(完整word版)高等数学不定积分相关题目和答案
高等数学 第四章不定积分课后习题详解.doc

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。
(完整版)高等数学不定积分例题、思路和答案(超全)

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习一一求不定积分的基本方法思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分★⑴dx x2 . x思路: 被积函数由积分表中的公式(2)可解。
解:dxx2-x5x 2dx★⑵1 ^=)思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
(x3x 2)dx1x3dx1x 2dx3 - 13x32x2C4★(3)(2x x2) dx思路:根据不定积分的线性性质,将被积函数分为两项, 分别积分。
解:(2x x2)dx 2x dx x2dx 2In 21x3 C 3★(4). x(x 3)dx思路:根据不定积分的线性性质,将被积函数分为两项, 分别积分。
解: ' x(x 3)dx3x2dx1x2dx5 32 2x2 C3x42x Jx1思路:观察到3x43x2 1x2 1 3x2 -后,根据不定积分的线性性质,将被积函数分项,分别积1分。
解:(注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分 解为一个整式加上或减去一个真分式的形式,再分项积分。
思路:分项积分。
思路:分项积分。
…、1 ★★(10) - ------- -dxx (1 x )思路:裂项分项积分。
解:4 2 ,3x 3x 12 ,dx 3x dx. 3—dx x arctan x Cx★★ (6)dx思路:注意到2x 1 x 2,根据不定积分的线性性质,将被积函数分项,分别积分。
25 x .斛:-------- 2dx1 xdx ----- 2dx1 xarctan x C.,/ x ★⑺( --- 21 + 1- 4、4)dx x…/x斛:(一 ——i - 3 x x 4、 —)dx 1 2 -x 4 In |x| x3 x 2 24 x 3 xdx-dx x 3 x 3dx 4 x 4dx C. 3 ★(8) (rv2-解:2、,-dx1 , c c . c ---- dx 3arctan x 2arcsin x C. x 2★★(9)x x xdx1 1x 2 47x 8,直接积分。
(完整版)不定积分习题与答案

不定积分(A)求下列不定积分dx~~2X(x 2)2dxdx2) xV x2x .2dx 4) 1 x1、1) 3)5)7) 2、1) 3) 5) 7) 9) 11) 13) 15) 17)2 3X 53^△dx cos2x2 ;~2~dx6)cos xsin xX 3(2e )dxx求下列不定积分(第一换元法)(1 —y^'xYxdX8) x3(3 2x) dxsin t ..dtxtdxcosxsin xdx2) 32 3xdx,) xl n x In (I n x)xcos(x2)dxsinx , 厂dxcos xdx2x2 1sin 2xcos3xdxdxx x6) e e“、cos3xdx12)tan3x secxdx14)3x9 x2dx16)______ 13cos2 x—dx4sin x10 2arccosxdxarctan x ,dx 18) x(1 x)3、求下列不定积分(第二换元法)1) 2)sinxdx3) 4)2x----------- d x, (a 0)2 2.a x5)7) 4、1) 3) 5)7) 5、1)2)3)dx6)dx1 \2xdxx -J x28)dx1 T x2求下列不定积分(分部积分法)xSnxdxx2In xdxx2arcta nxdxIn2xdx求下列不定积分(有理函数积分)3xdxx 32x 32x 3xdxx(x21)1、一曲线通过点方程。
2、已知一个函数2)4)6)8)arcs inxdxe 2x sin -dx2x2cosxdx2 2 xx cos dx2(B)(M,3),且在任一点处的切线斜率等于该点的横坐标的倒数,F(x)的导函数为1 x2,且当x 1时函数值为2求该曲线的,试求此函数。
3、证明:若f(x)dx F(x)c,则f (ax b)dx 丄F(axa b) c,(a 0)o sin x4、设f(x)的一个原函数为求xf(x)dx。
(完整版)不定积分习题与答案

不定积分(A)1、求下列不定积分1)⎰2xdx2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+2215)⎰⋅-⋅dxxxx325326)dxxxx⎰22sincos2cos7)dxxe x)32(⎰+8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23(2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos6)⎰-+xx eedx7)dxxx)cos(2⎰8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx12)dxx⎰3cos13)⎰xdxx3cos2sin14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+2112)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx6)⎰+xdx217)⎰-+21xxdx8)⎰-+211xdx4、求下列不定积分(分部积分法)1)inxdxxs⎰2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan26)⎰xdxx cos27)⎰xdx2ln8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dx xx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx(B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
