AQ,可证△APQ是等边三角形,即可得∠PAM=30°即得∠PAD=30°);变式:由等腰三角形的性质可知∠ADE=∠AED,连接CE,延长DF至G,使DF=FG,连接CG,类比(1)(2)可证△ABD≌△ACE,△BDF≌△CGF,由平角可得∠ADB=90°,即得证BD⊥AD.【解答】(1)证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠CAC,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS);(2)连接CE,延长DF至G,使DF=FG,连接CG,由(1)可知,△ABD≌△ACE,∴BD=CE,∠ADB=∠AEC,∵F是BC边的中点,∴BF=FC,在△BDF和△CGF中,∵BF=FC,∠BFD=∠CFG,DF=FG∴△BDF≌△CGF(SAS),∴BD=CG=CE,∠BDF=∠G,设∠CEF=α,∴∠G=∠CEF=∠BDF=α,∠AEC=∠AED+∠CEF=60°+α,∵E、D、F在一条直线上,∴∠ADB=180°﹣(∠ADE+∠BDF)=180°﹣(60°+α)=120°﹣α,∵∠ADB=∠AEC,∴120°﹣α=60°+α,∴α=30°,∴∠ADB=120°﹣α=90°,∴∠ADB=90°,∴BD⊥AD;(3)作PM⊥AD,PN⊥BD,垂足分别为M、N,∴△PMD≌△DNP,∴PM=DN,∵PB=PD,∴,∵由(2)易证,△ABD≌△ACE,则AD=CE=BD=AP,∴,方法1:如图①所示,作∠PMO=∠P交PA于点O,连接MO,∴MO=PO,∵∠PMA=90°,∴∠P+∠A=∠PMO+∠AMO=90°,∴∠A=∠AMO,∴,∴△PMO为等边三角形,∴∠P=60°,∴∠A=30°,方法2:如图②,延长PM至Q,使PM=MQ,连接AQ.∵AM⊥PQPM=MQ,∴△APO是等腰三角形,∴AP=AQ,又∵,∴AP=2PM=AQ=PQ,∴△APQ是等边三角形,∴∠PAQ=60°,∴∠PAM=30°,故答案为:∠PAD=30°;变式:证明:∵△ABC与△ADE都是等腰三角形,∴AD=AE,即∠ADE=∠AED,连接CE,延长DF至G,使DF=FG,连接CG,类比(1)(2)可证△ABD≌△ACE,△BDF≌△CGF,∴∠ADB=∠AEC=∠AED+∠CEF,∠G=∠CEF=∠BDF,∴∠ADB=∠AED+∠CEF=∠ADE+∠BDF,又∵∠ADB+∠ADE+∠BDF=180°,∴∠ADB=90°,∴BD⊥AD.【点评】本题考查全等三角形的判定及性质,等腰三角形的性质,等边三角形的判定及性质,添加辅助线构造全等三角形是解决问题的关键.考点卡片1.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.2.科学记数法—表示较小的数用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【规律方法】用科学记数法表示有理数x 的规律 x 的取值范围表示方法a 的取值n 的取值|x |≥10a ×10n 整数的位数﹣1|x |<1a ×10﹣n 1≤|a |<10第一位非零数字前所有0的个数(含小数点前的0)3.零指数幂零指数幂:a 0=1(a ≠0)由a m ÷a m =1,a m ÷a m =a m ﹣m =a 0可推出a 0=1(a ≠0)注意:00≠1.4.三角形内角和定理(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.5.三角形的外角性质(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.6.全等三角形的性质(1)性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等说明:①全等三角形的对应边上的高、中线以及对应角的平分线相等②全等三角形的周长相等,面积相等③平移、翻折、旋转前后的图形全等(2)关于全等三角形的性质应注意①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.7.全等三角形的判定(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.8.直角三角形全等的判定1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.9.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.10.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE11.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段. ②垂直平分线上任意一点,到线段两端点的距离相等. ③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.12.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.13.等腰三角形的判定判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.14.等腰三角形的判定与性质1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖。

