2020年四川省绵阳市中考数学试卷(含答案解析)

合集下载

2020年四川省绵阳市中考数学试题及参考答案(word解析版)

2020年四川省绵阳市中考数学试题及参考答案(word解析版)

绵阳市2020年高中阶段学校招生暨初中学业水平考试数学(满分140分,考试时间120分钟)第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.﹣3的相反数是()A.﹣3 B.﹣C.D.32.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×1064.下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.5.若有意义,则a的取值范围是()A.a≥1 B.a≤1 C.a≥0 D.a≤﹣16.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.48.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.9.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD =()A.16°B.28°C.44°D.45°10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=()A.B.2C.D.第Ⅱ卷(非选择题共104分)二、填空题:本大题共6小题,每小题4分,共24分.13.因式分解:x3y﹣4xy3=.14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是万元.(利润=销售额﹣种植成本)17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.18.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74 75 75 75 73 77 78 72 76 75B加工厂78 74 78 73 74 75 74 74 75 75 (1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD 交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.25.(14分)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D 时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.答案与解析第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.﹣3的相反数是()A.﹣3 B.﹣C.D.3【知识考点】相反数.【思路分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解题过程】解:﹣3的相反数是3,故选:D.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条【知识考点】正方形的性质;轴对称的性质;轴对称图形.【思路分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.【解题过程】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.【总结归纳】本题考查了正方形的性质、轴对称的性质、轴对称图形,解决本题的关键是掌握轴对称的性质.3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×106【知识考点】科学记数法—表示较大的数.【思路分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【解题过程】解:690万=6900000=6.9×106.故选:D.【总结归纳】本题考查了科学记数法﹣表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,4.下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.【知识考点】几何体的展开图.【思路分析】根据正方体的展开图的11种不同情况进行判断即可.【解题过程】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故选:D.【总结归纳】本题考查正方体的展开图,理解和掌握正方体的展开图的11种不同情况,是正确判断的前提.5.若有意义,则a的取值范围是()A.a≥1 B.a≤1 C.a≥0 D.a≤﹣1【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解题过程】解:若有意义,则a﹣1≥0,解得:a≥1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.6.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解题过程】解:设共有x人合伙买羊,羊价为y钱,依题意,得:,解得:.故选:C.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.4【知识考点】角平分线的性质;勾股定理.【思路分析】过E作EM⊥BC,交FD于点N,可得EN⊥GD,得到EN与GH平行,再由E为HD中点,得到HG=2EN,同时得到四边形NMCD为矩形,再由角平分线定理得到AE=ME,进而求出EN的长,得到HG的长.【解题过程】解:过E作EM⊥BC,交FD于点N,∵DF∥BC,∴EN⊥DF,∴EN∥HG,∴=,∵E为HD中点,∴=,∴=,即HG=2EN,∴∠DNM=∠HMC=∠C=90°,∴四边形NMCD为矩形,∴MN=DC=2,∵BE平分∠ABC,EA⊥AB,EM⊥BC,∴EM=AE=3,∴EN=EM﹣MN=3﹣2=1,则HG=2EN=2.故选:B.【总结归纳】此题考查了勾股定理,矩形的判定与性质,角平分线定理,以及平行得比例,熟练掌握定理及性质是解本题的关键.8.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.【知识考点】列表法与树状图法.【思路分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.【解题过程】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为=.故选:A.【总结归纳】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD =()A.16°B.28°C.44°D.45°【知识考点】平行线的性质;等腰三角形的性质.【思路分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,由三角形外角的性质即可求得∠ACD的度数.【解题过程】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.【总结归纳】本题考查了等腰三角形的性质,平行线的性质,三角形外角的性质,熟练掌握性质定理是解题的关键.10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时【知识考点】分式方程的应用.【思路分析】设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据“各匀速行驶一半路程”列出方程求解即可.【解题过程】解:设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:=,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故选:C.【总结归纳】考查了分式方程的应用,解题的关键是能够分别表示出各自的实际速度,难度中等.11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米【知识考点】二次函数的应用.【思路分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.【解题过程】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=﹣,∴大孔所在抛物线解析式为y=﹣x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,﹣),∴﹣=m(x﹣b)2,∴x1=+b,x2=﹣+b,∴MN=4,∴|+b﹣(﹣+b)|=4∴m=﹣,∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=﹣,∴﹣=﹣(x﹣b)2,∴x1=+b,x2=﹣+b,∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),故选:B.【总结归纳】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C 顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=()A.B.2C.D.【知识考点】等腰三角形的判定;直角梯形;旋转的性质.【思路分析】过D作DE⊥BC于E,则∠DEC=∠DEB=90°,根据矩形的想知道的BE=AD=2,DE=AB=2,根据旋转的性质得到∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,推出△B′CD为等腰直角三角形,得到CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,根据勾股定理即可得到结论.【解题过程】解:过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD∥BC,∠ABC=90°,∴∠DAB=∠ABC=90°,∴四边形ABED是矩形,∴BE=AD=2,DE=AB=2,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴△A′CA∽△B′CB,∴=,∵△B′CD为等腰三角形,∴△B′CD为等腰直角三角形,∴CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,∵CD2=CE2+DE2,∴(x)2=(x﹣2)2+(2)2,∴x=4(负值舍去),∴BC=4,∴AC==2,∴=,∴A′A=,故选:A.【总结归纳】本题考查了旋转的性质,等腰直角三角形的性质,矩形的判定和性质,相似三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.第Ⅱ卷(非选择题共104分)二、填空题:本大题共6小题,每小题4分,共24分.13.因式分解:x3y﹣4xy3=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式xy,再对余下的多项式利用平方差公式继续分解.【解题过程】解:x3y﹣4xy3=xy(x2﹣4y2)=xy(x+2y)(x﹣2y).故答案为:xy(x+2y)(x﹣2y).【总结归纳】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为.【知识考点】坐标与图形变化﹣平移.【思路分析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.【解题过程】解:∵将点A(﹣1,2)先向左平移2个单位,横坐标﹣2,再向上平移1个单位纵坐标+1,∴平移后得到的点A1的坐标为:(﹣3,3).故答案为:(﹣3,3).【总结归纳】本题考查了坐标与图形变化﹣平移,解决本题的关键是掌握平移定义.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.【知识考点】多项式.【思路分析】直接利用多项式的次数确定方法得出答案.【解题过程】解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.【总结归纳】此题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是万元.(利润=销售额﹣种植成本)【知识考点】一元一次不等式组的应用;F一次函数的应用.【思路分析】设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,根据题意列出不等式求出x的范围,然后根据题意列出w与x的函数关系即可求出答案.【解题过程】解:设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:50≤x≤60,此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,当x=50时,w的最大值为140﹣15=125万元.【总结归纳】本题考查一次函数,解题的关键是根据题意给出的等量关系列出函数关系式,本题属于中等题型.17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD 内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.【知识考点】垂线段最短;三角形三边关系;勾股定理.【思路分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.【解题过程】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O 作OF⊥BC于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2,GF=,OF=3,∴ME≥OF﹣OM=3﹣2,∴当O,M,E共线时,ME的值最小,最小值为3﹣2.【总结归纳】本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是.【知识考点】解一元一次不等式.【思路分析】解不等式>﹣x﹣得x>﹣4,据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立,再分m﹣6=0和m﹣6≠0两种情况分别求解.【解题过程】解:解不等式>﹣x﹣得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>,∵x>﹣4都能使x>成立,∴﹣4≥,∴﹣4m+24≤2m+1,∴m≥,综上所述,m的取值范围是≤m≤6.故答案为:≤m≤6.【总结归纳】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤和依据及不等式的基本性质.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.【知识考点】分式的化简求值;零指数幂;分母有理化;二次根式的混合运算;特殊角的三角函数值.【思路分析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解题过程】解:(1)原式=3﹣+2×﹣×2﹣1=3﹣+﹣2﹣1=0;(2)原式=(+)÷=•=,当x=﹣1时,原式===1﹣.【总结归纳】本题主要考查实数的混合运算与分式的化简求值,解题的关键是掌握绝对值性质、二次根式的性质、零指数幂的规定、熟记三角函数值及分式的混合运算顺序和运算法则.20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?【知识考点】一元一次不等式的应用;一次函数的应用.【思路分析】(1)根据题意给出的等量关系即可求出答案.(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.【解题过程】解:(1)甲书店:y=0.8x,乙书店:y=.(2)令0.8x=0.6x+40,解得:x=200,当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.【总结归纳】本题考查一次函数的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74 75 75 75 73 77 78 72 76 75B加工厂78 74 78 73 74 75 74 74 75 75 (1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?【知识考点】用样本估计总体;算术平均数;中位数;众数;方差.【思路分析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;(2)用总数乘以质量为75克的鸡腿所占的百分比即可;(3)根据方差的定义,方差越小数据越稳定即可得出答案.【解题过程】解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数是=75(克);因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:(74+75+75+75+73+77+78+72+76+75)=75(克);(2)根据题意得:100×=30(个),答:质量为75克的鸡腿有30个;(3)选B加工厂的鸡腿.∵A、B平均值一样,B的方差比A的方差小,B更稳定,∴选B加工厂的鸡腿.【总结归纳】本题考查了方差、平均数、中位数、众数,熟悉计算公式和意义是解题的关键.22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC 于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.【知识考点】圆的综合题.【思路分析】(1)由圆周角定理与已知得∠BAC=∠DCA,即可得出结论;(2)连接EO并延长交⊙O于G,连接CG,则EG为⊙O的直径,∠ECG=90°,证明∠DCE =∠EGC=∠OCG,得出∠DCE+∠OCE=90°,即可得出结论;(3)由三角函数定义求出cos∠ACD=,证出∠ABC=∠ACD=∠CAB,求出BC=AC=10,AB=12,过点B作BG⊥AC于C,设GC=x,则AG=10﹣x,由勾股定理得出方程,解方程得GC=,由勾股定理求出BG=,由三角函数定义即可得答案.【解题过程】(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB∥CD;(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:在Rt△ADC中,由勾股定理得:AC===10,∴cos∠ACD===,∵CD是⊙O的切线,AB∥CD,∴∠ABC=∠ACD=∠CAB,∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,过点B作BG⊥AC于C,如图2所示:设GC=x,则AG=10﹣x,由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,即:122﹣(10﹣x)2=102﹣x2,解得:x=,∴GC=,∴BG===,∴tan∠ACB===.【总结归纳】本题是圆的综合题目,考查了切线的判定与性质、圆周角定理、平行线的判定与性质、等腰三角形的判定与性质、三角函数定义、勾股定理等知识;本题综合性强,熟练掌握圆周角定理和切线的判定是解题的关键.23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.【知识考点】反比例函数综合题.【思路分析】(1)将点A坐标代入反比例函数解析式中求出k,进而得出点B坐标,最后用待定系数法求出直线AB的解析式;(2)先判断出BF=AE,进而得出△AEG≌Rt△BFG(AAS),得出AG=BG,EG=FG,即BE =BG+EG=AG+FG=AF,再求出m=﹣n,进而得出BF=2+n,MN=n+3,即BE=AF=n+3,再判断出△AME∽△ENB,得出==,得出ME=BN=,最后用勾股定理求出m,即可得出结论.【解题过程】解:(1)当m=1时,点A(﹣3,1),∵点A在反比例函数y=的图象上,∴k=﹣3×1=﹣3,∴反比例函数的解析式为y=﹣;∵点B(n,2)在反比例函数y=﹣图象上,∴2n=﹣3,∴n=﹣,设直线AB的解析式为y=ax+b,则,∴,∴直线AB的解析式为y=x+3;(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,则四边形AMNF是矩形,∴FN=AM,AF=MN,∵A(﹣3,m),B(n,2),∴BF=2﹣m,∵AE=2﹣m,∴BF=AE,在△AEG和△BFG中,,∴△AEG≌Rt△BFG(AAS),∴AG=BG,EG=FG,∴BE=BG+EG=AG+FG=AF,∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,∴k=﹣3m=2n,∴m=﹣n,∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,∴BE=AF=n+3,∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,∴∠MAE=∠NEB,∵∠AME=∠ENB=90°,∴△AME∽△ENB,∴====,∴ME=BN=,在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,∴m2+()2=(2﹣m)2,∴m=,∴k=﹣3m=﹣,∴反比例函数的解析式为y=﹣.【总结归纳】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,矩形的判定和性质,全等三角形的判定和性质,构造出△AEG≌△BFG(AAS)是解本题的关键.24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.【知识考点】二次函数综合题.【思路分析】(1)由待定系数法求出直线AB的解析式为y=﹣x+1,求出F点的坐标,由平。

