第二章电阻电路等效变换
第二章 电阻电路的等效变换

i
+
… i
+ -
u
-
K=1,2 , i
+ -
u
Reg
u
G1
in Gn
u
-
Geg
分流公式: 分流公式:ik=Gku=Gk/Geg i n=2时,Reg=R1R2/(R1+R2) 时 ( i1=R2/(R1+R2), 2=R1/(R1+R2)×i ),i ( ( *混联:有串,又有并 混联:有串, 混联 1 R1 R2 R3 R4
对于△ 对于△形,各电阻中电流为:i12=u12/R12 i23=u23/R23 i31=u31/R31 各电阻中电流为:
i ′ =i12-i31=u12/R12-u31/R31 1
i ′2 =u23/R23-u12/R12
i ′3 =u31/R31-u23/R23
i1 + i 2 + i 3 = 0
③
2
2 i31 1 i12
④
2
⑤
i′2
1
1
R2
3
自已补充:R 自已补充 4与1串,R3与2串,然 串 串然 后再并 i2
R4 R3 2
3
i3 2
1
1
2-5
电压源和电流源的串联和并联
+
1、n个电压源串联:us=∑usk--------等效电压源 、 个电压源串联: 等效电压源 个电压源串联 + - + ○ ○ -○ us1 us2 usn。 。 注:正、负号取 。 。 。 2、n个电流源的并联: 个电流源的并联: 、 个电流源的并联 is1 is=is1+is2+…is=∑isk 。 。
αi
+ uS - i +
二章电阻电路等效变换

(1)并联: 所连接的各电流源端为同一电压。
保持端口电流、电 压相同的条件下,图
(a)等效为图(b)。等效 is1
变换式:
i
is2
is
is = is1 - is2
(a)
(b)
(2)串联:只有电流数值、方向完全相同的理想电流 源才可串联。
1
二、实际电源模型:
1、实际电压源模型
(1)伏安关系:
i=1.5A Uab=6(i-1)=3V R=Uab/1=3Ω
13
四、三个电阻的星形、三角形连接及等效变换 1、电阻的星形、三角形连接
(a) 星形连接(T形、Y形)
(b) 三角形连接(形、形)
14
2、从星形连接变换为三角形连接
R1
R3
R2
R31 R12 R23
变换式:R12
R1
R2
R1R2 R3
∴i3=i2/3 KCL: i2+i3=I
∴i3=i/4 ∴u=3i+2i = 5i
- 2i0 +
i0
i1 i2
i3
R= u/I=5Ω
21
二、含受控源简单电路的分析:
基本分析思想:运用等效概念将含受控源电路化简、 变换为只有一个单回路或一个独立节点的最简形式, 然后进行分析计算。 例1:求电压u、电流i。
R23
R2
R3
R2 R3 R1
15
3、从三角形连接变换为星形连接
R1
R3
R2
变换式:R1
R12
R12 R31 R23
R31
R31 R12 R23
R2
R12
R23 R23
R31
第02章电阻电路的等效变换(丘关源)

(6)恒压源并联任何元件其两端电压不变;
恒流源串联任何元件其流出电流不变;
a a
+ us
-
+ +
-
对外等效
us
-
b
c
b c
对外等效
is
+
-
d
is
d
(1-30)
例1 用电源等效变换法求i R5
R1 u1 + R2 R3 i
+
i=?
解:
-u3
R4
is
R5 u3 — R3 i
应 用 举 例
一、理想电压源的串联和并联
1、串联 + uS1_ _ uS2 +
+ 注意参考方向
º uS=+uS1 …-uS2 i + uS _ º
等效
+
uS _
º +
_ º
2、并联
条件:uS=uS1=uS2 方向相同 º 恒压源中的电流由外电路决定。相同的恒压源才能并联 。
(1-21)
uS1_
u S2
+ _
i
º
3、恒压源与任意支路(非恒压源)并联的等效 i i + + + + 任意 uS 对外等效 uS _ u _ u 元件 _ _ 4、实际电压源的串联等效
+ i +
uS1 _
R1
_ uS2 + u
R2 _
等效
uS _ R + i +
u
_
uS=+uS1-uS2
R=R1 + R2
(1-22)
二、理想电流源的串联和并联
第二章 电阻电路的等效变换