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷一、选择题(每小题3分,共36分)1.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°(第1题图)(第2题图)2.如图,平行线AB,CD 被直线EF 所截,过点B 作BG⊥EF 于点G,已知∠1=50°,则∠B=()A.20°B.30°C.40°D.50°3.如图,太阳光线与水平线成70°角,窗子高AB=2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC,使光线不能直接射入室内,则遮阳板DC 的长度至少是()A.米B.2sin70°米C.米D. 2.2cos70°米(第3题图)(第5题图)4.在Rt△ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tanB 的值是()A.B.3C.D.5.如图,每个小方格的边长为1,A,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且△ABC 是等腰三角形,那么点C 的个数为()A.1B.2C.3D.46.已知三角形三边长分别为2,x,13,若x 为正整数,则这样的三角形个数为()A.2B.3C.5D.137.如图,在Rt△ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.(第7题图)(第8题图)8.如图,在Rt△ABC 中,∠BAC=90°,∠ABC 的平分线BD 交AC 于点D,DE 是BC 的垂直平分线,点E 是垂足.已知DC=5,AD=2,则图中长为的线段有()A.4条B.3条C.2条D.1条9.如图,在△ABC 外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC 与△DEF 是位似图形B.△ABC 与△DEF 是相似图形C.△ABC 与△DEF 的周长比为1∶2D.△ABC 与△DEF 的面积比为4∶1(第9题图)(第10题图)10.如图,在数轴上有A,B,C,D 四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D 两点表示的数分别为-5和6,且AC 的中点为E,BD 的中点为M,BC 之间距点B 的距离为BC 的点为N,则该数轴的原点为()A.点EB.点FC.点MD.点N 11.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为()(第11题图)(第12题图)12.如图,在△ABC 中,∠ABC=∠C,将△ABC 绕点B。