2020年四川绵阳中考数学试卷(解析版)

2020年四川绵阳中考数学试卷(解析版)

2020年四川绵阳中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.的相反数是( ).A. B. C. D.2.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( ).A.条B.条C.条D.条3.近年来,华为手机越来越受到消费者的青睐.截至年月底,华为手机全球总发货量突破万台,将万用科学记数法表示为( ).A. B. C. D.4.下列四个图形中,不能作为正方体的展开图的是( ).A.B.C.D.5.若有意义,则的取值范围是( ).A.B.C.D.6.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出钱,还差钱;若每人出钱,还差钱,问合伙人数、羊价各是多少?此问题中羊价为( ).A.钱B.钱C.钱D.钱7.如图,在四边形中,,,的平分线交于点,,点恰好为的中点,若,,则( ).A.B.C.D.8.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( ).A.B.C.D.9.在螳螂的示意图中,,是等腰三角形,,,则( ).A.B.C.D.10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶”,乙对甲说:“我用你所花的时间,只能行驶”.从他们的交谈中可以判断,乙驾车的时长为( ).A.小时B.小时C.小时D.小时11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同,当水面刚好淹没小孔时,大孔水面宽度为米,孔顶离水面米;当水位下降,大孔水面宽度为米时,单个小孔的水面宽度为米,若大孔水面宽度为米,则单个小孔的水面宽度为( ).A.米B.米C.米D.米12.如图,在四边形中,,,,,将绕点顺时针方向旋转后得,当恰好经过点时,为等腰三角形,若,则( ).A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)13.因式分解: .14.平面直角坐标系中,将点先向左平移个单位,再向上平移个单位后得到的点的坐标为 .15.若多项式是关于,的三次多项式,则 .16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为万元、万元,每亩的销售额分别为万元、万元,如果要求种植成本不少于万元,但不超过万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是 万元.(利润销售额种植成本)17.如图,四边形中,,,,点是四边形内的一个动点,满足,则点到直线的距离的最小值为 .18.若不等式的解都能使不等式成立,则实数的取值范围是 .三、解答题(本大题共7小题,共90分)(1)(2)19.按要求解答.计算:.先化简,再求值:,其中.(1)(2)20.月日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价折出售;乙书店:一次购书中标价总额不超过元的按原价计费,超过元后的部分打折.以(单位:元)表示标价总额,(单位:元)表示应支付金额,分别就两家书店的优惠方式,求关于的函数解析式.“世界读书日”这一天,如何选择这两家书店去购书更省钱?(1)(2)(3)21.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有、两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取个鸡腿,然后再从中随机各抽取个,记录它们的质量(单位:克)如表:加工厂加工厂根据表中数据,求加工厂的个鸡腿质量的中位数、众数、平均数;估计加工厂这个鸡腿中,质量为克的鸡腿有多少个?根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?(1)22.如图,内接于⊙,点在⊙外,,交⊙于点,交于点,,,,.求证:.(2)(3)求证:是⊙的切线.求的值.(1)(2)23.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第二象限交于,两点.当时,求一次函数的解析式.若点在轴上,满足,且,求反比例函数的解析式.(1)(2)(3)24.如图,抛物线过点和,顶点为,直线与抛物线的对称轴的交点为,平行于轴的直线与抛物线交于点,与直线交于点,点的横坐标为,四边形为平行四边形.xy求点的坐标及抛物线的解析式.若点为抛物线上的动点,且在直线上方,当面积最大时,求点的坐标及面积的最大值.在抛物线的对称轴上取一点,同时在抛物线上取一点,使以为一边且以,,,为顶点的四边形为平行四边形,求点和点的坐标.xy(备用图)(1)12(2)25.如图,在矩形中,对角线相交于点,⊙为的内切圆,切点分别为,,,,.求,.点从点出发,沿线段向点以每秒个单位长度的速度运动,当点运动到点时停止,过点作交于点,设运动时间为秒.将沿翻折得,是否存在时刻,使点恰好落在边上?若存在,求的值;若不存在,请说明理由.若点为线段上的动点,当为正三角形时,求的值.备用图备用图【答案】解析:的相反数是.故选:.解析:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有条.故选:.解析:万.故选.解析:正方体展开图的种情况可分为“型”种,“型”种,“型”种,“型”种,因此选项符合题意,故选.D 1.B 2.D 3.D 4.A5.解析:若有意义,则,解得:.故选.解析:设共有人合伙买羊,羊价为钱,依题意,得:,解得:.故选.解析:过作,交于点,∵,∴,∴,∴,∵为中点,∴,∴,即,∴,∴四边形为矩形,∴,∵平分,,,∴,C 6.B 7.∴,则.故选.解析:三个不同的篮子分别用、、表示,根据题意画图如下:开始共有种等可能的情况数,其中恰有一个篮子为空的有种,则恰有一个篮子为空的概率为.故答案选:.解析:延长,交于,∵是等腰三角形,,∴,∵,∴,∵,∴,故选.解析:A 8.C 9.C 10.设乙驾车时长为小时,则甲驾车时长为小时,根据两人对话可知:甲的速度为,乙的速度为,根据题意得:,解得:或,经检验:或是原方程的解,不合题意,舍去,故选.解析:如图,建立如图所示的平面直角坐标系,由题意可得米,米,米,米,设大孔所在抛物线解析式为,∵米,∴点,∴,∴,∴大孔所在抛物线解析式为,设点,则设顶点为的小孔所在抛物线的解析式为,∵米,∴点的横坐标为,∴点坐标为,∴,∴,,∴米,B 11.∴米,∴,∴顶点为的小孔所在抛物线的解析式为,∵大孔水面宽度为米,∴当时,,∴,∴,,∴单个小孔的水面宽度(米).故选:.解析:过作于,则,∵,,∴,∴四边形是矩形,∴,,∵将绕点顺时针方向旋转后得,∴,,,,∴,∴,∵为等腰三角形,∴为等腰直角三角形,∴,设,则,,A 12.∵,∴,∴(负值舍去),∴,∴,∴,∴.故选.解析:.故答案为:.解析:∵将点先向左平移个单位,横坐标,再向上平移个单位纵坐标,∴平移后得到的点的坐标为:.故答案为:.解析:∵多项式是关于,的三次多项式,∴,,∴,,∴或,∴或,∴或.故答案为:或.13.14.或15.16.解析:设甲种火龙果种植亩,乙种火龙果种植亩,此项目获得利润,甲、乙两种火龙果每亩利润为万元,万元,由题意可知:,解得:,此项目获得利润,当时,的最大值为万元.17.解析:取的中点,连接,过点作交的延长线于,过点作于,交于,则.∵,,,∴,∵,∴,∴,∵,∴,∴,∴,∴,∵,(1)(2)∴,∴,,,∴,∴当,,共线时,的值最小,最小值为.解析:解不等式得,∵都能使不等式成立,①当,即时,则都能使恒成立;②当,则不等式的解要改变方向,∴,即,∴不等式的解集为,∵都能使成立,∴,∴,∴,综上所述,的取值范围是.故答案为:.解析:原式.原式,当时,18.(1)(2)19.(1)(2)(1)(2)(3)原式,.解析:甲书店:,乙书店:.令,解得:,当时,选择甲书店更省钱,当时,甲乙书店所需费用相同,当时,选择乙书店更省钱.解析:把这些数从小到大排列,最中间的数是第和第个数的平均数,则中位数是(克),因为出现了次,出现的次数最多,所以众数是克,平均数是:(克).根据题意得:(个),答:质量为克的鸡腿有个.选加工厂的鸡腿.(1)甲书店:,乙书店:.(2)当时,选择甲书店更省钱,当时,甲乙书店所需费用相同,当时,选择乙书店更省钱.20.,,,,(1)中位数是克,众数是克,平均数是克.(2)个.(3)加工厂.21.(1)(2)的方差是:,的平均数是:,的方差是:,∵、平均值一样,的方差比的方差小,更稳定,∴选加工厂的鸡腿.解析:∵,,∴,∴.连接并延长交⊙于,连接,如图所示:图则为⊙的直径,∴,∵,∴,∵,,∴,∵,∴,即,∵是⊙的半径,(1)证明见解析.(2)证明见解析.(3).22.(3)(1)∴是⊙的切线.在中,由勾股定理得:,∴,∵是⊙的切线,,∴,∴,,过点作于,如图所示:图设,则,由勾股定理得:,即:,解得:,∴,∴,∴.解析:当时,点,∵点在反比例函数图象上,∴,∴反比例函数的解析式为,∵点在反比例函数图象上,∴,(1).(2).23.(2)∴,设直线的解析式为,则,∴,∴直线的解析式为.如图,过点作轴于,过点作轴于,过点作于,交于,则四边形是矩形,∴,,∵,,∴,∵,∴,在和中,,∴≌,∴,,∴,∵点,在反比例函数的图象上,∴,∴,∴,,∴,∵,,∴,∵,对顶角相等(1)∴,∴,∴,在 中,,,根据勾股定理得,,∴,∴,∴∴反比例函数的解析式为:.解析:设抛物线的解析式为(),∵,,设直线的解析式为,∴,解得,∴直线的解析式为,∵点的横坐标为,∴点纵坐标为,∴点的坐标为,又∵点在抛物线上,∴,对称轴为:,∴,∴解析式化为:,∵四边形为平行四边形,∴,(1),.(2),的面积最大为.(3),;或,.24.(2)(3)∴,解得,∴抛物线的解析式为.设,作轴交于点,xy则,∴,,∴当时,的面积最大为,此时.∵,∴或,∴.设,①当为对角线时,∴,∵在抛物线上,∴,解得,∴,,②当为对角线时,∴,∵在抛物线上,(1)1(2)∴解得,∴,.综上所述,,;或,.解析:∵⊙为的内切圆,切点分别为,,,,,∴,,,,设,则,,∵四边形是矩形,∴,∴,即,解得:或(舍),∴,.故答案为:,.存在时刻,使点恰好落在边上,如图所示:图由折叠的性质得:,,∵四边形是矩形,∴,,,,,,∴,(1),.12(2)存在,..25.2,∴,∵,∴,∴,∴,∴,∴,∵,∴,∴,即,解得:,∴,解得:,即存在时刻,使点恰好落在边上.作于,交的延长线于,作于,于,如图所示:图则,,是的中位线,∴,∵是等边三角形,∴,,∴,∴,,∴是梯形的中位线,∴,∵,∴,∴,∴,∴,∴,∴,∴,即当为正三角形时,的值为.。

