中考数学代数式复习专题(附答案)
中考数学真题解析代数式、整式及单项式、多项式的有关概念(含答案)

全国中考真题解析代数式、整式及单项式、多项式的有关概念一、选择题1. 已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.5 考点:代数式求值.专题:计算题.分析:将所求代数式前面两项提公因式2,再将a ﹣b =1整体代入即可.解答:解:∵a ﹣b =1,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×1﹣3=﹣1.故选A .点评:本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解.2. 若(7x ﹣a )2=49x 2﹣bx+9,则|a+b|之值为何( )A 、18B 、24C 、39D 、45考点:完全平方公式;代数式求值。
专题:计算题。
分析:先将原式化为49x 2﹣14ax+a 2=49x 2﹣bx+9,再根据各未知数的系数对应相等列出关于a 、b 的方程组,求出a 、b 的值代入即可.解答:解:∵(7x ﹣a )2=49x 2﹣bx+9,∴49x 2﹣14ax+a 2=49x 2﹣bx+9,∴⎩⎨⎧=-=-9142a b a , 解得⎩⎨⎧-=-=⎩⎨⎧==423423b a b a 或, 当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45;故选D .点评:本题是一个基础题,考查了完全平方公式以及代数式的求值,要熟练进行计算是解此题的关键.3.当a=3,b=2时,a2+2ab+b2的值是()A、5B、13C、21D、25考点:代数式求值;完全平方公式。
专题:计算题。
分析:先运用完全平方公式将a2+2ab+b2变形为:(a+b)2,再把a、b的值代入即可.解答:解:a2+2ab+b2=(a+b)2,当a=3,b=2时,原式=(3+2)2=25,故选:D.点评:此题考查的是代数式求值,并渗透了完全平方公式知识,关键是运用完全平方公式先将原式因式分解再代入求值.4.“比a的2倍大1的数”用代数式表示是()A.2(a+1)B.2(a-1)C.2a+1 D.2a-1考点:列代数式。
中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析) 2022年中考数学专题复习卷:代数式一、选择题1.以下各式不是代数式的是()A.0B.C.D.2.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.93.某一餐桌的表面如图所示(单位:m),设图中阴影部分面积S1,餐桌面积为S2,则(A.B.C.D.4.若M=3某2﹣8某y+9y2﹣4某+6y+13(某,y是实数),则M的值一定是()A.零B.负数C.正数D.整数5.代数式相乘,其积是一个多项式,它的次数是()A.3B.5C.6D.26.已知a+b=5,ab=1,则(a-b)2=()A.23B.21C.19D.177.若|某+2y+3|与(2某+y)2互为相反数,则某2﹣某y+y2的值是()A.1B.3C.5D.78.已知a、b满足方程组,则3a+b的值为()A.8B.4C.﹣4D.﹣89.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6aB.6a+bC.3aD.10a-b)10.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算11.如图,都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为()A.121B.113C.105D.9212.如图,已知,点A(0,0)、B(4,0)、C(0,4),在△ABC内依次作等边三角形,使一边在某轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2022个等边三角形的边长等于()A.B.C.D.二、填空题13.若是方程的一个根,则的值为________.14.已知-2某3m+1y2n与7某n-6y-3-m的积与某4y是同类项,则m2+n的值是________15.若a某=2,b某=3,则(ab)3某=________16.如图是一个运算程序的示意图,若开始输入的值为625,则第2022次输出的结果为________.17.若3a2﹣a﹣3=0,则5﹣3a2+a=________.18.已知+|b﹣1|=0,则a+1=________.19.已知某=2m+n+2和某=m+2n时,多项式某2+4某+6的值相等,且m ﹣n+2≠0,则当某=3(m+n+1)时,多项2式某+4某+6的值等于________.20.若规定一种特殊运算为:ab=ab-,则(﹣1)(﹣2)________.,,,,按照这样的规律,这组21.按照某一规律排列的一组数据,它的前五个数是:1,数据的第10项应该是________.22.已知的奇数时,,,,,,,…(即当为大于1________.;当为大于1的偶数时,),按此规律,三、解答题23.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.24.先化简,再求值:已知a2—a=5,求(3a2-7a)-2(a2-3a+2)的值.25.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)答案解析一、选择题1.【答案】C【解析】:A、是整式,是代数式,故不符合题意;B、是分式,是代数式,故不符合题意;C、是不等式,不是代数式,故符合题意;D、是二次根式,是无理式,是代数式,故不符合题意。
专题2代数式含答案解析2023年山东省中考数学一轮复习专题训练