2023年中考数学专题复习——三角形、全等三角形、等腰三角形自我评估

2023年中考数学专题复习——三角形、全等三角形、等腰三角形自我评估

2023年中考数学专题复习——三角形(一)自我评估(时间:分钟满分:100分)(班级:姓名:得分:)一、选择题(每小题3分,共30分)1. 以下列各组长度的线段为边,能构成三角形的是()A. 6 cm,8 cm,15 cmB. 7 cm,5 cm,12 cmC. 4 cm,6 cm,5 cmD. 8 cm,4 cm,3 cm2. 如图,AB∥DF,AC⊥CE于点C,BC与DF交于点E.若∠A=20°,则∠CEF等于()A. 110°B. 100°C. 80°D. 70°第2题图第3题图第4题图第5题图3. 将一副三角尺按如图方式重叠,则∠1的度数为()A. 45°B. 60°C. 75°D. 105°4. 如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A. AB=BCB. EC=BFC. ∠A=∠DD. AB=CD5. 如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D,AE∥BD,交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°6. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD,交AB于点E,则下列结论一定成立的是()A. BC=ECB. BC=BEC. EC=BED. AE=EC第6题图第7题图第8题图第9题图7. 如图,在△ABC中,AB=AC,D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A. 30°B. 36°C. 40°D. 45°8. 如图,在边长为12的等边三角形ABC中,D为边BC上一点,且BD=12CD,过点D作DE⊥AB于点E,F为边AC上一点,连接EF,DF,M,N分别为EF,DF的中点,连接MN,则MN的长为()A. 3B. 2C. 23D. 49. 如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上10. 如图,等边三角形A1C1C2的周长为1,作C1D1⊥A1C2于点D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边三角形A2C2C3;作C2D2⊥A2C3于点D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边三角形A3C3C4……且点A1,A2,A3,…,A n都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△A n C n C n+1(n≥2,且n为整数)的周长和为()A.11212nn---B.212nn-C.1212nn--D.1212nn+-第10题图二、填空题(每小题4分,共24分)11. 如图,∠1=∠2,BC=EC,请补充一个条件:能使用“AAS”方法判定△ABC≌△DEC.第11题图第12题图第13题图第14题图12. 如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是.13. 如图所示是由6个边长相等的正方形组合成的图形,∠1+∠2+∠3= °.14. 如图,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE.若∠EDM=84°,则∠A= °.15. 在探索数学名题“尺规三等分角”的过程中,有下列问题:如图,BD是ABCD的对角线,点E在BD 上,DC=DE=AE,∠1=25°,则∠C的大小是.第15题图第16题图16. 如图,在△ABC中,AD平分∠BAC,且AD=AC,E是AD延长线上一点,且AE=AB,过点E作EF ⊥AB于点F,则以下结论:①BD=EC;②∠ACE+∠BED=180°;③EC∥AB,④2AF=AC+AB;⑤△BEC 为等腰三角形.其中正确的有.(填序号)三、解答题(共46分)17.(8分)如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.第17题图18.(12分)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.第18题图19. (12分)图中是一副三角尺,含45°角的三角尺Rt△DEF的直角顶点D恰好在含30°角的三角尺Rt△ABC 斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE交AC于点G,GM⊥AB于点M.(1)如图①,当DF经过点C时,作CN⊥AB于点N,求证:AM=DN;(2)如图②,当DF∥AC时,DF交BC于点H,作HN⊥AB于点N,(1)的结论仍然成立,请你说明理由.①②第19题图20.(14分)(1)已知,△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°,如图①所示,求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变,如图②所示,(1)中的结论是否成立,并说明理由.①②第20题图三角形(一)自我评估一、1. C 2. A 3. C 4. D 5. A 6. B 7. B 8. A 9. D 10. C二、11. ∠A=∠D 12. 1 13. 135 14. 21 15. 105°16. ①②④⑤三、17. 证明:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD. 又AB=AE,∠B=∠E,所以△ABC≌△AED.所以BC=ED.18.(1)解:因为AB=AC,所以∠B=∠C=42°.因为AD⊥BC,所以∠ADB=90°.所以∠BAD=90°-∠B=90°-42°=48°.(2)证明:因为AB=AC,AD⊥BC,所以∠BAD=∠CAD.因为EF∥AC,所以∠F=∠CAD.所以∠BAD=∠F.所以AE=FE.19.(1)证明:因为∠ACB=90°,D是AB的中点,所以CD=AD=BD.因为∠B=90°-∠A=60°,所以△BCD是等边三角形.因为CN⊥DB,所以DN=12 DB.因为∠EDF=90°,△BCD是等边三角形,所以∠ADG=30°.因为∠A=30°,所以GA=GD.因为GM⊥AB,所以AM=12AD.所以AM=DN.(2)解:因为DF∥AC,所以∠FDB=∠A=30°,∠AGD=∠GDH=90°.所以∠ADG=60°.因为∠B=60°,AD=DB,所以△ADG≌△DBH.所以AG=DH.因为GM⊥AB,HN⊥AB,所以∠GMA=∠HND=90°.因为∠A=∠FDB,所以△AMG≌△DNH.所以AM=DN.20.(1)证明:如图①,过点D作DF∥BC,交AC于点F.因为△ABC是等腰三角形,∠A=60°,所以△ABC是等边三角形.所以∠ABC=60°.因为DF∥BC,所以∠ADF=∠ABC=60°,∠FDC=∠DCE.所以△ADF是等边三角形.所以AD=DF,∠AFD=60°.所以∠DFC=180°-60°=120°.因为∠EBD=180°-60°=120°,所以∠DFC=∠EBD.因为∠DCE=∠DEC,所以∠FDC=∠DEC,ED=CD.所以△DBE≌△CFD.所以EB=DF.所以EB=AD.①②第20题图(2)解:EB=AD成立.理由如下:如图②,过点D作DF∥BC,交AC的延长线于点F.同(1)可证△A D F是等边三角形.所以AD=DF,∠A FD=60°.因为∠DBE=∠A BC=60°,所以∠DBE=∠A FD.因为∠FD C=∠DCE,∠DCE=∠DEC,所以∠F DC=∠DEC,ED=CD.所以△DBE≌△CFD.所以EB=DF.所以EB=AD.。