四川省绵阳市2020年中考数学试卷

四川省绵阳市2020年中考数学试卷

四川省绵阳市2020年中考数学试卷一、单选题(共12题;共24分)1.﹣3的相反数是()A. ﹣3B. ﹣C.D. 32.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A. 2条B. 4条C. 6条D. 8条3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A. 0.69×107B. 69×105C. 6.9×105D. 6.9×1064.下列四个图形中,不能作为正方体的展开图的是()A. B. C. D.5.若有意义,则a的取值范围是()A. a≥1B. a≤1C. a≥0D. a≤﹣16.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A. 160钱B. 155钱C. 150钱D. 145钱7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E 恰好为DH的中点,若AE=3,CD=2,则GH=()A. 1B. 2C. 3D. 48.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A. B. C. D.9.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A. 16°B. 28°C. 44°D. 45°10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A. 1.2小时B. 1.6小时C. 1.8小时D. 2小时11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A. 4 米B. 5 米C. 2 米D. 7米12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2 ,AD=2,将△ABC绕点C顺时针方向旋转后得△,当恰好经过点D时,△CD为等腰三角形,若B =2,则A =()A. B. 2 C. D.二、填空题(共7题;共16分)13.因式分解:x3y﹣4xy3=________.14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为________.15.若多项式是关于x,y的三次多项式,则________.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是________万元.(利润=销售额﹣种植成本)17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为________.18.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是________.19.如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.三、解答题(共6题;共75分)20.(1)计算:| ﹣3|+2 cos60°﹣× ﹣(﹣)0.(2)先化简,再求值:(x+2+ )÷ ,其中x=﹣1.21.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?22.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?23.如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.24.如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.25.如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△A I,是否存在时刻t,使点恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.答案解析部分一、单选题1.【解析】【解答】解:-3的相反数是3故答案为:D.【分析】利用相反数的定义得出即可.2.【解析】【解答】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故答案为:B.【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.3.【解析】【解答】解:690万=6900000=6.9×106.故答案为:D.【分析】绝对值大于10的数用科学记数法表示一般形式为,为整数位数减1.4.【解析】【解答】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故答案为:D.【分析】根据正方体的展开图的11种不同情况进行判断即可.5.【解析】【解答】解:若有意义,则,解得:.故答案为:A.【分析】直接利用二次根式有意义的条件分析得出答案.6.【解析】【解答】解:设共有x人合伙买羊,羊价为y钱,依题意,得:,解得:.故答案为:C.【分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.7.【解析】【解答】解:过作,交于点,,,,,为中点,,,即,,四边形为矩形,,平分,,,,,则.故答案为:B.【分析】过作,交于点,可得,得到与平行,再由为中点,得到,同时得到四边形为矩形,再由角平分线定理得到,进而求出的长,得到的长.8.【解析】【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为.故答案为:A.【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.9.【解析】【解答】解:延长,交于F,是等腰三角形,,,,,,,故答案为:C.【分析】延长,交于F,根据等腰三角形的性质得出,根据平行线的性质得出,10.【解析】【解答】解:设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故答案为:C.【分析】设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据“各匀速行驶一半路程”列出方程求解即可.11.【解析】【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO= ,设大孔所在抛物线解析式为y=ax2+ ,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+ ,∴a=- ,∴大孔所在抛物线解析式为y=- x2+ ,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为-7,∴点E坐标为(-7,- ),∴- =m(x﹣b)2,∴x1= +b,x2=- +b,∴MN=4,∴| +b-(- +b)|=4∴m=- ,∴顶点为A的小孔所在抛物线的解析式为y=- (x﹣b)2,∵大孔水面宽度为20米,∴当x=-10时,y=- ,∴- =- (x﹣b)2,∴x1= +b,x2=- +b,∴单个小孔的水面宽度=|(+b)-(- +b)|=5 (米),故答案为:B.【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.12.【解析】【解答】解:过D作于,则,,,,四边形是矩形,,,将绕点C顺时针方向旋转后得△,,,,,△△,,△为等腰三角形,△为等腰直角三角形,,设,则,,,,(负值舍去),,,,,故答案为:A.【分析】过D作于,则,根据矩形的性质得,,根据旋转的性质得到,,,,推出△为等腰直角三角形,得到,设,则,,根据勾股定理即可得到结论.二、填空题13.【解析】【解答】解:x3y﹣4xy3,=xy(x2﹣4y2),=xy(x+2y)(x﹣2y).故答案为:xy(x+2y)(x﹣2y).【分析】原式提取公因式xy,再利用平方差公式分解即可;14.【解析】【解答】解:∵将点A(﹣1,2)先向左平移2个单位横坐标﹣2,再向上平移1个单位纵坐标+1,∴平移后得到的点A1的坐标为:(﹣3,3).故答案为:(﹣3,3).【分析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.15.【解析】【解答】解:多项式是关于,的三次多项式,,,,,或,或,或8.故答案为:0或8.【分析】直接利用多项式的次数确定方法得出答案.16.【解析】【解答】解:设甲种火龙果种植亩,乙钟火龙果种植亩,此项目获得利润,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:,此项目获得利润,∵∴随的增大而减小,∴当时,的最大值为万元,故答案为:125.【分析】设甲种火龙果种植x 亩,乙钟火龙果种植(100-x) 亩,此项目获得利润w ,根据题意列出不等式求出x 的范围,然后根据题意列出w 与x 的函数关系即可求出答案.17.【解析】【解答】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2 ,GF=,OF=3 ,∴ME≥OF﹣OM=3 ﹣2,∴当O,M,E共线时,ME的值最小,最小值为3 ﹣2.【分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.18.【解析】【解答】解:解不等式>﹣x﹣得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>,∵x>﹣4都能使x>成立,∴﹣4≥ ,∴﹣4m+24≤2m+1,∴m≥ ,综上所述,m的取值范围是≤m≤6.故答案为:≤m≤6.【分析】解不等式>﹣x﹣得x>﹣4,据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立,再分m﹣6=0和m﹣6≠0两种情况分别求解.19.【解析】【分析】(1)将点坐标代入反比例函数解析式中求出,进而得出点坐标,最后用待定系数法求出直线的解析式;(2)先判断出,进而得出,得出,,即,再求出,进而得出,,即,再判断出,得出,得出,最后用勾股定理求出m,即可得出结论.三、解答题20.【解析】【分析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【解析】【分析】(1)根据题意给出的等量关系即可求出答案.(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.22.【解析】【分析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;(2)用总数乘以质量为75克的鸡腿所占的百分比即可;(3)根据方差的定义,方差越小数据越稳定即可得出答案.23.【解析】【分析】(1)由圆周角定理与已知得,即可得出结论;(2)连接并延长交于G,连接,则为的直径,,证明,得出,即可得出结论;(3)由三角函数定义求出,证出,求出,,过点作于,设,则,由勾股定理得出方程,解方程得,由勾股定理求出,由三角函数定义即可得答案.24.【解析】【分析】(1)由待定系数法求出直线AB的解析式为y=﹣x+1,求出F点的坐标,由平行四边形的性质得出﹣3a+1=a﹣8a+1﹣(﹣),求出a的值,则可得出答案;(2)设P(n,﹣n2+2 n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),得出PP'=﹣n2+ n,由二次函数的性质可得出答案;(3)联立直线AC和抛物线解析式求出C(,﹣),设Q(,m),分两种情况:①当AQ为对角线时,②当AR为对角线时,分别求出点Q和R的坐标即可.25.【解析】【分析】(1)由切线长定理得出BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,由勾股定理得出BC2+CD2=BD2,得出方程,解方程即可;(2)①由折叠的性质得∠AH'I =∠AHI,AH'=AH=3t,证明△AIH'∽△AH'C,则AH'2=AI×AC,证△AIH∽△AOD,求出AI=t,得出(3t)2=t×10,解方程即可;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,证出FH=FP=OF,HP=OH,DN=DM=4,证明△OMH∽△HNP,求出HN=OM=3 ,则DH=HN﹣DN=3 ﹣4,得出AH=AD﹣DH=12﹣3 ,即可得出答案.。