专题2 代数式一、单选题1.(2022·高青模拟)一种商品,先降价10%后又提价10%,现在商品的价格()A.比原价格高B.比原价格低C.与原价格相等D.无法比较2.(2022·高唐模拟)算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.3.(2022·泗水模拟)如图中,分别是由1个、2个、n个(n为正整数)正方形连接成的图形,在图1中,x=70°;在图2中,y=28°;通过以上计算,请写出图3中a+b+c+⋯+d=____(用含n的式子表示)A.45°n B.90°n C.135°n D.180°n 4.(2022·冠县模拟)计算31,32,33,34,35,36,并观察这些幂的个位数字,根据你发现的规律,判断32022的个位数字跟()的个位数字相同.A.31B.32C.33D.345.(2022·莱州模拟)已知抛物线y=x2−x−1与x轴的一个交点为(m,0),则代数式m2−m+2022的值为()A.2020B.2021C.2022D.2023 6.(2022·淄川模拟)当x=2时,代数式ax5+bx3+cx−7的值是-10,则当x=-2时,该代数式的值为()A.-10B.10C.4D.-47.(2022·日照模拟)观察下列树枝分叉的规律图,若第n个图树枝数用Y n表示,则Y9−Y4=()A.15×24B.31×24C.33×24D.63×24 8.(2022·沂源模拟)在使用DY-570型号的计算器时,小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键:若一开始输入的数据为5,那么第2022步之后,显示的结果是()A.5B.15C.125D.259.(2021·邹城模拟)一种商品进价为每件a元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利()A.0.125a元B.0.15a元C.0.25a元D.1.25a元10.(2021·博山模拟)根据如图所示的程序计算函数y的值,若输入的x的值为3或-4时,输出的y 值互为相反数,则b等于()A.-30B.-23C.23D.30 11.(2022·临清模拟)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为a1,第2幅图形中“•”的个数为a2,第3幅图形中“•”的个数为a3,…,以此类推,则a19的值为()A .378B .380C .386D .39912.(2022·淄博模拟)在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1CC 1B 1;延长C 1B 1交x 轴于点A 2,作正方形A 2C 1C 2B 2,….按照这样的规律,第2021个正方形的面积是( )A .5×(94)2019B .5×(94)2020C .5×(94)2021D .5×(94)2022二、填空题13.(2021·金乡模拟)当代数式a +2b 的值为3时,代数式1+2a +4b 的值是 .14.(2021·菏泽)如图,一次函数 y =x 与反比例函数 y =1x( x >0 )的图象交于点 A ,过点 A作 AB ⊥OA ,交 x 轴于点 B ;作 BA 1//OA ,交反比例函数图象于点 A 1 ;过点 A 1 作 A 1B 1⊥A 1B 交 x 轴于点 B ;再作 B 1A 2//BA 1 ,交反比例函数图象于点 A 2 ,依次进行下去,……,则点 A 2021 的横坐标为 .15.(2021·乐陵模拟)阅读理解:用“十字相乘法”分解因式 2x 2−x −3 的方法.⑴二次项系数 2=1×2 ;⑵常数项 −3=−1×3=1×(−3) 验算:“交叉相乘之和”;1×3+2×(−1)=1;1×(−1)+2×3=5;1×(−3)+2×1=−1;1×1+2×(−3)=−5⑶发现第③个“交叉相乘之和”的结果1×(−3)+2×1=−1,等于一次项系数-1,即(x+1)(2x−3)=2x2−3x+2x−3=2x2−x−3,则2x2−x−3=(x+1)(2x−3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x−12=.16.(2021·枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.17.(2021·金乡模拟)对于实数m,n,定义运算m⊗n=mn2﹣n.若2⊗a=1⊗(﹣2)则a=.18.(2021·烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.19.(2021·潍坊)在直角坐标系中,点A1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A2(1,0),A3(1,1),A4(﹣1,1),A5(﹣1,﹣1),A6(2,﹣1),A7(2,2),….若到达终点A n(506,﹣505),则n的值为.20.(2021·滨城模拟)按一定规律排列的单项式:a2,−3a3,9a10,−27a15,81a26,…,第n个单项式是.21.(2021·东昌府模拟)观察下列等式:第一行:4−1=3第二行:9−4=5第三行:16−9=7第四行:25−16=9按照上述规律,第n行的等式为.22.(2021·夏津模拟)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为.23.(2022·曹县模拟)已知x−2y=3则1−2x+4y的值为.24.(2022·嘉祥模拟)观察下列各式:a1=23,a2=35,a3=107,a4=53,a5=2611,a6=3513,a7=103,根据其中的规律可得a8=.25.(2022·济宁模拟)如图所示,用棋子摆成“T”字形,按照图①,图②,图③的规律摆下去,若摆成第n个“T”字形需要m颗棋子,则m关于n的关系式是.答案解析部分1.【答案】B【解析】【解答】解:设商品初始价格为a元,降价10%后的价格为(1-10%)×a=0.9a元;又提价10%的价格为(1+10%)×0.9a =0.99a元;∵0.99a<a,∴比原价格低,故答案为:B.【分析】设商品初始价格为a元,分别求出降价和提价后的价格,再比较大小即可。
中考数学【代数式考点】专项复习教案(含例题、习题、答案)

第二章整式的加减本章小结小结1 本章内容概览本章的主要内容是整式和整式的加减.学习本章知识,要了解单项式、多项式和整式的概念,会确定单项式的系数和次数,会确定多项式的项数和次数.理解同类项的概念,掌握合并同类项的方法以及去括号时符号的变化规律.能够熟练地进行整式的加减运算,正确地进行分析实际问题中的数量关系,并会列出整式表示,从而体会用字母表示数,由算术到代数的进步.小结2 本章重点、难点:本章的重点是同类项、整式的加减,难点是去括号与求值运算.小结3 本章学法点津1.学习本章知识时,要注意把数字和字母联系起来,从具体情境中探索数量关系和变化规律,注意知识的内在联系.2.要注意对整式加减运算法则探索过程的理解,体会“数式的通性”.3.要注意归纳、类比、转化等数学思想方法的运用,通过观察、实验、探究、发现,进而归纳总结规律,提高利用规律解决实际问题的能力,培养创新精神和自学意识.知识网络结构图b 项式成为同类项必须具备的条件,即⎧⎨⎩字母相同,相同字母的指数也分别相同⇔同类项. 例2 计算:(7x 2+5x -3)-(5x 2-3x +2).解:原式=7x2+5x-3-5x2+3x-2=2x2+8x-5.方法本题考查整式的加减及去括号法则.合并同类项时注意字母和字母的指数不变,只把系数相加减.题型二整式的求值例3 已知(a+2)2+|b+5|=0,求3a2b一[2a2b-(2ab-a2b)-4a2]-ab的值.