Ib Ic
c
将Y形联接等效变换为∆形联结时 形联接等效变换为∆ 3R 若 Ra=Rb=Rc=RY 时,有Rab=Rbc=Rca= R∆ = 3RY; 将∆形联接等效变换为Y形联结时 形联接等效变换为Y 若 Rab=Rbc=Rca=R∆ 时,有Ra=Rb=Rc=RY =R∆/3
总目录 章目录 返回 上一页 下一页
总目录 章目录 返回 上一页 下一页
+ U –
2.3.2 电阻的并联
I + I1 U – I2 R1 R2 特点: 特点: (1)各电阻联接在两个公共的结点之间; (1)各电阻联接在两个公共的结点之间 各电阻联接在两个公共的结点之间; (2)各电阻两端的电压相同; (2)各电阻两端的电压相同; 各电阻两端的电压相同 (3)等效电阻的倒数等于各电阻倒数之和; (3)等效电阻的倒数等于各电阻倒数之和; 等效电阻的倒数等于各电阻倒数之和 1 1 1 = + Req R1 R2 (4)并联电阻上电流的分配与电阻成反比。 (4)并联电阻上电流的分配与电阻成反比 并联电阻上电流的分配与电阻成反比。 两电阻并联时的分流公式: 两电阻并联时的分流公式: Req
R R ab ca R = a R +R +R ab bc ca R R bc ab R = b R +R +R ab bc ca R R ca bc R = c R +R +R ab bc ca
总目录 章目录 返回 上一页 下一页
Ia a Ra Ib Ic b Rb Rc c 等效变换
Ia
a Rab RbcRca b
第2章 电阻电路的等效变换 章
2.1 引言 2.2 电路的等效变换 2.3 电阻的串联和并联 2.4 电阻星型联结与三角型联结的等效变换 电阻星型联结与三角型联结的等效变换 2.5 电压源、电流源的串联和并联 电压源、 2.6 实际电源的两种模型及其等效变换 实际电源的两种模型及其等效变换 2.7 输入电阻
第2章电阻电路的等效变换

总电流
U S 18 I= = A = 6A R 3
由分流公式得
6 I1 = I = × 6A = 4A 4× 4 9 6 + (1 + ) 4+4
再分流得
6
1 I x = I 1 = 2A 2
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.4 Y形电路和Δ形电路之间 的等效变换
返回
电路分析基础
如何等效化简电桥测温电路? 如何等效化简电桥测温电路?
返回
电路分析基础
第2章 电阻电路的等效变换
2.1 等效变换
电阻电路
线性电阻电路
非线性电阻电路
简化线性电阻电路的主要依据是等效变换
返回
电路分析基础
第2章 电阻电路的等效变换
2.1.1 一端口网络的定义
二端网络
一端口网络
流入一个端子的电流必定等于流出另一端子的电流
Ig =
Rp Rg + R p
× 10 × 10 −3 = 1 × 10 −3 mA
解之得应并联的电阻为
0.1RG 2 × 10 3 Rp = = Ω ≈ 222.22Ω 0.9 9
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.3 电阻的混联
判别电路的串并联关系根据以下原则: 判别电路的串并联关系根据以下原则: (1)看电路的结构特点。 看电路的结构特点。 (2)看电压、电流关系。 看电压、电流关系。 (3)对电路作变形等效。 对电路作变形等效。 (4)找出等电位点。 找出等电位点。
R4 R5 R2(R3 + ) R4+R5 R = R1 + R4 R5 R2 + (R3 + ) R4 + R5
第二章 电阻电路的等效变换

一.串联电路
1.串联电路:各电阻依次连接且流过同 一电流的一段电路称为电阻串联电路.如 图2-1所示
返回本章开头
2.串联电路的特点
⑴电流关系
I I1 I 2 I n
⑵电压关系
U U1 U 2 U n
R R R R Rk
K k 1 U I G
当两个电阻并联时, ②此时分流公式
R2 I I 1 R1 R2 R1 I 2 I R1 R2
R1 R2 ①总电阻 R R1 R2
三.串并联电路
1.电阻串并联电路:既有串联又有并联的电阻 电路称为电阻串并联电路。 2.举例说明电阻串并联电路的简化过程。 例2-1 如图所示电路,求ab两端口的等效电 阻。
n n k 1 k 1
2
P Pk Rk I Rk I
2
2
⑸各电阻分压关系
Rk U k Rk I U R
k 1.2. n
二.并联电路
1.并联电路:各电阻元件接在同一对节 点之间,且各电阻元件两端电压相同, 称为电阻并联电路。 如图2-2所示
2.并联电路的特点 ⑴电压关系
由图(b)可求得
2 28 8 Rab 3.2 2 2 8 8
28 Rab 2 3.2 28
2-2 2-3
由图(c)可求得
作业: 习题二
返回本章开头
解从端口看,先将能直观看出串联或 并联的电阻进行等效,剩余的部分就 会显示出明朗的串并联关系,按这样 思路做下去,可将电路进行简化。 如例2-1 的a图简化成b图
则得
Rcd Rab
4 6 2.4 46 4 3.6 1.84 4 3.6
02第二章电阻电路的等效变换