2020年四川省绵阳市中考数学试卷和答案解析

2020年四川省绵阳市中考数学试卷和答案解析

2020年四川省绵阳市中考数学试卷和答案解析一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.(3分)﹣3的相反数是()A.﹣3B.﹣C.D.3解析:根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.参考答案:解:﹣3的相反数是3,故选:D.点拨:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条解析:根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.参考答案:解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.点拨:本题考查了正方形的性质、轴对称的性质、轴对称图形,解决本题的关键是掌握轴对称的性质.3.(3分)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×106解析:绝对值大于10的数用科学记数法表示一般形式为a×10n,n 为整数位数减1.参考答案:解:690万=6900000=6.9×106.故选:D.点拨:本题考查了科学记数法﹣表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,4.(3分)下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.解析:根据正方体的展开图的11种不同情况进行判断即可.参考答案:解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故选:D.点拨:本题考查正方体的展开图,理解和掌握正方体的展开图的11种不同情况,是正确判断的前提.5.(3分)若有意义,则a的取值范围是()A.a≥1B.a≤1C.a≥0D.a≤﹣1解析:直接利用二次根式有意义的条件分析得出答案.参考答案:解:若有意义,则a﹣1≥0,解得:a≥1.故选:A.点拨:此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.6.(3分)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱解析:设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.参考答案:解:设共有x人合伙买羊,羊价为y钱,依题意,得:,解得:.故选:C.点拨:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.(3分)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1B.2C.3D.4解析:过E作EM⊥BC,交FD于点N,可得EN⊥GD,得到EN 与GH平行,再由E为HD中点,得到HG=2EN,同时得到四边形NMCD为矩形,再由角平分线定理得到AE=ME,进而求出EN的长,得到HG的长.参考答案:解:过E作EM⊥BC,交FD于点N,∵DF∥BC,∴EN⊥DF,∴EN∥HG,∴=,∵E为HD中点,∴=,∴=,即HG=2EN,∴∠DNM=∠NMC=∠C=90°,∴四边形NMCD为矩形,∴MN=DC=2,∵BE平分∠ABC,EA⊥AB,EM⊥BC,∴EM=AE=3,∴EN=EM﹣MN=3﹣2=1,则HG=2EN=2.故选:B.点拨:此题考查了勾股定理,矩形的判定与性质,角平分线定理,以及平行得比例,熟练掌握定理及性质是解本题的关键.8.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.解析:根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.参考答案:解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为=.故选:A.点拨:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°解析:延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,由三角形外角的性质即可求得∠ACD的度数.参考答案:解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.点拨:本题考查了等腰三角形的性质,平行线的性质,三角形外角的性质,熟练掌握性质定理是解题的关键.10.(3分)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时解析:设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据“各匀速行驶一半路程”列出方程求解即可.参考答案:解:设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:=,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故选:C.点拨:考查了分式方程的应用,解题的关键是能够分别表示出各自的实际速度,难度中等.11.(3分)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米解析:根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x =﹣10代入可求解.参考答案:解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=﹣,∴大孔所在抛物线解析式为y=﹣x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,﹣),∴﹣=m(x﹣b)2,∴x1=+b,x2=﹣+b,∴MN=4,∴|+b﹣(﹣+b)|=4∴m=﹣,∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=﹣,∴﹣=﹣(x﹣b)2,∴x1=+b,x2=﹣+b,∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),故选:B.点拨:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.12.(3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB =2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=()A.B.2C.D.解析:过D作DE⊥BC于E,则∠DEC=∠DEB=90°,根据矩形的性质得到BE=AD=2,DE=AB=2,根据旋转的性质得到∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,推出△B′CD为等腰直角三角形,得到CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,根据勾股定理即可得到结论.参考答案:解:过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD∥BC,∠ABC=90°,∴∠DAB=∠ABC=90°,∴四边形ABED是矩形,∴BE=AD=2,DE=AB=2,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴△A′CA∽△B′CB,∴=,∵△B′CD为等腰三角形,∴△B′CD为等腰直角三角形,∴CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,∵CD2=CE2+DE2,∴(x)2=(x﹣2)2+(2)2,∴x=4(负值舍去),∴BC=4,∴AC==2,∴=,∴A′A=,故选:A.点拨:本题考查了旋转的性质,等腰直角三角形的性质,矩形的判定和性质,相似三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.13.(4分)因式分解:x3y﹣4xy3=xy(x+2y)(x﹣2y).解析:先提取公因式xy,再对余下的多项式利用平方差公式继续分解.参考答案:解:x3y﹣4xy3,=xy(x2﹣4y2),=xy(x+2y)(x﹣2y).故答案为:xy(x+2y)(x﹣2y).点拨:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(4分)平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为(﹣3,3).解析:根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.参考答案:解:∵将点A(﹣1,2)先向左平移2个单位,横坐标﹣2,再向上平移1个单位纵坐标+1,∴平移后得到的点A1的坐标为:(﹣3,3).故答案为:(﹣3,3).点拨:本题考查了坐标与图形变化﹣平移,解决本题的关键是掌握平移定义.15.(4分)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=0或8.解析:直接利用多项式的次数确定方法得出答案.参考答案:解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.点拨:此题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.16.(4分)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是125万元.(利润=销售额﹣种植成本)解析:设甲种火龙果种植x亩,乙种火龙果种植(100﹣x)亩,此项目获得利润w,根据题意列出不等式求出x的范围,然后根据题意列出w与x的函数关系即可求出答案.参考答案:解:设甲种火龙果种植x亩,乙种火龙果种植(100﹣x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:50≤x≤60,此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,当x=50时,w的最大值为140﹣15=125万元.点拨:本题考查一次函数,解题的关键是根据题意给出的等量关系列出函数关系式,本题属于中等题型.17.(4分)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD =90°,则点M到直线BC的距离的最小值为3﹣2.解析:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME ≥OF.求出OM,OF即可解决问题.参考答案:解:取AD的中点O,连接OM,过点M作ME⊥BC 交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2,GF=,OF=3,∴ME≥OF﹣OM=3﹣2,∴当O,M,E共线时,ME的值最小,最小值为3﹣2.点拨:本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18.(4分)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是≤m≤6.解析:解不等式>﹣x﹣得x>﹣4,据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立,再分m﹣6=0和m﹣6≠0两种情况分别求解.参考答案:解:解不等式>﹣x﹣得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>,∵x>﹣4都能使x>成立,∴﹣4≥,∴﹣4m+24≤2m+1,∴m≥,综上所述,m的取值范围是≤m≤6.故答案为:≤m≤6.点拨:本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤和依据及不等式的基本性质.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.