分析:由平方与绝对值的非负性,得a=-2,b=-5.先化简,再代入求值.解:因为(a+2)2≥0,|b+5|≥0,且(a+2)2+|b+5|=0,所以a+2=0,且b+5=0.所以a=-2,b=-5.3a2b-[2a2b-(2ab-a2b)-4a2]-ab=3a2b-2a2b+2ab-a2b+4a2-ab=4a2+ab.把a=-2,b=-5代入4a2+ab,得原式=4×(-2)2+(-2)×(-5)=16+10=26.例4 已知2a2-3ab=23,4ab+b2=9,求整式8a2+3b2的值.解:因为2a2-3ab=23,所以8a2-12ab=92,所以12ab=8a2-92.因为4ab+b2=9,所以12ab+3b2=27,所以12ab=27-3b2.由此得8a2-92=27-3b2,即8a2+3b2=119.题型三整式的应用例5 图2-3-1是一个长方形试管架,在a cm 长的木条上钻了4个圆孔,每个孔的直径为2 cm ,则x 等于( )A.8a +cm B. 16a - cm C. 4a - cm D. 8a - cm第三个图案中正三角形的个数为:8=2×3+2;..,;第n 个图案中正三角形的个数为:2n +2. 答案:2n +2=⨯+⨯-=-=.3(1)13121212点拨把(a-b),(a+b)分别看做一个整体,直接合并同类项,而不是去括号再合并同类项.例2 若a2+ab=20,ab-b2=-13,求a2+b2及a2+2ab-b2的值.分析:把a2+ab,ab-b2分别看做一个整体.解:∵a2+ab-(ab-b2)=a2+b2,∴a2+b2=20-(-13)=33.又∵(a2+ab)+(ab-b2)=a2+2ab-b2,∴a2+2ab-b2=20-13=7.点拨通过对已知条件相减或相加,得出待求的多项式,从而求出多项式的值.考查了学生的洞察能力.2 数形结合思想例3 如图2-3-3所示,已知四边形ABCD是长方形,分别用整式表示出图中S l,S2,S3,S4的面积,并表示出长方形ABCD的面积.解:S1=m(2m-n)=2m2-mn,S2=n(2m-n)=2mn-n2,S3=n2,S4=mn.S长方形ABCD=S1+S2+S3+S4=(2m2-mn)+(2mn-n2)+n2+mn=2m2-mn+2mn-n2+n2+mn=2 m2+2mn.中考热点聚焦考点1 单项式考点突破:单项式是整式中的基础知识,在中考中的考查一般难度不大,多以选择题或填空题的形式出现.解决此类问题要理解单项式的定义及单项式次数的含义.例1 (2011•柳州)单项式3x2y3的系数是3.考点:单项式。
2024年中考数学二轮复习:代数式(附答案解析)

2024年中考数学二轮复习:代数式一.选择题(共10小题)1.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.52013−44D.52013−142.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2B.m=﹣1,n=2C.m=﹣2,n=2D.m=2,n=﹣1 3.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3 4.某商店举办促销活动,促销的方法是将原价x元的衣服以(45x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元5.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2B.0C.﹣1D.1 6.当x=1时,代数式12ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣77.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A.1个B.2个C.3个D.4个8.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=19.下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2第1页(共14页)。
2025年广东省中考数学一轮复习:代数式(附答案解析)

2025年广东省中考数学一轮复习:代数式一.选择题(共10小题)1.(a,b,c,d)表示由四个互不相等的正整数组成的一个数组.(a+b,b+c,c+d,d+a)表示由它生成的第一个数组,(a+b+b+c,b+c+c+d,c+d+d+a,d+a+a+b)表示由它生成的第二个数组,按此方式可以生成很多数组.记M0=a+b+c+d,第n个数组的四个数之和为M n(n为正整数).下列说法:①M n可以是奇数,也可以是偶数;②M n的最小值是20;③若1000<0<2000,则n=10.其中正确的个数()A.0B.1C.2D.32.2条直线最多有S1个交点,3条直线最多有S2个交点,按照规律依此类推,2023条直线最多有S2022个交点,则11+12+13+⋯+12021+12022的值为()A.20231012B.40442023C.40452023D.202110113.下列各式中运算正确的是()A.2x3+3x3=5x6B.a2b﹣ab2=0C.(﹣18)÷(﹣9)=﹣2D.(﹣2)3=﹣84.小明用现金买了5个相同的笔记本,找回(20﹣5a)元,有下列说法:说法Ⅰ:若小明原有现金20元,则每个笔记本a元;说法Ⅱ:若每个笔记本为2a元,则小明的现金有(20+5a)元;则下面判断正确的是()A.Ⅰ对Ⅱ错B.Ⅰ错Ⅱ对C.Ⅰ与Ⅱ都对D.Ⅰ与Ⅱ都错5.某商店经销一种品牌的空气炸锅,其中某一型号的空气炸锅的进价为每台m元,商店将进价提高30%后作为零售价销售,一段时间后,商店又按零售价的8折销售,这时该型号空气炸锅的零售价为()A.m元B.1.3m元C.1.04m元D.0.8m元6.平面内,将长分别为2,4,3的三根木棒按如图所示方式连接成折线A﹣B﹣C﹣D,其第1页(共21页)。
2022年中考数学分类复习强化练 -第二讲 代数式(含答案)

