如何进行数据降维—主成分分析与因子分析的比较

合集下载

因子分析与其他统计方法的比较与应用

因子分析与其他统计方法的比较与应用

因子分析与其他统计方法的比较与应用统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有着广泛的应用。

在统计学中,因子分析是一种常用的多变量分析方法,它可以用来发现变量之间的内在结构和关系。

与其他统计方法相比,因子分析具有独特的优势和适用范围。

本文将对因子分析与其他统计方法进行比较,并探讨它们在实际应用中的差异与优势。

一、因子分析与主成分分析的比较因子分析和主成分分析是两种常用的数据降维方法,它们都可以用来发现变量之间的模式和结构。

然而,在实际应用中,这两种方法有着明显的区别。

主成分分析是一种线性变换方法,它旨在将原始变量转换为一组互相无关的主成分变量。

主成分分析的优势在于可以减少数据的维度,从而更好地展现数据的结构和特征。

但是,主成分分析忽略了变量之间的相关性,可能会损失一些有用的信息。

因此,主成分分析更适用于希望简化数据结构的情况。

与主成分分析相比,因子分析更注重变量之间的相关性和内在结构。

因子分析可以将原始变量转换为一组潜在因子,这些因子代表了数据中的共性因素。

通过因子分析,我们可以发现变量之间的潜在关系,进而更好地理解数据的内在结构。

因此,因子分析更适用于探索变量之间的潜在关系和发现隐藏的模式。

二、因子分析与聚类分析的比较除了主成分分析,聚类分析也是一种常用的多变量分析方法。

聚类分析旨在将样本或变量划分为不同的类别,以发现数据中的内在结构和模式。

与因子分析相比,聚类分析有着不同的优势和应用场景。

因子分析注重变量之间的相关性和共性结构,它更适用于发现变量之间的潜在关系和模式。

而聚类分析则更侧重于样本之间的相似性和差异性,它可以帮助我们发现数据中的不同类别和群体。

因此,聚类分析更适用于发现样本之间的相似性和差异性,以及划分样本类别的情况。

在实际应用中,因子分析和聚类分析常常结合使用,以发掘数据中的内在结构和模式。

通过将因子分析和聚类分析结合起来,我们可以更全面地理解数据的特征和规律,从而更好地指导决策和实践。

主成分与因子分析的10点异同总结

主成分与因子分析的10点异同总结

主成分与因子分析的10点异同总结一、原理不同主成分分析(Principal components analysis,PCA)基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。

因子分析(Factor Analysis,FA)基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。

就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)二、线性表示方向不同因子分析是把变量表示成各公因子的线性组合主成分分析中则是把主成分表示成各变量的线性组合。

三、假设条件不同主成分分析:不需要有假设(assumptions),因子分析:需要一些假设。

因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。

四、求解方法不同求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。

(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。

主成分分析与因子分析的异同比较及应用

主成分分析与因子分析的异同比较及应用

主成分分析与因子分析的异同比较及应用一、相似之处:1.降低数据维度:主成分分析和因子分析都是降维方法,通过将原始变量进行线性组合,生成一组新变量,减少原始数据的维度。

2.揭示变量之间的关系:主成分分析和因子分析都可以揭示数据中变量之间的相关性和潜在结构,更好地理解变量之间的关系。

3.数据依赖:主成分分析和因子分析都依赖原始数据的线性关系。

二、主成分分析的特点和应用:1.数据探索:主成分分析可以用于对数据进行探索性分析,揭示数据中的模式和变量之间的关系。

2.特征选择:主成分分析可以用于提取最相关的变量,帮助选择最能代表数据信息的特征。

3.数据压缩:通过保留主要的主成分,主成分分析可以将数据压缩成较低维度,减少存储和计算的开销。

4.降噪:主成分分析可以通过去除与主成分相关较小的维度,减少噪声的影响。

三、因子分析的特点和应用:因子分析的目标是通过找到能够解释原始变量间共同方差的不可观测因子,来揭示变量背后的潜在结构。

因子分析的原理是通过将多个变量通过线性函数关系表示为少数几个潜在因子的和。

因子分析可以用于以下场景:1.变量间关系建模:因子分析可以用于建立变量之间的概念模型,识别变量的共同因子、独特因子和测量误差。

2.假设测试:因子分析可以用于检验变量之间的因果关系,以验证一些假设。

3.变量缩减:通过识别共同的因子,并组合成新的因子变量,因子分析可以减少数据集的维度。

4.数据恢复:因子分析可以通过基于因子提取的结果,恢复原始变量的丢失信息。

四、主成分分析与因子分析的区别:1.目标:主成分分析的目标是将原始变量转化为一组新的不相关的维度,以解释数据方差最大化;而因子分析的目标是将原始变量转化为一组潜在因子,以解释变量间的共同方差。