解析:(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.参考答案:解:(1)原式=3﹣+2×﹣×2﹣1=3﹣+﹣2﹣1=0;(2)原式=(+)÷=•=,当x=﹣1时,原式===1﹣.点拨:本题主要考查实数的混合运算与分式的化简求值,解题的关键是掌握绝对值性质、二次根式的性质、零指数幂的规定、熟记三角函数值及分式的混合运算顺序和运算法则.20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?解析:(1)根据题意给出的等量关系即可求出答案.(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.参考答案:解:(1)甲书店:y=0.8x,乙书店:y=.(2)令0.8x=0.6x+40,解得:x=200,当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.点拨:本题考查一次函数的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74757575737778727675 B加工厂78747873747574747575(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?解析:(1)根据中位数、众数和平均数的计算公式分别进行解答即可;(2)用总数乘以质量为75克的鸡腿所占的百分比即可;(3)根据方差的定义,方差越小数据越稳定即可得出答案.参考答案:解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数是=75(克);因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:(74+75+75+75+73+77+78+72+76+75)=75(克);(2)根据题意得:100×=30(个),答:质量为75克的鸡腿有30个;(3)选B加工厂的鸡腿.A的方差是:[(74﹣75)2+4×(75﹣75)2+(76﹣75)2+(73﹣75)2+(72﹣75)2+(77﹣75)2+(78﹣75)2]=2.8;B的平均数是:(78+74+78+73+74+75+74+74+75+75)=75,B的方差是:[2×(78﹣75)2+4×(74﹣75)2+(73﹣75)2+3×(75﹣75)2]=2.6;∵A、B平均值一样,B的方差比A的方差小,B更稳定,∴选B加工厂的鸡腿.点拨:本题考查了方差、平均数、中位数、众数,熟悉计算公式和意义是解题的关键.22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.解析:(1)由圆周角定理与已知得∠BAC=∠DCA,即可得出结论;(2)连接EO并延长交⊙O于G,连接CG,则EG为⊙O的直径,∠ECG=90°,证明∠DCE=∠EGC=∠OCG,得出∠DCE+∠OCE =90°,即可得出结论;(3)由三角函数定义求出cos∠ACD=,证出∠ABC=∠ACD=∠CAB,求出BC=AC=10,AB=12,过点B作BG⊥AC于C,设GC=x,则AG=10﹣x,由勾股定理得出方程,解方程得GC=,由勾股定理求出BG=,由三角函数定义即可得答案.参考答案:(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB∥CD;(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:在Rt△ADC中,由勾股定理得:AC===10,∴cos∠ACD===,∵CD是⊙O的切线,AB∥CD,∴∠ABC=∠ACD=∠CAB,∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,过点B作BG⊥AC于C,如图2所示:设GC=x,则AG=10﹣x,由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,即:122﹣(10﹣x)2=102﹣x2,解得:x=,∴GC=,∴BG===,∴tan∠ACB===.点拨:本题是圆的综合题目,考查了切线的判定与性质、圆周角定理、平行线的判定与性质、等腰三角形的判定与性质、三角函数定义、勾股定理等知识;本题综合性强,熟练掌握圆周角定理和切线的判定是解题的关键.23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B (n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.解析:(1)将点A坐标代入反比例函数解析式中求出k,进而得出点B坐标,最后用待定系数法求出直线AB的解析式;(2)先判断出BF=AE,进而得出△AEG≌Rt△BFG(AAS),得出AG=BG,EG=FG,即BE=BG+EG=AG+FG=AF,再求出m =﹣n,进而得出BF=2+n,MN=n+3,即BE=AF=n+3,再判断出△AME∽△ENB,得出==,得出ME=BN=,最后用勾股定理求出m,即可得出结论.参考答案:解:(1)当m=1时,点A(﹣3,1),∵点A在反比例函数y=的图象上,∴k=﹣3×1=﹣3,∴反比例函数的解析式为y=﹣;∵点B(n,2)在反比例函数y=﹣图象上,∴2n=﹣3,∴n=﹣,设直线AB的解析式为y=ax+b,则,∴,∴直线AB的解析式为y=x+3;(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,则四边形AMNF是矩形,∴FN=AM,AF=MN,∵A(﹣3,m),B(n,2),∴BF=2﹣m,∵AE=2﹣m,∴BF=AE,在△AEG和△BFG中,,∴△AEG≌Rt△BFG(AAS),∴AG=BG,EG=FG,∴BE=BG+EG=AG+FG=AF,∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,∴k=﹣3m=2n,∴m=﹣n,∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,∴BE=AF=n+3,∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,∴∠MAE=∠NEB,∵∠AME=∠ENB=90°,∴△AME∽△ENB,∴====,∴ME=BN=,在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,∴m2+()2=(2﹣m)2,∴m=,∴k=﹣3m=﹣,∴反比例函数的解析式为y=﹣.点拨:此题是反比例函数综合题,主要考查了待定系数法,勾股定理,矩形的判定和性质,全等三角形的判定和性质,构造出△AEG ≌△BFG(AAS)是解本题的关键.24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC 与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.解析:(1)由待定系数法求出直线AB的解析式为y=﹣x+1,求出F点的坐标,由平行四边形的性质得出﹣3a+1=a﹣8a+1﹣(﹣),求出a的值,则可得出答案;(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),得出PP'=﹣n2+n,由二次函数的性质可得出答案;(3)联立直线AC和抛物线解析式求出C(,﹣),设Q(,m),分两种情况:①当AQ为对角线时,②当AR为对角线时,分别求出点Q和R的坐标即可.参考答案:解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(0,1),B(,0),设直线AB的解析式为y=kx+m,∴,解得,∴直线AB的解析式为y=﹣x+1,∵点F的横坐标为,∴F点纵坐标为﹣+1=﹣,∴F点的坐标为(,﹣),又∵点A在抛物线上,∴c=1,对称轴为:x=﹣,∴b=﹣2a,∴解析式化为:y=ax2﹣2ax+1,∵四边形DBFE为平行四边形.∴BD=EF,∴﹣3a+1=a﹣8a+1﹣(﹣),解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1;(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),∴PP'=﹣n2+n,S△ABP=OB•PP'=﹣n=﹣+,∴当n=时,△ABP的面积最大为,此时P(,).(3)∵,∴x=0或x=,∴C(,﹣),设Q(,m),①当AQ为对角线时,∴R(﹣),∵R在抛物线y=+4上,∴m+=﹣+4,解得m=﹣,∴Q,R;②当AR为对角线时,∴R(),∵R在抛物线y=+4上,∴m﹣+4,解得m=﹣10,∴Q(,﹣10),R().综上所述,Q,R;或Q(,﹣10),R ().点拨:本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键.25.(14分)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC 于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.解析:(1)由切线长定理得出BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,由勾股定理得出BC2+CD2=BD2,得出方程,解方程即可;(2)①由折叠的性质得∠AH'I=∠AHI,AH'=AH=3t,证明△AIH'∽△AH'C,则AH'2=AI×AC,证△AIH∽△AOD,求出AI=t,得出(3t)2=t×10,解方程即可;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,证出FH=FP=OF,HP=OH,DN=DM=4,证明△OMH∽△HNP,求出HN=OM=3,则DH=HN﹣DN=3﹣4,得出AH=AD﹣DH=12﹣3,即可得出答案.参考答案:解:(1)∵⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6,∴BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,则BC=6+a,CD=4+a,∵四边形ABCD是矩形,∴∠BCD=90°,∴BC2+CD2=BD2,即(6+a)2+(4+a)2=102,解得:a=2,∴BC=6+2=8,CD=4+2=6;(2)①存在时刻t=s,使点H′恰好落在边BC上;理由如下:如图1所示:由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC=AC,OB=OD=BD,AC=BD,∴AC=BD===10,OA=OD=5,∴∠ADO=∠OAD,∵HI∥BD,∴∠AHI=∠ADO,∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',∴△AIH'∽△AH'C,∴AH'2=AI×AC,∵HI∥BD,∴△AIH∽△AOD,∴=,即=,解得:AI=t,∴(3t)2=t×10,解得:t=,即存在时刻t=s,使点H′恰好落在边BC上;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,如图2所示:则OM∥CD∥PN,∠OMH=∠HNP=90°,OM是△ACD的中位线,∴OM=CD=3,∵△OFH是等边三角形,∴OF=FH,∠OHF=∠HOF=60°,∴∠FHP=∠HPO=30°,∴FH=FP=OF,HP=OH,∴DF是梯形OMNP的中位线,∴DN=DM=4,∵∠MHO+∠MOH=∠MHO+∠NHP=90°,∴∠MOH=∠NHP,∴△OMH∽△HNP,∴HN=OM=3,∴DH=HN﹣DN=3﹣4,∴AH=AD﹣DH=12﹣3,∴t==4﹣,即当△OFH为正三角形时,t的值为(4﹣)s.点拨:本题是圆的综合题目,考查了切线长定理、矩形的性质、折叠的性质、勾股定理、相似三角形的判定与性质、等边三角形的性质、含30°角的直角三角形的性质、等腰三角形的判定、三角形中位线定理、梯形中位线定理等知识;本题综合性强,熟练掌握切线长定理、相似三角形的判定与性质以及勾股定理是解题的关键.。