第二讲代数式专项一列代数式知识清单代数式:用________把数和表示数的字母连接起来的式子叫做代数式.注意代数式不含等号,单独一个数或一个字母也是代数式.考点例析例1 如图1,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球的总数,则表达错误的是()A.12(m-1)B.4m+8(m-2)C.12(m-2)+8 D.12m-16分析:正方体有12条棱,每条棱上的小球数为m,则有12m个小球,而每个顶点处的小球算了3次,多计算2次,则正方体棱长上的所有小球个数为12m-8×2=12m-16.将各选项化简即可.解:例2 (2021•模考海南)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图2是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有个菱形,第n个图中有个菱形(用含n的代数式表示).分析:根据已知图形可得,图形中菱形的个数为序数的平方与序数减1的平方的和,据此求解可得.解:归纳:在一些实际问题中,有时表示数量的代数式有单位,如果代数式是和或差的形式,则必须先把代数式用括号括起来,单位写在式子后面.跟踪训练1.(2021•模考重庆)已知a+b=4,则代数式1++的值为()A.3 B.1 C.0 D.﹣12.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,共需花费元.3. (2021•模考鸡西)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……依此规律排列下去,第9个图形中圆的个数是个.第3题图专项二整式知识清单一、整式的加减1. __________与__________统称为整式(注意整式的分母中不含有字母).2. 同类项:所含__________相同,并且相同字母的__________也相同的项叫做同类项.3. 合并同类项法则:同类项的__________相加,所得的结果作为_________,字母和字母的__________保持不变.4. 整式的加减运算:先去括号,再合并同类项(当括号前面是“+”时,把括号和它前面的“+”去掉,括号内各项都__________符号;当括号前面是“-”时,把括号和它前面的“-”去掉,括号内各项都__________符号).二、幂的运算1. 同底数幂的乘法:a m·a n=___________(m,n都是正整数);2. 幂的乘方:(a m)n=___________(m,n都是正整数);3. 积的乘方:(ab)n=___________(n是正整数);4. 同底数幂的除法:a m÷a n=___________(a≠0,m,n为正整数).三、整式的乘法1. 单项式乘以单项式:把它们的___________、___________分别相乘,对于只在一个单项式里出现的字母,则连同它的___________作为积的一个因式.2. 单项式乘以多项式:a(a+b+c)=a2+ab+ac.3. 多项式乘以多项式:(a+b)(b+c)=ab+b2+ac+bc.4. 乘法公式:①平方差公式:(a+b)(a-b)=___________;②完全平方公式:(a±b)2=___________.四、整式的除法1. 单项式相除,把___________、___________分别相除作为商的一个因式,对于只在被除式里出现的字母,则连同它的___________作为商的一个因式.2. 多项式除以单项式,先把这个多项式的___________除以这个单项式,再把所得的商___________.考点例析例1 (2021•模考鄂尔多斯)下列计算错误的是()A.(﹣3ab2)2=9a2b4B.﹣6a3b÷3ab=﹣2a2C.(a2)3﹣(﹣a3)2=0 D.(x+1)2=x2+1分析:(x+1)2=x2+2x+1是完全平方式,故选项D错误.解:例2 已知3m=4,32m-4n=2,若9n=x,则x的值为()A.8 B.4 C. D.分析:先逆用幂的乘方及同底数幂的除法法则将32m-4n=2变形为(3m)2÷(3n)4,再将9n变形为(3n)2,代入求得n的值.再开平方求得x 的值,注意x在本题中应为正数.解:归纳:幂的运算首先要分清运算法则,再选择相应法则进行计算.在解答利用幂的运算性质求值类的题目时,需注意幂的运算的逆向运用.例3 (2021•模考郴州)如图①,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图②所示的长方形.这两个图能解释的等式是()A.x2﹣2x+1=(x﹣1)2B.x2﹣1=(x+1)(x﹣1)C.x2+2x+1=(x+1)2D.x2﹣x=x(x﹣1)分析:左边两个长方形面积等于大正方形的面积减去阴影正方形的面积,即x2﹣1,右边大长方形的面积可以表示为(x+1)(x﹣1),根据空白部分面积相等列等式.解:例4 已知5x2-x-1=0,求代数式(3x+2)(3x-2)+x(x-2)的值.分析:直接利用乘法公式以及单项式乘多项式运算法则化简,这里不要着急求解x的值,可以将条件式变形,整体代入求得.解:归纳:整式的运算主要是整式的加减运算和乘除运算.进行加减运算时要注意去括号时的符号问题;进行乘法运算时,首先要观察是否可以运用乘法公式,其次运算时注意不要重复或遗漏.跟踪训练1.(2021•模考日照)单项式﹣3ab的系数是()A.3 B.﹣3 C.3a D.﹣3a2. (2021•模考济南)下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b23. (2021•模考河北)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+ B.﹣C.×D.÷4. (2021•模考淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205 B.250 C.502 D.5205. (2021•模考绵阳)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.6. 化简:(x+y)2-x(x+2y).7. (2021•模考襄阳)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.专项三因式分解知识清单1. 因式分解:把一个多项式化为几个整式的_________的形式,像这样的式子变形叫做把这个多项式因式分解.2. 因式分解的基本方法:(1)提公因式法:ma+mb+mc=_______________.(2)公式法:①平方差公式:a2-b2=_______________.②完全平方公式:a2±2ab+b2=_______________.考点例析例1 (2021•模考西藏)下列分解因式正确的是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)2分析:2xy+4x=2x(y+2),选项B提公因式不彻底;选项C,D不是完全平方公式,不能用公式法因式分解.解:归纳:判断因式分解是否正确,一看等式右边是否是整式的积的形式,二看左右两边是否相等.例2 (2021•模考自贡)分解因式:3a2﹣6ab+3b2=.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解.解:归纳:一个多项式有公因式先提取公因式,再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.