2.变量假设:主成分分析假设所有变量是观测变量的线性组合,而因子分析假设所有变量既有观测变量,也有不可观测的因子变量。

3.因素解释:主成分分析的主要解释对象是方差,因而主成分的解释目标是能够包含尽可能多的方差;而因子分析的解释对象是共同方差,因而因子的解释目标是能够解释原始变量之间的共同方差。

数据分析中的因子分析与主成分分析

数据分析中的因子分析与主成分分析

数据分析中的因子分析与主成分分析在当今信息爆炸的时代,数据分析已经成为了各行各业中不可或缺的一部分。

在数据分析的过程中,因子分析和主成分分析是常用的两种统计方法。

它们可以帮助我们理解数据背后的隐藏规律和关联性。

本文将介绍因子分析和主成分分析的基本概念、应用场景以及它们之间的区别。

一、因子分析因子分析是一种用于探索多个变量之间关系的统计方法。

它的基本思想是将多个相关的变量归纳为少数几个潜在因子,从而简化数据的复杂性。

通过因子分析,我们可以找到隐藏在数据背后的共性因素,并将其用较少的变量来代表。

在因子分析中,我们需要确定两个重要的概念:因子载荷和公因子。

因子载荷表示变量与因子之间的相关性,取值范围为-1到1。

而公因子则是指影响多个变量的共同因素。

通过因子分析,我们可以得到每个变量对于每个公因子的因子载荷,从而得知变量之间的相关性以及它们与公因子的关系。

因子分析在实际应用中有着广泛的用途。

例如,在市场调研中,我们可以利用因子分析来确定消费者对于某个产品的偏好因素;在心理学研究中,我们可以通过因子分析来探索人们的个性特征。

因子分析的结果可以帮助我们更好地理解数据,为进一步的分析提供基础。

二、主成分分析主成分分析是一种用于降维的统计方法。

它的目标是通过线性组合将原始变量转化为一组新的互相无关的变量,即主成分。

主成分分析通过保留原始数据的大部分信息,同时减少数据的维度,从而达到简化数据和减少冗余的目的。

在主成分分析中,我们首先需要计算协方差矩阵。

然后,我们通过求解协方差矩阵的特征值和特征向量,得到主成分。

特征值表示主成分的重要性,而特征向量则表示主成分的方向。

通过选择特征值较大的主成分,我们可以保留较多的原始数据信息。

主成分分析在实际应用中也有着广泛的用途。

例如,在金融领域,我们可以利用主成分分析来构建投资组合,降低风险;在图像处理中,我们可以利用主成分分析来提取图像的特征。

主成分分析可以帮助我们更好地理解数据的结构,发现数据中的重要特征。

调研数据的主成分分析和因子分析

调研数据的主成分分析和因子分析

调研数据的主成分分析和因子分析主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis)是调研数据分析中常用的两种方法。