中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2则△PBC的面积为().A.0.4 cm2B.0.5 cm2C.0.6 cm2D.不能确定6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB垂足分别为A,B,下列结论中不一定成立是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP7.如图,△ABC中∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数()①BP平分∠ABC ②∠ABC+2∠APC=180°③∠CAB=2∠CPB④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个8.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A.6 B.3 C.2 D.1.5二、填空题9.如图BA=BE,∠1=∠2要使△ABD≌△EBC还需添加一个条件是.(只需写出一种情况)10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.11.如图,在Rt△ABC,∠C=90°,E是AB上一点,且BE=BC,DE⊥AB于点E,若AC=8,则AD+DE的值为.12.如图,在△ABC中AB=AC,BF=CD,BD=CE,∠FDE=70°那么∠A的大小等于度.13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题14.如图,AD平分∠BAC,∠B=∠C.(1)求证:BD=CD;(2)若∠B=∠BDC=100°,求∠BAD的度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.18.如图,在△AOB和△COD中OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°连接AC、BD交于点M,连接OM.求证:(1)∠AMB=36°;(2)MO平分∠AMD.参考答案1.C2.C3.D4.B5.B6.D7.D8.D9.BD =BC 或∠A =∠E 或∠C =∠D (任填一组即可)10.411.812.4013.414.(1)证明:∵AD 平分∠BAC∴∠BAD =∠CAD .在△ABD 和△ACD 中{∠BAD =∠CAD ∠B =∠C AD =AD∴△ABD ≌△ACD(AAS)∴BD =CD .(2)解:由(1)得:△ABD ≌△ACD∴∠C =∠B =100°,∠BAD =∠CAD∵∠BAC +∠B +∠BDC +∠C =360°∴∠BAC =60°∴∠BAD =30°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )∴BC =DC ;(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:∵△ABD 、△AEC 都是等边三角形∴AD=AB ,AC=AE ,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°∵∠DAB=∠DAC+∠CAB ,∠CAE=∠BAE+∠CAB∴∠DAC=∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC ≌△BAE∴CD=BE(2)解:∵△DAC ≌△BAE∴∠ADC=∠ABE∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°18.(1)解:证明:∵∠AOB=∠COD=36°∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD 在△AOC和△BOD中{OA=OB ∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴∠OAC=∠OBD∵∠AEB是△AOE和△BME的外角∴∠AEB=∠AMB+∠OBD=∠AOB+∠OAC∴∠AMB=∠AOB=36°;(2)解:如图所示,作OG⊥AC于G,OH⊥BD于H∴OG是△AOC中AC边上的高,OH是△BOD中BD边上的高由(1)知:△AOC≌△BOD∴OG=OH∴点O在∠AMD的平分线上即MO平分∠AMD.。

2023年中考数学(人教版)总复习训练:全等三角形

2023年中考数学(人教版)总复习训练:全等三角形

2023年中考数学(人教版)总复习训练:全等三角形一、选择题(本大题共10小题,每小题4分,满分40分)1. (2021重庆A卷)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不等判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD2. (2020安顺模拟)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A.∠B=∠CB.AD=AEC.BD=CED.BE=CD3. (2020秋•乐亭县期末)已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°4. (2021·重庆A)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD5. (2021·重庆B)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D6. (2020秋•二道区期末)如图,在△ABC中,∠B=80°,∠C=30°.若△ABC≌△ADE,∠DAC=35°,则∠EAC的度数为( )A.40°B.35°C.30°D.25°7. (2022·安徽·宣城市宣州区卫东学校一模)如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是( )A. B. C. D.8. (2022七下·万州期末)如图,△ABC≌△CED,点D在BC边上,∠A+∠E=90o,EC、ED与AB交于点F、G,则下列结论不正确的是( )A.AC=CDB.∠ACB=90oC.AB⊥CED.EG=BG9. (2021·盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS10. (2021·威海)如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二、填空题(本大共8小题,每小题5分,满分40分)11. (2022北京市第五中学分校)如图,已知BE=DC,请添加一个条件,使得△ABE ≌△ACD:_____.12. (2021齐齐哈尔)如图,AC=AD,∠1=∠2,要使ABC AED△△,应添加的条件是≌______(只需写出一个条件即可)13. (2022北京丰台)如图,点B,E,C,F在一条直线上,BC=EF,∠B=∠DEF.只需添加一个条件即可证明△ABC≌△DEF,这个条件可以是 _____(写出一个即可).14. (2020·怀化模拟)如图,AC=DC,BC=EC,请你添加一个适当的条件: ,使得△ABC≌△DEC.15. (2020·黔东南模拟)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.16. (2022北京门头沟)如图,点P在直线AB外,点A、B、C、D均在直线AB上,如果AC=BD,只需添加一个条件即可证明△APC≌△BPD,这个条件可以是________(写出一个即可).17. (2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.18. (2020•辽阳)如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为.三、解答题(本大题共6道小题,每小题6-12分)19. (6分)(2021·宜宾)如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.20. (6分)(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.21. (8分)(2020•梁子湖区)如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.22. (10分)(2021黄石)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E 点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.23. (12分)(2020•衡阳)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF ⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠BDE=40o,求∠BAC的度数.24. (12分)(2020•黔东南州)如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.。

2023年中考数学解答题专项复习:三角形(附答案解析)

2023年中考数学解答题专项复习:三角形(附答案解析)