多项式是二项式优先考虑平方差公式分解,三项式优先考虑完全平方公式分解.跟踪训练1. (2021•模考河北)若=8×10×12,则k的值是()A.12 B.10 C.8 D.62. (2021•模考眉山)已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4 B.2 C.﹣2 D.﹣43.(2021•模考盐城)因式分解:x2﹣y2=.4. (2021•模考营口)ax2﹣2axy+ay2=.5. (2021•模考深圳)分解因式:m3﹣m=.6. (2021•模考常德)【阅读理解】对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).【理解运用】如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.【解决问题】求方程x3﹣5x+2=0的解是__________________________.专项四分式知识清单一、分式的相关概念1. 定义:用A ,B(B≠0)表示两个整式,A÷B就可以表示成.如果B中含有____________,式子叫做分式.2. 分式有意义、值为0的条件:分式的分母____________,分式有意义;分式的____________不为0,____________为0时,分式的值为0.二、分式的基本性质分式的分子与分母都乘(或除以)同一个__________的整式,分式的值不变.三、分式的运算1. 最简分式:分子与分母没有____________的分式,叫做最简分式.2. 分式的约分、通分:把分式的分子与分母的_____________约去,叫做约分;把几个____________的分式分别化为与原来的分式相等的____________的分式,叫做通分.3. 分式的乘法运算法则:分式乘分式,用分子的积作为积的_____________,分母的积作为积的____________,即·=____________.4. 分式的除法运算法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即÷=____________.5. 分式的乘方:分式的乘方等于分子的乘方除以分母的乘方,即=____________.6. 分式的加减运算法则:同分母的分式相加减,____________不变,把____________相加减;异分母分式相加减,先通分,化为_________分式,然后再按同分母分式的加减法则进行运算.考点例析例1 (2021•模考河北)若a≠b,则下列分式化简正确的是()A.B.C.D.分析:根据分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变来判断. 选项A,B 是同加或同减,不是同乘除,不符合分式的基本性质;选项C中,分子、分母同乘的整式不相同,也不符合分式的基本性质;选项D中,分式的分子与分母同乘2,分式的值不变.解:归纳:根据分式的基本性质对分式变形,要注意:①分子与分母必须同乘(或除以)同一个整式;②该整式不等于0.例2 (2021•模考雅安)若分式=0,则x的值是()A.1 B.﹣1 C.±1 D.0分析:根据分式的值为0的条件,得x2-1=0且x+1≠0.解:归纳:判断分式值等于0时,要从两方面来考虑:一是分子等于0,二是分母不等于0.例3 (2021•模考娄底)先化简,然后从﹣3,0,1,3中选一个合适的数代入求值.分析:本题可以先将括号中的两项通分,再利用除法法则变形,约分得到最简结果,最后把m的值代入计算.还可以先把除法变为乘法,利用乘法分配律计算.化简时可以根据题目选择最简便的方法. 解:归纳:分式化简的最后结果,一定是最简分式或整式,求值所选数值要使原分式有意义.跟踪训练1. (2021•模考衡阳)要使分式有意义,则x的取值范围是()A.x>1 B.x≠1C.x=1 D.x≠02. (2021•模考金华)分式的值是零,则x的值为()A.2 B.5 C.-2 D.-53.(2021•模考淄博)化简的结果是()A.a+b B.a﹣b C.D.4.(2021•模考随州)的计算结果为()A. B. C. D.5. (2021•模考阜新)先化简,再求值:,其中x=﹣1.6. (2021•模考自贡)先化简,再求值:,其中x是不等式组的整数解.专项五二次根式知识清单1. 二次根式:形如_________(a≥0)的式子叫做二次根式.2. 最简二次根式:(1)被开方数不含__________;(2)被开方数中不含能_________的因数或因式.同时满足上述两个条件的二次根式,叫做最简二次根式.3.二次根式的性质:(1)=____________(a≥0);(2)=|a|=(3)=____________(a≥0,b≥0);(4)=____________(a≥0,b>0).4. 二次根式的运算(1)二次根式的乘法:=____________(a≥0,b≥0);(2)二次根式的除法:=____________(a≥0,b>0);(3)二次根式的加减:先把每个二次根式化成____________,再把__________相同的二次根式进行合并.考点例析例1 若代数式在实数范围内有意义,则x的取值范围是________________.分析:根据二次根式有意义的条件和分母不为零的性质,可得2x-6>0,求解即可.解:归纳:二次根式有意义的条件是被开方数是非负数,若二次根式在分母上,则被开方数不能为0,由此可确定字母的取值范围.例2 (2021•模考攀枝花)实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣2 B.0 C.﹣2a D.2b分析:根据数轴,知﹣2<a<﹣1,1<b<2,故a+1<0,b﹣1>0,a﹣b<0,原式可转化为-(a+1)+b﹣1+(a﹣b),去括号合并即可.解:例3 (2021•模考包头)计算:=.分析:本题可以把原式化为,再将中括号内的部分利用平方差公式计算,运算更简便.解:归纳:进行二次根式的混合运算,应注意先化简,后合并,还要注意乘法公式的灵活应用.跟踪训练1.(2021•模考广东)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣22. (2021•模考济宁)下列各式是最简二次根式的是()A.B.C.D.3. (2021•模考南通)下列运算结果正确的是()A.B.3+=C.÷=3 D.×=4. (2021•模考朝阳)计算的结果是()A.0 B.C.D.5.(2021•模考荆州)若x为实数,在“(+1)□x”的“□”中填入一种运算符号(在“+,﹣,×,÷”中选择)后,其运算的结果为有理数,则x不可能是()A.+1 B.