(完整word版)高等数学不定积分相关题目和答案

不定积分一、填空题(每小题3分,共15分) 1. 如果xe-是函数()f x 的一个原函数,则()f x dx =⎰。
2. 若()2cos 2xf x dx C =+⎰,则()f x = 。
3. 设1()f x x=,则()f x dx '=⎰ 。
4.()()f x df x =⎰ 。
5. sin cos x xdx =⎰。
二、单项选择题(每小题3分,共15分)1. 设3()ln sin 44f x dx x C =+⎰,则()f x =( )。
A . cot 4xB . cot 4x -C . 3cos4xD . 3cot 4x2. ln x dx x =⎰( )。
A . 21ln 2x x C + B .21ln 2x C + C . ln x C x+ D .221ln xC x x-+ 3. 若()f x 为可导、可积函数,则( )。
A . ()()f x dx f x '⎡⎤=⎣⎦⎰B . ()()d f x dx f x ⎡⎤=⎣⎦⎰C .()()f x dx f x '=⎰ D . ()()df x f x =⎰4. 下列凑微分式中( )是正确的。
A . 2sin 2(sin )xdx d x = B .d = C . 1ln ()x dx d x = D . 21arctan ()1xdx d x=+ 5. 若2()f x dx x C =+⎰,则2(1)xf x dx -=⎰( )。
A . 222(1)x C ++ B . 222(1)x C --+C . 221(1)2x C ++D . 221(1)2x C --+三、计算题(每小题8分,共48分) 1. 2194dx x -⎰2.3. dx x⎰4. arcsin xdx ⎰5. dx x xx ⎰++21arctan6. .)1(21222dx x x x ⎰++四、综合题(本大题共2小题, 总计22分)1.(10分)求⎰'''⋅-'dx x f x f x f x f x f ])()()()()([32的值。
不定积分的典型例题50题答案

例1. 解法1).12)(12(1224+-++=+x x x x x而 +++)12(2x x )1(2)12(22+=+-x x x 所以)121121(21112242dx x x dx x x dx x x ⎰⎰⎰++++-=++ .)]12arctan()12[arctan(211)12()12211)12()12(21)21)22(121)22(1[212222c x x x x d x x d dx x dx x +++-=+++++--=++++-=⎰⎰⎰⎰解法2dxx x x x xx x dx x x ⎰⎰+++-++-=++)12)(12(2)12(1122242.arctan 21)12arctan(211212242c x x dx x xx x dx +++=++++=⎰⎰ 解法3⎰⎰⎰+-=++=++≠22222421)1(11111,0xx x x d dx x x x dx x x x 当 c x x xx x x d +-=+--=⎰21arctan 212)1()1(22,2221arctan 21lim 20π-=-+→x x x ,2221arctan 21lim 20π=--→x x x 由拼接法可有.02221arctan 2100,2221arctan 21112242⎪⎪⎩⎪⎪⎨⎧<+--=>++-=++⎰x cx x x x c x x dx x x ππ 例2.解 将被积函数化为简单的部分分式(*)1)1(1)1()1(222223⋅⋅⋅⋅⋅++++++=+++x DCx x B x A x x x 两边同乘以2)1(+x ,约去1+x 的因子后令1-→x 得 .211)1(2)1(23=+-+-=B 两边同乘以2)1(+x ,对x 求导,再令1-→x ,施以上运算后,右端得A,而左端为.2.2426)1()2(2)1(3lim]12[lim )1()1()1(2[lim 22322123122231=∴=+=++-+=++=++++-→-→-→A x x x x x x x dx d x x x x dx d x x x 在分解式(*)中令,0=x 得,2D B A ++=所以.21-=D 分解式(*)两边同乘以x ,再令,+∞→x 得.1,1-=⇒+=C C A 故有.arctan 21)1ln(21)1(211ln 2]1)1(1[)1()1(2222223c x x x x dxx DCx x B x A dx x x x +-+-+-+=++++++=+++⎰⎰例3.