EDC=n°.
(1)当 n=60 时,
①如图 1,当点 D 在 AC 上时,请直接写出 BE 与 AD 的数量关系:

②如图 2,当点 D 不在 AC 上时,判断线段 BE 与 AD 的数量关系,并说明理由;
(2)当 n=90 时,
①如图 3,探究线段 BE 与 AD 的数量关系,并说明理由;
②当 BE∥AC,AB=3 ,AD=1 时,请直接写出 DC 的长.
3.(2021•温州模拟)如图,在△ABC 中,AB=AC,AD⊥BD,AE⊥EC,垂足分别为点 D, E,且∠BAE=∠CAD. (1)求证:△ABD≌△ACE; (2)设 BD,CE 相交于点 O,∠BOC=140°,求∠OBC 的度数.
第 1 页 共 25 页
4.(2021•五华区二模)如图所示,AC⊥BC,DC⊥EC,垂足均为点 C,且 AC=BC,EC= DC.求证:AE=BD.

∴△ABC≌△EBD(AAS); (2)解:∵△ABC≌△EBD, ∴AB=BE,
第 6 页 共 25 页
∵BE=5, ∴AB=5, ∵BC=BD,BC=3, ∴BD=3, ∴AD=AB+BD=8. 【点评】本题考查全等三角形的判定和性质、直角三角形的性质等知识,解题的关键是 证明△ABC≌△EBD. 2.(2021•新昌县模拟)如图,在 Rt△ABC 中,∠ACB=90°.点 D 为边 AC 上一点,DE ⊥AB 于点 E,点 G 为 BD 上一点.连接 CG 并延长与 AB 相交于点 F,连接 EG.已知∠ 1=∠2. (1)若 BD 平分∠ABC,求证:△DBC≌△DBE. (2)若 BD=4,求 CG 的长. (3)若∠EGF=80°,求∠A 的度数.
第 3 页 共 25 页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16章 三角形16.1 三角形及其边角关系16.1.1 若三角形的三条边边的长度均为整数,其中两条边长的长度的差是7,且三角形的周长是奇数,则第三边的长度可能是( )A .9B .8C .7D .616.1.2 如图所示,=∠+∠+∠+∠+∠+∠+∠G F E D C B A ( )A .︒100B .︒120C .︒150D .︒18016.1.3 若四边形ABCD 的对角∠BAD 与∠BCD 的角平分线互相平行,则B 与D 的关系为( ) A .∠B =∠D B .∠B 与∠D 互补 C .D B ∠>∠ D .D B ∠<∠ 16.1.4 △ABC 的三条外角平分线相交成一个△'''C B A ,则△'''C B A ( )A .一定是直角三角形B .一定是钝角三角形C .一定不是锐角三角形D .一定是锐角三角形16.1.5 三角形内角平分线的交点称为三角形的内心,如图所示,D 是△ABC 的内心,E 是△ABD 的内心,F 是△BDE 的内心.若∠BFE 的度数为整数,则∠BFE 至少是多少度?16.1.6 一条线段的长为a ,若要使3a -1,4a +1,12-a 这三条线段组成一个三角形,则a 的取值范围是 .16.1.7 如图所示,D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,BAD CAD ∠=∠3,CBE ABE ∠=∠3,ACF BCF ∠=∠3,BE 、CF 交于M ,CF 、AD 交于N ,且满足CND BMF ∠=∠2,那么BAC ∠等于 .16.1.8 在△ABC 中,︒=∠50A ,H 是△ABC 的垂心,且H 不与B 、C 重合,则∠BHC 的度数是 . 16.1.9 如图所示,B 、C 分别是∠MAN 的两条边上的点,︒=∠50MAN .连接BC ,再分别从B 点和C 点各引出一条射线相交于O ,并且使OBC MBO ∠=∠,BCO OCN ∠=∠.那么COB ∠的度数是 .16.1.10 如图所示,点P 为矩形ABCD 的边AD 上的一点,点O 为△PBC 内的一点.若PBC OBC ∠=∠31,PCB OCB ∠=∠31,且︒=∠140BOC ,则=∠+∠PCD ABP .16.1.11 如图所示,在△ABC 中,点D 在BC 上,且ACB ABC ∠=∠,DAC ADC ∠=∠,︒=∠21DAB .