﹣1 C.D.1﹣6. (2021•模考益阳)若计算m的结果为正整数,则无理数m的值可以是(写一个).7. (2021•模考河北)已知﹣=a﹣=b,则ab=.8. (2021•模考株洲)计算的结果是.专项六代数式中的数学思想1. 整体思想整体思想是指在解决某些问题时,把一些组合式子作为一个“整体”,并把这个“整体”直接代入另一个式子,避免局部运算烦琐的方法.在分解因式、求代数式的值时,恰当使用整体思想,可以提高解题效率,减少复杂的计算.例1 (2021•模考临沂)若a+b=1,则a2﹣b2+2b﹣2=.分析:把a+b看做一个整体,由于a+b=1,将a2﹣b2+2b﹣2变形为含有a+b的形式,整体代入计算即可求解.解:归纳:在代数式的化简与求值过程中,如果不能确定整式中字母的具体值,可以考虑将该整式看做一个整体代入求值.2. 数形结合思想数形结合就是把抽象难懂的数学语言、数量关系与直观形象的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.例2 (2021•模考呼伦贝尔)已知实数a在数轴上对应点的位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1 C.1 D.2a﹣3分析:先根据数轴上a的位置,确定绝对值符号内式子的正负,然后再用去绝对值符号的方法进行化简.解:归纳:实数与数轴上的点之间具有一一对应关系,平面上的点与有序实数对之间具有一一对应关系,这些都是“数”和“形”转化的桥梁.3. 归纳推理思想由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征,或者由个别事实概括出一般的结论.例3 (2021•模考青海)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1.请按以上规律写出第4个算式:,用含有字母的式子表示第n个算式:.分析:观察发现,和算式序号相等的数与比序号大2的数的积减去比序号大1的数的平方,等于﹣1,根据此规律写出即可.解:跟踪训练1.(2021•模考枣庄)图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②所示拼成一个正方形,则中间空余部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2第1题图第5题图2.(2021•模考西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n的值是()A.18 B.19 C.20 D.213.(2021•模考十堰)已知x+2y=3,则1+2x+4y=.4.(2021•模考雅安)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.5.(2021•模考赤峰)一个电子跳蚤在数轴上做跳跃运动.设原点处为O,第一次从点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;…;如此跳跃下去,最后落点为OA2019的中点A2020,则点A2020表示的数为.参考答案专项一列代数式考点例析:例1 A 例2 41 (2n2﹣2n+1)跟踪训练:1. A 2.(30m+15n) 3. 92专项二整式考点例析:例1 D 例2 C 例3 B例4 原式=9x2-4+x2-2x=10x2-2x-4.因为5x2-x-1=0,所以5x2-x=1.所以原式=2(5x2-x)-4=2×1-4=-2.跟踪训练:1. B 2. A 3. D 4. D 5. 0或86.解:原式=x2+2xy+y2-x2-2xy=y2.7.解:原式=4x2+12xy+9y2﹣4x2+y2﹣6xy﹣10y2=6xy.当x =,y =﹣1时,原式=6××=﹣.专项三因式分解考点例析:例1 A 例2 3(a﹣b)2跟踪训练:1. B 2. A 3.(x+y)(x﹣y) 4. a(x﹣y)2 5. m(m+1)(m﹣1)6.x=2或x=﹣1+或x=﹣1﹣提示:将x3﹣5x+2=0变形为x3﹣4x﹣x+2=0,则x(x2﹣4)﹣(x﹣2)=0,x(x+2)(x﹣2)﹣(x﹣2)=0,即(x﹣2)(x2+2x﹣1)=0.所以x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±.专项四分式考点例析:例1 D 例2 A例3 原式=•=(m﹣3)﹣2(m+3)=﹣m﹣9.因为m的值为﹣3,0,3时,原分式没有意义,所以m只能取1.当m=1时,原式=﹣1﹣9=﹣10.跟踪训练:1. B 2. D 3. C 4. B5. 解:原式==.当x =-1时,原式==1﹣.6. 解:==.解不等式组得﹣1≤x<1.因为x是不等式组的整数解,所以x的值为﹣1,0.11因为x=﹣1时,原分式无意义,所以x=0.当x=0时,原式==.专项五二次根式考点例析:例1 x>3 例2 A 例3 ﹣跟踪训练:1. B 2. A 3. D 4. B 5.C 6. 答案不唯一,如7. 6 8.2专项六代数式中的数学思想考点例析:例1 ﹣1 例2 D 例3 4×6﹣52=24﹣25=﹣1 n(n+2)﹣(n+1)2=﹣1 跟踪训练:1. C 2. A 3. 7 4. 6 5.12。
中考数学 真题精选 专题试卷 代数式(含答案解析) (含答案解析)

代数式一.选择题(共19小题)1.(•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()2.(•吉林)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()3.(•自贡)为庆祝战胜利70周年,我市某楼盘让利于民,决定将原价为a元/米2的商品房价降价10%销售,降价后的销售价为()4.(•恩施州)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为()a+b+a5.(•江阴市模拟)某厂1月份产量为a吨,以后每个月比上一个月增产x%,则该厂3月份的产量(单位:吨)为()6.(•海南)已知x=1,y=2,则代数式x﹣y的值为()7.(•娄底)已知a2+2a=1,则代数式2a2+4a﹣1的值为()8.(•漳州)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()9.(•湖州)当x=1时,代数式4﹣3x的值是()10.(•广西)下列各组中,不是同类项的是()与﹣11.(•柳州)在下列单项式中,与2xy是同类项的是()12.(•玉林)下列运算中,正确的是()13.(•泰安模拟)下列各式计算正确的是()14.(•重庆校级模拟)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()15.