解 令 ,2x u =再用部分分式,則⎰⎰++=++))(1(21)()1(22244u u u dudx x x x x,11)()1(1222+++++=++u D Cu u B u A u u u 两边乘以,u 再令,0→u 得.1=A 两边乘以,1+u 再令,1-→u 得.21-=B 两边乘以,u 再令,+∞→u 得.21,0-=⇒++=C C B A 令.21,1-=⇒=D u.arctan 41)1()1(ln 81arctan 41)1ln(81)1ln(41ln 21arctan 41)1ln(811ln 41ln 21]12121)1(211[21))(1(21)()1(2422824222222244c x x x x c x x x x c u u u u du u u u u u u u dudx x x x x +-++=+-+-+-=+-+-+-=+--++-=++=++∴⎰⎰⎰ 例4828872882815)1(1181)1()1(dx x x dx x x x dx x x ⎰⎰⎰+-+=⋅+=+)1(])1(111[818288++-+=⎰x d x x .)1(81)1ln(8188c x x ++++= 例5. 解 令 ,2tant x =则=-++⎰dx xx xsin cos 1cos 1 .2)sin 1ln(21arctan )1ln(211ln )1111()1)(1(21212111111222222222c x x ct t t dtt t t dtt t dx t t t t t t t ++--=++++--=+++--=-+=+⋅+-+-++-+⎰⎰⎰ 例6dx x x122+⎰⎰+=22421dx x x.1ln 811)12(81))21(ln(161)21(41)21(21)21()21()21(212222222222222c x x x x x c u u u u du u x d x +++-++=+-+--=-=+-+=⎰⎰分部积分例7.25342)2()1(25232121232c x x x dxx x x dx x x ++-=+-=-⎰⎰-分项例8dx x x dx x ]1111[2111224++-=-⎰⎰ .arctan 2111ln 41c x x x ++-+= 例9.dx x x dx x x ⎰⎰+-+=+1111.134132111c x x x dx xdx x ++-+=+-+=⎰⎰例10.⎰⎰⎰---=-+=+)24(cos )24()2cos(1sin 12x x d x dxx dx πππ.)24tan(c x +--=π 例 11c t t dt x xdx tx +=-=-⎰⎰=arcsin 11212⎪⎩⎪⎨⎧-<+>+-=.1,1arcsin 1,1arcsin x c x x c x 例12.解 .2cos 41)2sin 211(c x x dx x J I ++=-=+⎰dx x x x x x dxxx x x x J I ⎰⎰++-=++-=-222)sin (cos )2sin 211)(sin (cos sin cos )2sin 211)(sin (cos.)12ln(sin 412sin 412sin 12cos )2sin 211(c x x dx x xx +++=++=⎰解上面的联立方程可得出.,J I例13. ).(,)1ln(31)1ln(1111111,)21(332arctan 332.1,1111111332322333233略从而可解出可求出令I c x x dx x x dx x dx x x x x dx x x J I c x J I dx x x J dx x x dx x x dx x x x dx x I ++-+=+-+=+-+-=+-=-+-=++=+-+-=+-+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰例14.)1(12arcsin 12arcsin++=+⎰⎰x d xxdx x x .212arcsin )1(112arcsin1c x xxx dx x x x x ++++=+++=⎰)(分部积分例15.解 令,)21(12,211,12222dt t t t dx t t x t x x x +++=+-=⇒+-=++ .)1212(231212ln 231ln 2])12(23)12(231[2)21(12222222c x x x x x x x x x dt t t t dt t t t t I ++++++++++-+++=+-+-=+++=⎰⎰例16.解 .sin 2cos 5]cos 2sin 5[x x x x +='- 被积函数的分子是x x sin ,cos 的线性组合,故有.1,2,cos )25(sin )25()cos 2sin 5()cos 2sin 5(cos sin 12==⇒-++='-+-=+B A x A B x B A x x B x x A x x 于是.cos 2sin 5ln 2cos 2sin 5)cos 2sin 5()cos 2sin 5(2cos 2sin 5cos sin 12c x x x dx xx x x x x dx x x x x +-+=-'-+-=-+⎰⎰ 例17.解 ⎰⎰⎰-=-+-=+=4cos 13)(cos sin 3sin 2cos 22t dtx x d x xdx t x .cos 2cos 2ln 41]2121[41c xx dt t t ++-=+--=⎰ 例18.⎰⎰+=+x xdxx dx 222cos )2cos 1(cos 21 .3tan arctan 313arctan 313tan 3)(tan 2cos 1)(tan 222c x c t t dtx x d xx d +=+=+=+=+⎰⎰⎰ 例19..)1ln(18189623266332366c x x x x x dx xx x t x +++-+-=⋅⋅⋅=+-=⎰例20..15arctan 21515ln153215c x xx x x x dx x xx t x x+-------+-=⋅⋅⋅=---=--⎰例21..]1ln [arctan 2112sin 22c x x x x x dx tx t +-++=⋅⋅⋅=-+=≤⎰π 例22.,11ln 21211222tan 232c x x x x x dxx tx t +++-+-=⋅⋅⋅=+=<⎰π例23.