12
12
12
8 //(4 4) 4
R
R eq R
R
R
例6.求Req。
解:
R
R
R
R R
Req
R 8
例7.
R R I1 I2
I3
I4 求:I1 ,I4 ,U4
12V
2R 2R
2R
U4 2R
解:
I1
12 R
I4
1 2
I
3
1 4
I2
1 8
I1
1 8
12 R
3 2R
0.04
16.5mA
10mA
I3
G1
G3 G2
G3
Is
0.04 0.025 0.1
0.04
16.5mA
4mA
三、 电阻的串并联(混联)
电阻的串联和并联相结合的联接方式叫电阻的串并联 (或混联)。
要求:弄清楚串、并联的概念。
计算举例:
4
º
例1.
Req
2 3
Req
i1
i' 1
,
i2
i' 2
,
i3
i' 3
i' 2
2
对,各个电阻的电流分别为:
R31
'
i ' 31
i3 3
1 i'
1
i' 12
i' u12 R 12
12
R 12
R23
第二章电阻电路的等效变

第二章-电阻电路的等效变第二章 电阻电路的等效变换2.1 学习要点1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。
2. 电源的串联、并联及等效变换。
3. “实际电源”的等效变换。
4. 输入电阻的求法。
2.2 内容提要 2.2.1 电阻的等效变换1. 电阻的串联:等效电阻: R eq =∑1=k nk R ;分压公式:u k =eqkeq ×R R u ; 2. 电阻的并联:等效电导:G eq =∑1=k nk G ;分流公式:qe G G i i keqk ×=;2.2.2. 电阻的Y 与△的等效变换1. △→Y :一般公式:Y 形电阻=形电阻之和形相邻电阻的乘积∆∆;即31232331*********231231212311++=++=++R R R R R R R R R R R R R R R R R R 2312=2. Y →△:一般公式:形不相邻电阻形电阻两两乘积之和形电阻=Y Y ∆;即:213322131113322123313322112++=++=++=R R R R R R R RR R R R R R R R R R R R R R R R2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。
表2.1 电源的串联、并联等效变换图2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”R u =R i =1/G i u s =i s R i =i s /G i两者等效互换的原则是保持其端口的V AR 不变。
2.2.5 输入电阻的求法一端口无源网络输入电阻的定义(见图2.2):R in =u/ i1. 当一端口无源网络由纯电阻构成时,可用电阻的 串并联、Y 形与△形等效变换化简求得。
2. 当一端口无源网络内含有受控源时,可采用外加电压法或外加电流法求得: 即输入电阻R in =u s /i 或 R in =u/ i s方法是:在端口处加一电压源u s (或电流源i s ), 再求比值u s /i 或u/ i s ,该比值即是一端口无源网络的输入电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i1
1 2
i2R (
i i2
1i1 22
i
)
R
a
iR
R
R
d
b
Rab
uab i
R
Rab R
2.4 电阻的Y形连接与Δ连接的
等效变换
c
1.电阻的 ,Y连接
R1
包含 1
a
R3
1d
R12
R31
R1
R2
R3
2
R23
3
2
3
形网络
Y形网络
R2
b
R4
三端 网络
,Y 网络的变形:
形电路 ( 形)
1. 二端电路(网络)
任何一个复杂的电路, 向外引出两个端钮,且从一个 端子流入的电流等于从另一端子流出的电流,则称这一电 路为二端网络(或一端口网络)。
i i
2. 电路等效的概念
两个二端电路,端口具有相同的伏安特性,则两电路等效
B
i
+ u
等效
-
C
i
+ u
-
对A电路而言,C代替B后
B
A
C
A
(1)等效变换的条件
结 论 (2)仅仅是对外等效
(3)对内不等效
两电路具有相同的VCR
即外电路A中的电压、 电流和功率不变。
C是B的简化。
2.3 电阻的串联、并联
1. 电阻串联( Series Connection of Resistors )
(1) 电路特点
i
R1
R2
Rn
+
+ u1 _ + u 2 _ + un _
u1 5i1 5 15 75V
or i2 165 75 18 5 A
i3 15 5 10 A
i4 10 12 12 4 7.5 A