2020年四川省绵阳市高级中等教育学校招生统一考试初中数学

2020年四川省绵阳市高级中等教育学校招生统一考试初中数学

2020年四川省绵阳市高级中等教育学校招生统一考试初中数学数学试卷一、选择题:本大题共12个小题,每题3分,共36分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.假如向东走80 m 记为80 m ,那么向西走60 m 记为〔 〕A .-60 mB .︱-60︱mC .-〔-60〕mD .601m 2.点P 〔-2,1〕关于原点对称的点的坐标为〔 〕A .〔2,1〕B .〔1,-2〕C .〔2,-1〕D .〔-2,1〕 3.以下图中的正五棱柱的左视图应为〔 〕4.2018年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究讲明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示那个数是〔 〕 A .0.156×10-5B .0.156×105C .1.56×10-6 D .1.56×1065.一个钢管放在V 形架内,以下图是其截面图,O 为钢管的圆心.假如钢管的半径为25 cm ,∠MPN = 60 ,那么OP =〔 〕A .50 cmB .253cmC .3350cm D .503cm 6.在一次中学生田径运动会上,参加男子跳高的14名运动员成绩如下表所示:〔 〕成绩/m 1.50 1.61 1.66 1.70 1.75 1.78 人数232151那么这些运动员成绩的中位数是A .1.66B .1.67C .1.68D .1.757.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为〔 〕A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 8.小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发觉〝⊗〞〝 ⊕〞处被墨水污损了,请你帮他找出⊗、⊕ 处的值分不是〔 〕 A .⊗ = 1,⊕ = 1 B .⊗ = 2,⊕ = 1 C .⊗ = 1,⊕ = 2D .⊗ = 2,⊕ = 29.n -12是正整数,那么实数n 的最大值为〔 〕A .12B .11C .8D .310.如图,在平面直角坐标系中,矩形ABCD 的中心在原点,顶点A 、C 在反比例函数xky =的图象上,AB ∥y 轴,AD ∥x 轴,假设ABCD 的面积为8,那么k =〔 〕A .-2B .2C .-4D .411.如图,四边形ABCD 是矩形,AB :AD = 4:3,把矩形沿直线AC 折叠,点B 落在点E处,连接DE ,那么DE :AC =〔 〕A .1:3B .3:8C .8:27D .7:2512.如图,△ABC 是直角边长为a 的等腰直角三角形,直角边AB 是半圆O 1的直径,半圆O 2过C 点且与半圆O 1相切,那么图中阴影部分的面积是〔 〕A .2367a π- B .2365a π- C .2367a D .2365a 二、填空题:本大题共6个小题,每题4分,共24分.将答案直截了当填写在题中横线上. 13.运算:〔2a 2〕2 = .14.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,假设∠1 = 70︒,那么∠2 = .15.如图是由假设干个边长为1的小正方形组成的网格,请在图中作出将〝蘑菇〞ABCDE绕A 点逆时针旋转90︒再向右平移2个单位的图形〔其中C 、D 为所在小正方形边的中点〕.16.小明想利用小区邻近的楼房来测同一水平线上一棵树的高度.如图,他在同一水平线上选择了一点A ,使A 与树顶E 、楼房顶点D 也恰好在一条直线上.小明测得A 处的仰角为∠A = 30︒.楼房CD =21米,且与树BE 之间的距离BC = 30米,那么此树的高度约为米.〔结果保留两个有效数字,3≈1.732〕17.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有花色不同,其中一个无盖〔如图〕,突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,那么花色完全搭配正确的概率是 .18.将正整数依次按下表规律排成四列,那么依照表中的排列规律,数2018应排的位置是第 行第 列.三、解答题:本大题共7个小题,共90分.解承诺写出文字讲明、证明过程或演算步骤. 19.〔此题共2个小题,每题8分,共16分〕〔1〕运算:〔-1〕2018 + 3〔tan 60︒〕-1-︱1-3︱+〔3.14-π〕0.〔2〕先化简,再选择一个合适的x 值代入求值:11)131()11(22-⋅--÷++x x x x x . 20.新民场镇地处城郊,镇政府为进一步改善场镇人居环境,预备在街道两边植种行道树,行道树的树种选择取决于居民的喜爱情形.为此,新民初中社会调查小组在场镇随机调查了部分居民,并将结果绘制成如下扇形统计图,其中∠AOB = 126︒.第1列 第2列 第3列 第4列第1行 1 2 3 第2行 6 5 4 第3行 7 8 9 第4行 12 11 10 ……请依照扇形统计图,完成以下咨询题:〔1〕本次调查了多少名居民?其中喜爱柳树的居民有多少人? 〔2〕请将扇形统计图改成条形统计图〔在图中完成〕;〔3〕请依照此项调查,对新民场镇植种行道树的树种提出一条建议. 21.关于x 的一元二次方程x 2 + 2〔k -1〕x + k 2-1 = 0有两个不相等的实数根.〔1〕求实数k 的取值范畴;〔2〕0可能是方程的一个根吗?假设是,要求出它的另一个根;假设不是,请讲明理由.22.李大爷一年前买入了相同数量的A 、B 两种种兔,目前,他所养的这两种种兔数量仍旧相同,且A 种种兔的数量比买入时增加了20只,B 种种兔比买入时的2倍少10只.〔1〕求一年前李大爷共买了多少只种兔?〔2〕李大爷目前预备卖出30只种兔,卖A 种种兔可获利15元/只,卖B 种种兔可获利6元/只.假如要求卖出的A 种种兔少于B 种种兔,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?要求出最大获利. 23.抛物线y = ax 2-x + c 通过点Q 〔-2,23〕,且它的顶点P 的横坐标为-1.设抛物线与x 轴相交于A 、B 两点,如图.〔1〕求抛物线的解析式; 〔2〕求A 、B 两点的坐标;〔3〕设PB 于y 轴交于C 点,求△ABC 的面积.24.如图,A 、P 、B 、C 是⊙O 上的四点,∠APC =∠BPC = 60︒,AB 与PC 交于Q 点.〔1〕判定△ABC 的形状,并证明你的结论; 〔2〕求证:QBAQPB AP =; 〔3〕假设∠ABP = 15︒,△ABC 的面积为43,求PC 的长.25.如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点〔不包括端点〕,作∠AEF = 90︒,使EF 交矩形的外角平分线BF 于点F ,设C 〔m ,n 〕.〔1〕假设m = n 时,如图,求证:EF = AE ;〔2〕假设m ≠n 时,如图,试咨询边OB 上是否还存在点E ,使得EF = AE ?假设存在,要求出点E 的坐标;假设不存在,请讲明理由.〔3〕假设m = tn 〔t >1〕时,试探究点E 在边OB 的何处时,使得EF =〔t + 1〕AE 成立?并求出点E 的坐标.。