⋅⋅⋅=+-=⎰t e x x xe e dx232换元后有理函数积分例24..1arcsin arcsin 2c x x x xdx +-+=⎰分部积分例25..)(c e dx e e dx exxx e xe xe +==⎰⎰+例26.”)妙用“1(cos sin 1ln cos sin 1)cos sin 1(cos sin 12cos c x x x x x x d x x xdx ++=++=+⎰⎰例27..)13()(2dx e x x e x x x x +++⎰.])[(32])[()()13(])[(23222322c e x x e x x d e x x e x x e x x x x x e ++=++=∴++='+⎰原式例28..11)1(arctan .)1(arctan 2111arctan22x x c x dx x x +-='+-=+⎰例29.=++-=+⎰⎰xb x a x b x a d a b dxx b x a x22222222222222sin cos )sin cos (1sin cos 2sin .2sin )()sin cos (.sin cos 2222222222222x a b x b x a c x b x a ab -='+++-例30.)ln ()ln (1)ln (ln 1)ln (ln 12222x xx d xx x dxxx x x xdx x x x ---=--=--⎰⎰⎰ .ln ln 1c x x xc xx x +-=+-=例31..1212ln2211)1(22sin 22c xx xx xdxt x +---+-=-+⎰=例32..111)1(22tan 2323c x x dx x x tx ++++=+=⎰例33..313222sec 0422c x a x a dx x a x t a x a +⎪⎪⎭⎫⎝⎛-⋅=-=>⎰例34dt tt t dt t t x dxtx ⎰⎰⎰--=+=-+=22sin 2cos 1cos cos cos 1cos 11.arcsin 112c x x x x ++-+-=例35..ln 212ln 141)1(2)1()2(72717c x x dt t ttx x dxtx +++-=-⋅+=+⎰⎰=例36..13)12(2)431(]43)21[()1(2232121232232c xx x t tdt x dxx x dx tx ++++=+-=++=++⎰⎰⎰=+例37..22)(212)2(2222c e x x dx e x x x e x dx x e x x xx x ++-='+++-=+⎰⎰ 例38..)2ln(201ln 21)2()2(101010910c x x x x dx x x x dx ++-=+=+⎰⎰ 例39..1ln 72ln )2()1()1()1(71076777c x x x x dx x x x x dx x ++-=+-=+-⎰⎰ 例40..)1ln (1)()111(111112c x x nx d x n dx x x x x dx x n n n n n n n n n ++-=+-=+⋅=+⎰⎰⎰-- 例41..)1(121003dx x x ⎰-+9899111003)1(493)1(1331)1(12----=-+=-⎰x x dx x x u x例51. 求,))((dx x b a x ⎰-- 其中.b a < 解 由配方得2,)2())((22a b R b a x R x b a x -=+--=--其中,令,2b a u x ++=则有原式 .))((4)(2)(2arcsin )(41cos sin 22)2sin 412(22cos 1cos 2222222sin 22c x b a x b a x ab b a x a bc t t R t R c t t R dt t R tdt R du u R t R u +--+-+-+--=++=++=+==-=⎰⎰⎰= 例52.设)(x f 有一个原函数,sin xx 求.)(⎰'dx x f x 解 用分部积分法有 (*))()()()(⋅⋅⋅⋅⋅⋅-=='⎰⎰⎰dxx f x xf x xdf dx x f x.sin cos ]sin [])([)(sin )(211xx x x c x x dx x f x f c x x dx x f -='+='=⇒+=⎰⎰ 代入(*)有 1sin sin cos )(c x x x x x dx x f x ---='⎰, 即 .sin 2cos )(c x x x dx x f x +-='⎰。
最新不定积分习题与答案

精品文档不定积分(A)1、求下列不定积分dxdx??2xx2x2)1)?dx2?dx)(x?22x1?4)3)2x??dxdx x223xsincosx5)6)xx2?5?2?3x2cos13x??dxxx(2e?)dx(1?)2xx8)7)2、求下列不定积分(第一换元法)dx?3?dx)(3?2x3x32?2)1)dx tsin??dt)xlnxln(lnx t4)3)dxdx??x?x xsincosxe?e6)5)?dx2?dx)xcos(x4x1?8)7)3x3x1?xsin?dx?dx2x49?3xcos)109)dx?3?dxxcos21?2x12)11 )3??xdxxsin2xcos3xdxtansec14) 13)??dxdx222x9?x?4sin3cosx16) 15)3x1??dxdx)x?(x12x?117) 18)x2arccos arctanx10精品文档.精品文档3、求下列不定积分(第二换元法)1?dx?dxxsin2xx?12)1)?)0(a?dx,?dx22x?a x4)3)2x24x?dx dx??32)1(x?x21?6)5)dxdx??22?1?x1?x1?x7)8)4、求下列不定积分(分部积分法)??xdxarcsinxsinxdx1)2)x x?2?dxsine2?xdxxln24)3)?dxxcos2?xdxln28)7)22??xdxxxcosarctanxdx6)5)x225、求下列不定积分(有理函数积分)3x?dx3x?1)3x?2?dx210??3xx2)dx?2)?x(x1 3 )(B)2)3e,(、一曲线通过点,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的1 方程。