求ABC ∠的度数,并回答:图中哪些三角形是锐角三角形?16.1.12 已知三角形的两角之和为︒n ,最大角比最小角大︒24,求n 的取值范围16.2全等三角形16.2.1 在△ABC 中,若AB =5,AC =3,则BC 边上的中线AD 的长满足( )A .41<<ADB .4<ADC .1>AD D .82<<AD16.2.2 如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是( )A .相等B .不相等C .互余D .互补或相等16.2.3 已知正方形ABCD 中,点M 、N 分别在BC 、CD 上,且△MCN 的周长等于正方形ABCD 的周长的一半,则在①︒=∠45MAN ;②AM 为BMN ∠的平分线;③AN 为DNM ∠的平分线这三个结论中( )A .①②③均正确B .①正确,②③不正确C .①不正确,②③正确D .①②③均不正确16.2.4 如图所示,已知AB =AC ,AD =AE ,BE 与CD 相交于F ,则图中全等三角形共有多少对?16.2.5 在△ABC 中,︒=∠90ACB ,AC =BC ,D 是BC 延长线上的一点,BE ⊥AD 于E ,BE 与AC 交于点F ,求证:CD =CF 及DC DE >16.2.6 如图所示,在正方形ABCD 中,E 是AD 的中点,BD 与CE 交于F 点,AF 与BE 交于G 点,求证:AF ⊥BE16.2.7 如图所示,已知△ABC 中,D 是BC 边上的中点,过点D 的直线交AC 于点E ,交AB 的延长线于点F .求证:△AEF 的面积>△ABC 的面积16.2.8 如图所示,已知BE 、CF 分别为AC ,AB 边上的高,射线BE 上截取BP =AC ,射线CF 上截取CQ =AB ,求证:△APQ 为等腰直角三角形16.2.9 在△ABC 中,︒=∠60A ,BD 、CE 是角平分线,求证:BC CD BE =+16.2.10 已知A 、B 、C 、D 四个点,线段AC 与BD 相交于E ,线段AE 比AB 短1cm ,且AE =DC ,AD =BE ,DEC ADC ∠=∠,求EC 的长16.2.11 在凸四边形ABCD 内,ADC ∠是锐角,ADC BAC ∠=∠,CK 是△ACD 的内角平分线.证明:如果KD =AB ,那么直线AC 将平分线段KB (注:若一个多边形内部中任意两点的连续线段全部落在此多边形的内部,则称此多边形的凸多边形)16.2.12 在△ABC 的AC 及BC 边上分别取点X 及点Y ,使YAC ABX ∠=∠,BXC AYB ∠=∠, XC =YB .问:△ABC 的各角是多少度?16.2.13 已知在△ABC 中,︒=∠90A ,CD 平分BCA ∠交AB 于D ,AD =24,BD :DA =7:5,那么点D 到BC 的距离是( )A .14B .12C .10D .816.2.14 下列判断中,(1)每个命题都有逆命题;(2)每个定理都有逆定理;(3)原命题是真命题,逆命题也是真命题;(4)逆命题是假命题,原命题也是假命题.正确的个数是( )A .0B .1C .2D .3★★16.2.15到三角形三边所在直线的距离都相等的点一共有多少个?★★★16.21.16 如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠BCA 的平分线交AD 于F ,交AB 于E ,FC ∥BC ,交AB 于G .AE =4,AB =14,则BC = .★★★16.2.17 如图所示,在△ABC 中,∠B =100°,∠C 的平分线交AB 边于E ,在AC 边上取点D,使得∠CBD=20°,连结DE,则∠CED的度数是.★16.2.18审查下列各条件:(1)已知两边和夹角;(2)己知两边和其中一边的对角;(3)已知两角和夹边;(4)已知两角和其中一角的对边,其中能做出唯一三角形的是( ).(A) (1)、(2)、(3) (B) (1)、(2)、(4)(C) (1)、(3)、(4) (D) (2)、(3)、(4)★16.2.19 已知线段a、b和角α,且a=4cm,b=3cm,α=40°,以a、b为边,α为角作三角形,若a所对的角是α,则可做出符合条件的三角形多少个?若b所对的角是α,则可做出符合条件的三角形多少个?★★16.2.20 已知AC=b,AB=c,BC边上的中线长为m,求做△ABC.★★16.2.21 已知两角及其中一角对边上的高,求做二角形.16.3 等腰三角形★16.3.1 如图所示,在△ABC中,∠A、∠B的外角平分线AD、BE分别交对边的延长线于点D、E,且AD= AB= BE,则∠A的度数是( ).