(•济宁)化简﹣16(x﹣0.5)的结果是()16.(•荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m 是第i组第j个数(从左往右数),如A7=(2,3),则A=()17.(•包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()B18.(•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()19.(•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()二.填空题(共11小题)20.(•遵义)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)=.21.(•盐城)若2m﹣n2=4,则代数式10+4m﹣2n2的值为.22.(•苏州)若a﹣2b=3,则9﹣2a+4b的值为.23.(•扬州)若a2﹣3b=5,则6b﹣2a2+=.24.(•潜江)已知3a﹣2b=2,则9a﹣6b=.25.(•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖元.26.(•株洲)如果手机通话每分钟收费m元,那么通话n分钟收费元.27.(•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.28.(•天津模拟)计算3a﹣2a的结果等于.29.(•徐州模拟)化简:2x2﹣3x2=.30.(春•南县校级期中)若﹣2a m b4与5a n+2b2m+n的和为单项式,则m n的值是.初中数学组卷代数式参考答案与试题解析一.选择题(共19小题)1.(•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()2.(•吉林)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()3.(•自贡)为庆祝战胜利70周年,我市某楼盘让利于民,决定将原价为a元/米2的商品房价降价10%销售,降价后的销售价为()4.(•恩施州)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为()a+b+ax=a+5.(•江阴市模拟)某厂1月份产量为a吨,以后每个月比上一个月增产x%,则该厂3月份的产量(单位:吨)为()6.(•海南)已知x=1,y=2,则代数式x﹣y的值为()7.(•娄底)已知a2+2a=1,则代数式2a2+4a﹣1的值为()8.(•漳州)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()代入得:代入得:代入得:=1代入得:代入得:代入得:代入得:=1代入得:9.(•湖州)当x=1时,代数式4﹣3x的值是()10.(•广西)下列各组中,不是同类项的是()与﹣11.(•柳州)在下列单项式中,与2xy是同类项的是()12.(•玉林)下列运算中,正确的是()13.(•泰安模拟)下列各式计算正确的是()14.(•重庆校级模拟)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是(),.15.(•济宁)化简﹣16(x﹣0.5)的结果是()16.(•荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m 是第i组第j个数(从左往右数),如A7=(2,3),则A=()解:是第≥≥+117.(•包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()B个数为,,,个数为时,=.个数为18.(•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()19.(•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()二.填空题(共11小题)20.(•遵义)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)=1.21.(•盐城)若2m﹣n2=4,则代数式10+4m﹣2n2的值为18.22.(•苏州)若a﹣2b=3,则9﹣2a+4b的值为3.23.(•扬州)若a2﹣3b=5,则6b﹣2a2+=2005.24.(•潜江)已知3a﹣2b=2,则9a﹣6b=6.25.(•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖a 元.,得结果.,故答案为:26.(•株洲)如果手机通话每分钟收费m元,那么通话n分钟收费mn元.27.(•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要2000a元.28.(•天津模拟)计算3a﹣2a的结果等于a.29.(•徐州模拟)化简:2x2﹣3x2=﹣x2.30.(春•南县校级期中)若﹣2a m b4与5a n+2b2m+n的和为单项式,则m n的值是1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学代数式复习专题(附答案)一、单选题(共12题;共24分)1.我校给某“希望小学”邮寄每册a元的图书1000册,若每册图书的邮费为书价的5%,则共需邮费()元.A. 5%aB. 5%×1000aC. 1000a(1+5%)D. 502.已知,则代数式的值是()A. -1B. 2C. 1D. -73.对于任意两个有理数a、b,规定a⊗b=3a﹣b,若(2x+3)⊗(3x﹣1)=4,则x的值为()A. 1B. ﹣1C. 2D. ﹣24.某厂去年产值为m万元,今年产值是n万元(m<n),则今年的产值比去年的产值增加的百分比是( )A. ×100%B. ×100%C. ×100%D. ×100%5.若x1和x2为一元二次方程x2+2x-1=0的两个根。