13?2)(xFx1?1x?2的导函数为2、已知一个函数,且当,试求此函数。
时函数值为精品文档.精品文档?cx)?f(x)dx?F(,则3、证明:若1?)?0?F(axb)?c,(af(ax?b)dx?a。
高等数学100题不定积分及答案

sin
5x
+
1 2
sin
x
+
c
∫ 63、 cos 2x cos 3xdx =
1 10
sin
5x
+
1 2
sin
x
+
c
∫ 64、 tan x sec xdx = sec x + c
∫ 65、
tan2 x sec xdx =
1 2
sec
x
tan
x
−
1 2
ln
|
sec
x
+
tan
x
|
+c
∫ 66、
tan x sec2 xdx =
x)2
+
c
∫ 78、
x
−
1
arctan + x2
x
dx
=
1 2
ln(1
+
x
2
)
3
−
2 3
(arctan
x)
2
+c
∫ 79、 arcsin x dx = (arc sin x )2 + c
x(1− x)
∫ 80、
1
dx = − 1 + c
(arcsin x)2 1− x2
arcsin x
∫ 81、 ex dx = ln(1+ ex ) + c
c
∫ 98、 cos x − sin xdx = ln | sin x + cos x | +c sin x + cos x
∫ 99、 sin x + 2 cos x dx = 3sin x + 4 cos x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定积分
一、填空题(每小题3分,共15分) 1. 如果x
e
-是函数()f x 的一个原函数,则
()f x dx =⎰。
2. 若()2cos 2
x
f x dx C =+⎰,则()f x = 。
3. 设1
()f x x
=,则()f x dx '=⎰ 。
4.
()()f x df x =⎰ 。
5. sin cos x xdx =⎰。
二、单项选择题(每小题3分,共15分)
1. 设3
()ln sin 44
f x dx x C =+⎰,则()f x =( )。
A . cot 4x
B . cot 4x -
C . 3cos4x
D . 3cot 4x
2. ln x dx x =⎰( )。
A . 2
1ln 2x x C + B .
2
1ln 2
x C + C . ln x C x
+ D .
221ln x
C x x
-+ 3. 若()f x 为可导、可积函数,则( )。
A . ()()f x dx f x '
⎡⎤=⎣⎦
⎰
B . ()()d f x dx f x ⎡⎤=⎣⎦
⎰
C .
()()f x dx f x '=⎰ D . ()()df x f x =⎰
4. 下列凑微分式中( )是正确的。
A . 2
sin 2(sin )xdx d x = B .
d = C . 1ln ()x dx d x = D . 2
1
arctan ()1xdx d x
=+ 5. 若
2()f x dx x C =+⎰,则2(1)xf x dx -=⎰( )。
A . 22
2(1)x C ++ B . 22
2(1)x C --+
C . 221(1)2x C ++
D . 221
(1)2
x C --+
三、计算题(每小题8分,共48分) 1. 21
94dx x -⎰
2.
3. dx x
⎰
4. arcsin xdx ⎰
5. dx x x
x ⎰++21arctan
6. .)
1(212
2
2
dx x x x ⎰++
四、综合题(本大题共2小题, 总计22分)
1.(10分)求⎰'''⋅-'dx x f x f x f x f x f ])
()
()()()([3
2的值。
2.(12分)设()F x 为()f x 的一个原函数,当0x ≥时有2
()()sin (0)0,()0f x F x x F F x ==≥且,求()f x 。
不定积分测试题答案
一、填空题(每小题3分,共15分)
1. x e C -+
2. sin 2x -
3. 1C x +
4. ()212f x C +
5. 21sin 2
x C + 二、单项选择题(每小题3分,共15分) 1. D 2. B 3. A 4. A 5. D 三、计算题(每小题8分,共48分) 1.
.2323ln 121C x
x +-+ 2. C x x x x ++-+-1ln 6632663. 3. C x
x +--2arccos 242. 4. C x x x +-+21arcsin . 5.2211ln(1)(arctan )22x x C +++. 6.C x x
++-arctan 1. 四、综合题(本大题共2小题, 总计22分)
1. C x f x f +'
2
])()([
21. 2. 2
2sin sin 22sin 22cos 12x x x
x x x -
--或
.。