(A) 10° (B) 11° (C)12° (D)非上述答案★16.3.2 如图所示,在△ABC中,∠A=36°,∠ACB=72°,BD平分∠ABC,交AC于D,CE⊥BD交AB于E,则图中等腰三角形的个数为( ).(A)4个 (B)5个 (C)6个 (D)7个★★16.3.3 在△ABC中,∠BAC的平分线交BC于D,AC=AB+BD,∠C=30°,则∠B的度数为( )(A) 45°(B) 60°(C) 75°(D) 90°★★16.3.4 在△ABC中,∠B、∠C的平分线交于O点,作M N∥BC,EF∥AB,GH∥AC,三角形三边的长为BC=a,AC=b,AB=c,则△CMO的周长+△E N O的周长-△FHO的周长= .★★16.3.5 已知一个六边形的六个内角都是120°,其连续四边的长依次是1cm、9cm、9cm、7cm.那么,这个六边形的周长是 cm.★★16.3.6 已知AD是等腰三角形ABC一腰上的高,且∠DAB=60°,则△ABC的三个内角的度数分别为.★★16.3.7 在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC= 度.★★16.3.8 如图所示,过△ABC的顶点A,作直线AE与∠B的内角平分线BE垂直相交于E点,且与∠C的内角平分线交于P.(1)直接回答:当∠B与∠C满足什么条件时,点P在△ABC内,在△ABC外,在△ABC的边上?(2)若P在△ABC内,过P作直线与底边BC平行且与AB交于Q,与AC交于R,求证:QR=AQ+CR.★★16.3.9 如图所示,已知△ABC的∠A的平分线为AD,M为BC的中点,AD∥ME.求证:BE=CF=12(AB +AC).★★16.3.10如图所示,∠B=∠C,∠ADB= 90°-12∠BDC.求证:△ABC是等腰三角形.★★16.3.11如图所示,设P是等边三角形ABC的BC边上任意一点,连结AP,以P为顶点,作∠APQ=60°,PQ交∠C的外角平分线于Q,那么△APQ是什么三角形?试证明其结论.★★16.3.12 如图所示,己知△ABC是等边三角形,延长BC到D,延长BA到F,使AE=BD.连结CE、DE.求证:CE= DE.★★16.3.13 在△ABC中,AC=BC,∠ACB=90°.D是AC上一点,且AE垂直BD的延长线于E,又AE=12BD,求证:BD是∠ABC的平分线.★★16.3.14 在凸五边形ABCDE中,∠B=∠E,∠C=∠D,BC=DE,M为CD的中点.求证:AM⊥CD.★★★16.3. 15 如图所示,在△ABC中,AC=BC,∠ACB=80°,O为△AB C内一点.若∠OAB=10°,∠ABO=30°,求∠ACO的度数.★★★16.3.16 在等腰三角形ABC中,AB=AC,顶角∠A=20°,在边AB上取一点D,使AD=BC.求∠BDC的度数.★16.3.17 平面上两条相交直线所构成的图形,它的对称轴最多可能有( ).(A)1条 (B) 2条 (C)4条 (D)无数条★★16.3.18设O是等边三角形ABC所在平面上一点,它使△ABO、△OBC、△OCA都是等腰三角形,满足条件的O点共有( ).(A)1个 (B)4个 (C)7个 (D) 10个★16.3.19 在平面上绐定等腰三角形ABC,其中AB=AC.试在平面上求出所有符合下述条件的点M,使得△ABM和△ACM都是等腰三角形(只需指明这些点的位置即可,不要求证明).★★16.3.20 如图所示,D为正三角形ABC内一点,DB=DC. ∠DBC=45°.P点使∠ABD=∠PBD,PB=BC,则∠BDP的度数是 .★★16.3.21 如图所示,∠BAC= 100°,点M在边BC上,△A′BC和△ABC对称于BC,△A′B′C 和△A′BC对称于A′C.△A′B′C′和△A′B′C对称于A′B′.这时点M陆续变成点M′和M″.那么,∠MA′M″的度数是.★★16.3.22如图所示,在△ABC中,∠A=90 °,点A关于BC边的对称点为A′,点B关于AC 边的对称点为B′,点C关于AB边的对称点为C′.若△ABC的面积为1,则△A′B′C′,的面积为.★★16.3.23 已知∠MON=40°,P为∠MON内一定点,A为OM上的点,B为ON上的点。

相关文档
最新文档