2020年部编人教版四川省绵阳市中考数学试题

2020年部编人教版四川省绵阳市中考数学试题

绵阳市2020年初中学业考试暨高中阶段学校招生考试数学第一卷(选择题,共36分)一.选择题:本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1)ABC. D. 2.下列“数字”图形中,有且仅有一条对称轴的是( )3.2020年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为( ) A .1.2×10-9米 B .1.2×10-8米 C .12×10-8米 D .1.2×10-7米 4.设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( )A .■、●、▲B .▲、■、●C .■、▲、● D.●、▲、■5.把右图中的三棱柱展开,所得到的展开图是( )6.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相垂直的梯形是等腰梯形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形7.如图,要拧开一个边长为a =6cm 的正六边形螺帽,扳手张开的开口b 至少为( ) A . B .12mm C . D . A . B.C. D. B.8.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还3个,如果每人2个又多2个,请问共有多少个小朋友?( )A .4个B .5个C .10个D .12个9.如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60º,又从A 点测得D 点的俯角β为30º,若旗杆底总G 为BC 的中点,则矮建筑物的高CD 为( ) A .20米 B. C.米 D.10.如图,四边形ABCD 是菱形,对角线AC =8cm ,BD =6cm ,DH ⊥AB 于点H ,且DH 与AC 交于G ,则GH =( ) A .2825cm B .2120cm C .2815cm D .2521cm11.“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )A .16B .15C .25D .3512.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M =(i ,j )表示正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2020=( ) A .(45,77) B .(45,39) C .(32,46) D .(32,23) 7题图 βαG D C B A 9题图HG OD C BA 10题图第二卷(非选择题,共114分)二.填空题:本大题共6个小题,每小题4分,共24分。

2020年绵阳市中考数学试卷

2020年绵阳市中考数学试卷

绵阳市初2020级学业考试暨高中阶段招生考试数学第Ⅰ卷(选择题,共36分)一、选择题:本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、计算:-1-2=A、-1B、1C、-3D、32、下列运算正确的是A、a+a2=a3B、2a+3b=5abC、(a3)2=a9D、a3÷a2=a3、掷一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子,如图。

观察向上的一面的点数,下列属于必然事件的是A、出现点数是7B、出现点数不会是0C、出现点数是2D、出现点数为奇数4、使函数y=1-2x有意义的自变量x的取值范围是A、x≤12B、x≠12C、x≥12D、x<125、将一副常规三角尺按如图方式放置,则图中∠AOB的度数为A、75°B、95°C、105°D、120°6、王师傅用4根木条钉成一个四边形木架,如图。

要使这个木架不变形,他至少要再钉上几根木条A、0根B、1根C、2根D、3根7、下列关于矩形的说法正确的是A、对角线相等的四边形是矩形B、对角线互相平分的四边形是矩形C、矩形的对角线互相垂直且平分D、矩形的对角线相等且互相平分8、由四个相同的正方体搭建了一个积木,它的三视图如图所示,则这个积木可能是9、灾后重建,四川从悲壮走向豪迈。

灾民发扬伟大的抗震救灾精神,桂花村派男女村民共15人到山外采购建房所需的水泥。

已知男村民一人挑两包,女村民两人一包,共购回15包。

请问这次采购派男女村民各多少人?A、男村民3人,女村民12人B、男村民5人,女村民10人C、男村民6人,女村民9人D、男村民7人,女村民8人10、周末,身高都为1.6米得小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度,如图。

小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处测得她看塔顶的仰角β为30°。

她们又测出A、B两点的距离为30米。

2020年四川省绵阳市中考数学试题(教师版含解析)

2020年四川省绵阳市中考数学试题(教师版含解析)