u4 u5 3i3 30V
例 求: Rab
对称电路 c、
c
d等电位
c
R
R
R
i
R
i
a
短路
R
b
R
a i1 R d
根据电
R i2 b
d
c
R
R
流分配
T 形电路 (Y形)
这两个电路当它们的电阻满足一定的关系时, 能够相互等效。
2. —Y 变换的等效条件
1 +– i1
1 +i1Y –
u12 R12
– i2
2+
R23 u23
等效条件:
i1 =i1Y ,
u31 R31
i3 + –3
u12Y – i2Y R2
2+
R1 u31Y R3 i3Y +
u23Y
Y接: 用电流表示电压
i1 u12 R 12u31 R31
u 12 Y
R1i1Y R2i2Y
u 2 3 Y R2i2Y R3i3Y
i 2 u23 R23u12R 12 (1) u 3 1 Y R3i3Y R1i1Y
(2)
i 3 u31R31u23R23
i1Yi2Yi3Y 0
由式(2)解得:
u
_
(a) 各电阻顺序连接,流过同一电流 (KCL);
(b) 总电压等于各串联电阻的电压之和 (KVL)。
u u1 uk un
(2) 等效电阻
由欧姆定律 u u1 uk un
u R1i RK i Rni ( R1 Rn )i Req i
n
i i1 i2 ik in
(2) 等效电阻
由欧姆定律: i i1 i2 ik in
G1u G2u Gku Gnu
G1 G2 Gk Gn u Gequ
n
Geq G1 G2 Gn Gk k 1
并联电路的总电导等于各电导之和
i
i
+
i1 i2
–3
i2 =i2Y , i3 =i3Y ,
u12 =u12Y , u23 =u23Y , u31 =u31Y
1 +– i1
2 – i2 2+
R23 u23
R3u1 31
i3 + –3
u12Y – i2Y R2
2+
R1 u31Y R3 i3Y +
u23Y – 3
接: 用电压表示电流
Req R1 R2 Rn Rk k 1
结论: 串联电路的总电阻等于各分电阻之和。
R1
R2
Rn
i
+ u1 _ + U 2 _ + un _
等效
i
+
u
_
+
R eq u_
(3) 各电阻的电压
uk
Rki
u Rk Req
Rk u u Req
说明串联的每个电阻,其电压与电阻值成正比。 串联电阻电路可作分压电路
i1Y
u12Y R3 u31Y R2 R1R2 R2 R3 R3R1
i2Y
u23Y R 1u12Y R3 R1R2 R2 R3 R3R1
i3Y
u31Y R2 u23Y R1 R1R2 R2 R3 R3R1
i1 =u12 /R12 – u31 /R31 (3) i2 =u23 /R23 – u12 /R12 (1)
i3 =u31 /R31 – u23 /R23
根据等效条件,比较式(3)与式(1),得Y型型的变换条件:
R12
R1R2
R2 R3 R3
R3 R1
R23
R1R2R2R3R3R1 R1
R31
R1R2R2R3R3R1 R2
G12
G1
G1G2 G2 G3
或
G23
G1
G2G3 G2 G3
G31
G1
G3G1 G2
例i
两个电阻的分压:
º ++
u-1 R1
u1
R1 R1 R2
u
u_ u+2 R2 º
u2
R2 R1 R2
u
注意方向 !
2. 电阻并联 (Parallel Connection)
(1) 电路特点
ii
+
i1 i2
ik
in
u
R1 R2
Rk
Rn
_
(a) 各电阻两端分别接在一起,两端为同一电压 (KVL); (b) 总电流等于流过各并联电阻的电流之和 (KCL)。
第二章 电阻电路的等效变换
重点: 1. 电路等效的概念; 2. 电阻的串、并联; 3. 电源的等效变换; 4. 一端口电路输入电阻的计算。
线性电阻电路
2.1 引言
仅由电源和线性电阻构成的电路
分析方法
(1)欧姆定律和基尔霍夫定律是分 析电阻电路的依据;
(2)等效变换的方法,也称化简的方法
2.2 电路的等效变换
例 计算各支路的电压和电流。
i1 5
i1 5
6
+
i2 6 i3
+
i2
i3
165V
-
18
165V
18
9
4 i4
i5
-
12
i1 165 6 5 15 A i2 15 9 9 18 5 A
u2 6i1 18i2 90V u3 6i3 60V
i5 10 7.5 2.5 A
ik
in等效 +
u R1 R2
Rk
Rn
u
Req
_
_
(3) 各电阻的电流
ik
Gk u
Gk Geq
i
每个电阻的电流与 其电导值成正比
例 i
º R1
º
i1 R2
Req
1
1 R1 1
R2
R1R2 R1 R2
i2
i1
G1 Geq
i
R2 R1 R2
i
i2
G2 Geq
i
R1 R1 R2
i
(i
i1)