则x12x2+x1x22值为()A. 4B. 2C. 4D. 36.买一个笔盒需要m元,买一支铅笔需要n元,则买4个笔盒、7支铅笔共需要()元A. 4m+7nB. 28mC. 7m+4nD. 11m7.一个三位数的各数位上的数字之和等于12,且个位数字为a,十位数字为b,则这个三位数可表示为()A. 12+10b+aB. 12000+10b+aC. 100(12-a-b)+10b+aD. 112+10b+a8.用火柴棒按如图中的方式搭图形,则搭第7个图形所需火柴棒的根数为()A. 28B. 29C. 34D. 359.若m+n=7,2n﹣p=4,则2m+4n﹣p的值为()A. ﹣11B. ﹣3C. 3D. 1810.若a为方程x²-x-5=0的解,则-a²+a+11的值为( )A. 16B. 12C. 9D. 611.观察下列等式:,,,,,,…,根据这个规律…+的末位数字是()A. 0B. 2C. 4D. 612.在平面直角坐标系中,对于点P(x,y),我们把点Q(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,A2的伴随点为A3……这样依次得到点A1,A2,A3……A n,若点A1(2,2),则点A2019的坐标为()A. (-2,0)B. (-1,3)C. (1,-1)D. (2,2)二、填空题(共6题;共6分)13.若x﹣y﹣1=0,则代数式(y﹣x)2﹣2x+2y+1的值是________.14.若a,b互为相反数,c,d互为倒数,m的平方等于25,则的值是________.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4>0的解集为________.16.如图,下列图形都是由同样大小的小圆圈按一定规律所组成的,则第n个图形中小圆圈的个数为________.17.如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2);再分别连接图(2)中间小三角形三边中点得到图(3),按上面的方法继续下去,第n个图形中有________个三角形?18.任意写出一个3的倍数例如:,首先把这个数各数位上的数字都立方,再相加,得到一个新数,然后把这个新数重复上述运算,运算结果最终会得到一个固定不变的数M,它会掉入一个数字“黑洞” 那么最终掉入“黑洞”的那个数M是________.三、计算题(共3题;共30分)19. (1)已知=5,=4,且m,n异号,求m2-mn+n2的值.(2)已知,m和n互为相反数,p和q互为倒数,a是绝对值最小的有理数,求的值. 20.阅读材料:规定一种新的运算:=ad-bc。
例如:=1×4-2×3=-2。
(1)按照这个规定,请你计算的值。
(2)按照这个规定,当=8时,求x的值。
21.阅读下面的解题过程:已知:,求的值.解:由,知,所以,即.所以,故.该题的解法叫做“倒数法”,请利用“倒数法”解决下面的题目:(1)已知,求的值.(2)已知,,,求的值.四、解答题(共4题;共20分)22.先化简,再求值:(1)2(a2b﹣ab2)﹣3(a2b﹣1)+2ab2+1,其中a=1,b=2.(2)2a(a+b)﹣(a+b)2,其中a=3,b=5.23.根据你的生活与学习经验,对代数式 2(x+y)表示的实际意义作出两种不同的解释.24.观察下列等式:12﹣02①,22﹣12②,32﹣22③,42﹣32④,…(1)按此规律猜想写出第⑥和第⑩个算式;(2)请用含自然数n的等式表示这种规律.25.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.五、综合题(共3题;共30分)26.用两根同样长的铁丝分别围成一个长方形和一个正方形.(1)设长方形的长为xcm、宽为ycm,用含有x、y的代数式表示正方形的面积;(2)已知长方形的长比宽多am,用含a的代数式表示正方形面积与长方形面积的差.27.若a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,-1的差倒数是.已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推.(1)分别求出的值;(2)求的值.28.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.答案一、单选题1.B2.D3.D4.B5.B6.A7.C8.B9.D 10.D 11.C 12.A二、填空题13.0 14.5或105 15.x﹥﹣6 16.3n+3 17.(4n-3)18.153三、计算题19.(1)解:∵=5,=4∴m=±5,n=±4∵m,n异号∴或∴m2-mn+n2=25+20+16=61(2)解:∵m、n互为相反数,p、q互为倒数∴m+n=0,pq=1∵a是绝对值最小的有理数∴a=0∴=-120.(1)解:=20-12=8(2)解:由,得解得,21.(1)解:由,可知,∴,即,∴故(2)解:由,,,可知,,,∴,,,即,,,三式相加得:∴∴故.四、解答题22.解:(1)2(a2b﹣ab2)﹣3(a2b﹣1)+2ab2+1,=2a2b﹣2ab2﹣3a2b+3+2ab2+1=﹣a2b+4 当a=1,b=2时,原式=﹣12×2+4=2;(2)原式=(a+b)(2a﹣a﹣b)=(a+b)(a﹣b)=a2﹣b2,当a=3,b=5时,原式=32﹣52=﹣16.23.解:(1)某水果超市推出两款促销水果,其中苹果每斤x元,香蕉每斤y元,小明买了2斤苹果和2斤香蕉,共花去2(x+y)元钱;(2)一个篮球的价格为x元,一个足球的价格为y元,购买了2个篮球和2个排球,共花去2(x+y)元钱.24.解:(1)观察所给的4个算式,可知⑥、⑩个算式为:62﹣52,102﹣92;(2)用含自然数n的式子表示这种规律为:n2﹣(n﹣1)2.25.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵27n=9×3m+3,∴(33)n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=1五、综合题26.(1)解:∵长方形的周长为2(x+y)m,∴正方形的边长为: m= m,∴正方形的面积为()2m2(2)解:设长方形的宽为ym,则长方形的长为(y+a)m,所以长方形的面积为y(y+a)m2,∵正方形的边长为m=(y+ )m,∴正方形的面积为(y+ )2m2,∴正方形面积与长方形面积的差为(y+ )2﹣y(y+a)= a2(m2)27.(1)解:∵a1=- ,∴a2= ,a3= ,a4= ,…,(2)解:根据(1)可知,每三个数为一个循环组循环,∵,3600÷3=1200,∴28.(1)如图(1),连接AD并延长至点F,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C (2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°-40°=50°;②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∵DC平分∠ADB,EC平分∠AEB,∴,,∴∠DCE=∠ADC+∠AEC+∠DAE,= (∠ADB+∠AEB)+∠DAE,=45°+40°,=85°;③由②得∠BG1C= (∠ABD+∠ACD)+∠A,∵∠BG1C=70°,∴设∠A为x°,∵∠ABD+∠ACD=133°-x°∴(133-x)+x=70,∴13.3- x+x=70,解得x=63,即∠A的度数为63°。