2020年四川省绵阳市中考数学试卷参考答案与试题解析一.选择题(共12小题)1.﹣3的相反数是()A.﹣3B.﹣C.D.3【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣3的相反数是3,故选:D.2.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.【解答】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×106【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【解答】解:690万=6900000=6.9×106.故选:D.4.下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.【分析】根据正方体的展开图的11种不同情况进行判断即可.【解答】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故选:D.5.若有意义,则a的取值范围是()A.a≥1B.a≤1C.a≥0D.a≤﹣1【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:若有意义,则a﹣1≥0,解得:a≥1.故选:A.6.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱【分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设共有x人合伙买羊,羊价为y钱,依题意,得:,解得:.故选:C.7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1B.2C.3D.4【分析】过E作EM⊥BC,交FD于点H,可得EH⊥GD,得到EH与GH平行,再由E 为HD中点,得到HG=2EH,同时得到四边形HMCD为矩形,再由角平分线定理得到AE=ME,进而求出EH的长,得到HG的长.【解答】解:过E作EM⊥BC,交FD于点H,∵DF∥BC,∴EH⊥DF,∴EH∥HG,∴=,∵E为HD中点,∴=,∴=,即HG=2EH,∴∠DHM=∠HMC=∠C=90°,∴四边形HMCD为矩形,∴HM=DC=2,∵BE平分∠ABC,EA⊥AB,EM⊥BC,∴EM=AE=3,∴EH=EM﹣HM=3﹣2=1,则HG=2EH=2.故选:B.8.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为() A.B.C.D.【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为=.故选:A.9.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°【分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,由三角形外角的性质即可求得∠ACD的度数.【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时【分析】设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据“各匀速行驶一半路程”列出方程求解即可.【解答】解:设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故选:C.11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC =10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=﹣,∴大孔所在抛物线解析式为y=﹣x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,﹣),∴﹣=m(x﹣b)2,∴x1=+b,x2=﹣+b,∴MN=4,∴|+b﹣(﹣+b)|=4∴m=﹣,∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=﹣,∴﹣=﹣(x﹣b)2,∴x1=+b,x2=﹣+b,∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),故选:B.12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=()A.B.2C.D.【分析】过D作DE⊥BC于E,则∠DEC=∠DEB=90°,根据矩形的想知道的BE=AD =2,DE=AB=2,根据旋转的性质得到∠DB′C=∠ABC=90°,B′C=BC,A′C =AC,∠A′CA=∠B′CB,推出△B′CD为等腰直角三角形,得到CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,根据勾股定理即可得到结论.【解答】解:过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD∥BC,∠ABC=90°,∴∠DAB=∠ABC=90°,∴四边形ABED是矩形,∴BE=AD=2,DE=AB=2,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴△A′CA∽△B′CB,∴=,∵△B′CD为等腰三角形,∴△B′CD为等腰直角三角形,∴CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,∵CD2=CE2+DE2,∴(x)2=(x﹣2)2+(2)2,∴x=4(负值舍去),∴BC=4,∴AC==2,∴=,∴A′A=,故选:A.二.填空题13.因式分解:x3y﹣4xy3=xy(x+2y)(x﹣2y).【分析】先提取公因式xy,再对余下的多项式利用平方差公式继续分解.【解答】解:x3y﹣4xy3,=xy(x2﹣4y2),=xy(x+2y)(x﹣2y).故答案为:xy(x+2y)(x﹣2y).14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为(﹣3,3).【分析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.【解答】解:∵将点A(﹣1,2)先向左平移2个单位,横坐标﹣2,再向上平移1个单位纵坐标+1,∴平移后得到的点A1的坐标为:(﹣3,3).故答案为:(﹣3,3).15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=0或8.【分析】直接利用多项式的次数确定方法得出答案.【解答】解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是125万元.(利润=销售额﹣种植成本)【分析】设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,根据题意列出不等式求出x的范围,然后根据题意列出w与x的函数关系即可求出答案.【解答】解:设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:50≤x≤60,此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,当x=50时,w的最大值为140﹣15=125万元.17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为3﹣2.【分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O 作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.【解答】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2,GF=,OF=3,∴ME≥OF﹣OM=3﹣2,∴当O,M,E共线时,ME的值最小,最小值为3﹣2.18.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是≤m≤6.【考点】C6:解一元一次不等式.【专题】524:一元一次不等式(组)及应用;66:运算能力.【分析】解不等式>﹣x﹣得x>﹣4,据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立,再分m﹣6=0和m﹣6≠0两种情况分别求解.【解答】解:解不等式>﹣x﹣得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>,∵x>﹣4都能使x>成立,∴﹣4≥,∴﹣4m+24≤2m+1,∴m≥,综上所述,m的取值范围是≤m≤6.故答案为:≤m≤6.三.解答题19.(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.【考点】6D:分式的化简求值;6E:零指数幂;76:分母有理化;79:二次根式的混合运算;T5:特殊角的三角函数值.【专题】513:分式;66:运算能力.【分析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=3﹣+2×﹣×2﹣1=3﹣+﹣2﹣1=0;(2)原式=(+)÷=•=,当x=﹣1时,原式===1﹣.20.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?【考点】C9:一元一次不等式的应用;FH:一次函数的应用.【专题】533:一次函数及其应用;69:应用意识.【分析】(1)根据题意给出的等量关系即可求出答案.(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.【解答】解:(1)甲书店:y=0.8x,乙书店:y=.(2)令0.8x=0.6x+40,解得:x=200,当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.21.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74757575737778727675 B加工厂78747873747574747575(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?【考点】V5:用样本估计总体;W1:算术平均数;W4:中位数;W5:众数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;(2)用总数乘以质量为75克的鸡腿所占的百分比即可;(3)根据方差的定义,方差越小数据越稳定即可得出答案.【解答】解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数是=75(克);因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:(74+75+75+75+73+77+78+72+76+75)=75(克);(2)根据题意得:100×=30(个),答:质量为75克的鸡腿有30个;(3)选B加工厂的鸡腿.∵A、B平均值一样,B的方差比A的方差小,B更稳定,∴选B加工厂的鸡腿.22.如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.【考点】MR:圆的综合题.【专题】152:几何综合题;554:等腰三角形与直角三角形;559:圆的有关概念及性质;55A:与圆有关的位置关系;55E:解直角三角形及其应用;67:推理能力.【分析】(1)由圆周角定理与已知得∠BAC=∠DCA,即可得出结论;(2)连接EO并延长交⊙O于G,连接CG,则EG为⊙O的直径,∠ECG=90°,证明∠DCE=∠EGC=∠OCG,得出∠DCE+∠OCE=90°,即可得出结论;(3)由三角函数定义求出cos∠ACD=,证出∠ABC=∠ACD=∠CAB,求出BC=AC=10,AB=12,过点B作BG⊥AC于C,设GC=x,则AG=10﹣x,由勾股定理得出方程,解方程得GC=,由勾股定理求出BG=,由三角函数定义即可得答案.【解答】(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB∥CD;(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:在Rt△ADC中,由勾股定理得:AC===10,∴cos∠ACD===,∵CD是⊙O的切线,AB∥CD,∴∠ABC=∠ACD=∠CAB,∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,过点B作BG⊥AC于C,如图2所示:设GC=x,则AG=10﹣x,由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,即:122﹣(10﹣x)2=102﹣x2,解得:x=,∴GC=,∴BG===,∴tan∠ACB===.23.如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.【考点】GB:反比例函数综合题.【专题】15:综合题;66:运算能力;67:推理能力.【分析】(1)将点A坐标代入反比例函数解析式中求出k,进而得出点B坐标,最后用待定系数法求出直线AB的解析式;(2)先判断出BF=AE,进而得出△AEG≌Rt△BFG(AAS),得出AG=BG,EG=FG,即BE=BG+EG=AG+FG=AF,再求出m=﹣n,进而得出BF=2+n,MN=n+3,即BE =AF=n+3,再判断出△AME∽△ENB,得出==,得出ME=BN=,最后用勾股定理求出m,即可得出结论.【解答】解:(1)当m=1时,点A(﹣3,1),∵点A在反比例函数y=的图象上,∴k=﹣3×1=﹣3,∴反比例函数的解析式为y=﹣;∵点B(n,2)在反比例函数y=﹣图象上,∴2n=﹣3,∴n=﹣,设直线AB的解析式为y=ax+b,则,∴,∴直线AB的解析式为y=x+3;(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,则四边形AMNF是矩形,∴FN=AM,AF=MN,∵A(﹣3,m),B(n,2),∴BF=2﹣m,∵AE=2﹣m,∴BF=AE,在△AEG和△BFG中,,∴△AEG≌Rt△BFG(AAS),∴AG=BG,EG=FG,∴BE=BG+EG=AG+FG=AF,∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,∴k=﹣3m=2n,∴m=﹣n,∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,∴BE=AF=n+3,∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,∴∠MAE=∠NEB,∵∠AME=∠ENB=90°,∴△AME∽△ENB,∴====,∴ME=BN=,在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,∴m2+()2=(2﹣m)2,∴m=,∴k=﹣3m=﹣,∴反比例函数的解析式为y=﹣.24.如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△P AB面积最大时,求点P的坐标及△P AB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;535:二次函数图象及其性质;555:多边形与平行四边形;66:运算能力;67:推理能力.【分析】(1)由待定系数法求出直线AB的解析式为y=﹣x+1,求出F点的坐标,由平行四边形的性质得出﹣3a+1=a﹣8a+1﹣(﹣),求出a的值,则可得出答案;(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),得出PP'=﹣n2+n,由二次函数的性质可得出答案;(3)联立直线AC和抛物线解析式求出C(,﹣),设Q(,m),分两种情况:①当AQ为对角线时,②当AR为对角线时,分别求出点Q和R的坐标即可.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(0,1),B(,0),设直线AB的解析式为y=kx+m,∴,解得,∴直线AB的解析式为y=﹣x+1,∵点F的横坐标为,∴F点纵坐标为﹣+1=﹣,∴F点的坐标为(,﹣),又∵点A在抛物线上,∴c=1,对称轴为:x=﹣,∴b=﹣2a,∴解析式化为:y=ax2﹣2ax+1,∵四边形DBFE为平行四边形.∴BD=EF,∴﹣3a+1=a﹣8a+1﹣(﹣),解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1;(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),∴PP'=﹣n2+n,S△ABP=OB•PP'=﹣n=﹣+,∴当n=时,△ABP的面积最大为,此时P(,).(3)∵,∴x=0或x=,∴C(,﹣),设Q(,m),①当AQ为对角线时,∴R(﹣),∵R在抛物线y=+4上,∴m+=﹣+4,解得m=﹣,∴Q,R;②当AR为对角线时,∴R(),∵R在抛物线y=+4上,∴m﹣+4,解得m=﹣10,∴Q(,﹣10),R().综上所述,Q,R;或Q(,﹣10),R().25.如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.【考点】MR:圆的综合题.【专题】152:几何综合题;554:等腰三角形与直角三角形;556:矩形菱形正方形;557:梯形;558:平移、旋转与对称;55A:与圆有关的位置关系;55D:图形的相似;67:推理能力.【分析】(1)由切线长定理得出BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,由勾股定理得出BC2+CD2=BD2,得出方程,解方程即可;(2)①由折叠的性质得∠AH'I=∠AHI,AH'=AH=3t,证明△AIH'∽△AH'C,则AH'2=AI×AC,证△AIH∽△AOD,求出AI=t,得出(3t)2=t×10,解方程即可;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,证出FH =FP=OF,HP=OH,DN=DM=4,证明△OMH∽△HNP,求出HN=OM=3,则DH=HN﹣DN=3﹣4,得出AH=AD﹣DH=12﹣3,即可得出答案.【解答】解:(1)∵⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6,∴BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,则BC=6+a,CD=4+a,∵四边形ABCD是矩形,∴∠BCD=90°,∴BC2+CD2=BD2,即(6+a)2+(4+a)2=102,解得:a=2,∴BC=6+2=8,CD=4+2=6;(2)①存在时刻t=s,使点H′恰好落在边BC上;理由如下:如图1所示:由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC=AC,OB=OD=BD,AC=BD,∴AC=BD===10,OA=OD=5,∴∠ADO=∠OAD,∵HI∥BD,∴∠AHI=∠ADO,∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',∴△AIH'∽△AH'C,∴=,∴AH'2=AI×AC,∵HI∥BD,∴△AIH∽△AOD,∴=,即=,解得:AI=t,∴(3t)2=t×10,解得:t=,即存在时刻t=s,使点H′恰好落在边BC上;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,如图2所示:则OM∥CD∥PN,∠OMH=∠HNP=90°,OM是△ACD的中位线,∴OM=CD=3,∵△OFH是等边三角形,∴OF=FH,∠OHF=∠HOF=60°,∴∠FHP=∠HPO=30°,∴FH=FP=OF,HP=OH,∴DF是梯形OMNP的中位线,∴DN=DM=4,∵∠MHO+∠MOH=∠MHO+∠NHP=90°,∴∠MOH=∠NHP,∴△OMH∽△HNP,∴==,∴HN=OM=3,∴DH=HN﹣DN=3﹣4,∴AH=AD﹣DH=12﹣3,∴t==4﹣,即当△OFH为正三角形时,t的值为(4﹣)s.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档