它们都是多元统计分析的技术手段,旨在发现数据中的潜在结构和解释变量之间的关系。

本文将从理论功能、数据处理、应用领域等方面进行介绍和比较。

我们来了解一下主成分分析。

主成分分析是一种降维技术,通过线性组合将原始变量转换为一组新的无关变量,这些新变量称为主成分。

主成分旨在捕获数据集中最多的方差信息,并且彼此之间是无关的。

主成分按照解释的方差大小排序,前几个主成分包含了尽可能多的信息。

主成分分析可以帮助我们发现数据中的隐藏模式和变量之间的关系,减少变量之间的相关性。

相比之下,因子分析是一种探索性的数据分析方法,通过确定潜在的未观察到的因子来解释观察到的变量之间的关系。

因子分析假设观测变量是通过一组潜在因子来生成的,这些潜在因子是无法直接观察到的。

因子分析的目标是解释观测变量的共同方差,并将它们归因于潜在因子。

因子分析通过估计因子载荷矩阵,确定每个变量与每个因子之间的关系。

因子的数量可以根据解释方差的要求进行选择。

在数据处理方面,主成分分析和因子分析都需要进行数据标准化,以确保变量之间具有可比性。

数据标准化的方法包括中心化(减去均值)和缩放(除以标准差)。

标准化后的数据可以避免变量的量纲和单位对分析结果的影响。

主成分分析和因子分析在应用领域上有一些区别。

主成分分析通常用于降维和变量选择,可以帮助我们从大量的变量中提取最有意义的几个主成分。

主成分分析在数据可视化、模式识别和聚类分析等领域得到广泛应用。

而因子分析更多用于探索变量之间的内在结构和关联,尤其适用于心理学、社会科学和市场研究等领域,可以帮助解释问卷调查或者对消费者行为进行分析。

虽然主成分分析和因子分析都可以检测变量之间的关系,但是它们的假设和模型有所不同。

主成分分析假设主成分是数据集的线性组合,并且每个主成分都解释了尽可能多的方差。

数据分析中的因子分析和主成分分析

数据分析中的因子分析和主成分分析

数据分析中的因子分析和主成分分析在数据分析领域,因子分析和主成分分析是两种常用的多变量分析方法。

它们可以用来处理大量的数据,找出数据的内在规律,并将数据简化为更少的变量。

本文将介绍因子分析和主成分分析的定义、应用以及它们在数据分析中的区别和联系。

一、因子分析因子分析是一种用于研究多个变量之间的潜在因素结构及其影响的统计方法。

它通过将多个观测变量转化为少数几个无关的因子,来解释变量之间的相关性。

因子分析的基本思想是将多个相关观测变量归因于少数几个潜在因子,这些潜在因子不能被观测到,但可以通过观测变量的变化来间接地推断出来。

因子分析通常包括两个主要步骤:提取因子和旋转因子。

提取因子是指确定能够解释原始变量方差的主要共性因子,常用的方法有主成分分析法和最大似然估计法。

旋转因子是为了减少因子之间的相关性,使得因子更易于解释。

常用的旋转方法有正交旋转和斜交旋转。

因子分析的应用非常广泛,可以用于市场研究、社会科学调查、心理学、金融等领域。

例如,在市场研究中,因子分析可以用来确定消费者购买行为背后的潜在因素,从而更好地理解市场需求。

二、主成分分析主成分分析是一种通过线性变换将原始变量转化为一组线性无关的主成分的统计方法。

主成分是原始变量的线性组合,具有较大的方差,能够尽可能多地解释原始数据。

主成分分析的主要思想是将原始变量投影到一个新的坐标系中,使得新坐标系上的第一主成分具有最大方差,第二主成分具有次最大方差,以此类推。

通过选择解释原始数据方差较多的前几个主成分,我们可以实现数据的降维和主要信息提取。

主成分分析在数据降维、特征提取和数据可视化等领域有广泛的应用。

例如,在图像处理中,主成分分析可以用来压缩图像数据、提取重要特征,并且可以在保留图像主要信息的同时减少存储空间的需求。

三、因子分析和主成分分析的区别和联系因子分析和主成分分析在某些方面有相似之处,但也存在明显的区别。

首先,因子分析是用于研究多个观测变量之间的潜在因素结构,而主成分分析是通过线性变换将原始变量转化为一组线性无关的主成分。

主成分分析与因子分析的比较

主成分分析与因子分析的比较一、主成分分析方法1、主成分分析介绍主成分分析是将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法,又称主分量分析。

在实际问题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。

人们自然希望变量个数较少而得到的信息较多。

在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映问题的信息方面尽可能保持原有的信息。

信息的大小通常用离差平方和或方差来衡量。

主成分分析的基础思想是将数据原来的p 个指标作线性组合,作为新的综合指标(123,,,p F F F F )。

其中1F 是“信息最多”的指标,即原指标所有线性组合中使()1Var F 最大的组合对应的指标,称为第一主成分;2F 为除1F 外信息最多的指标,即()'12,j i Cov F F a a =∑且()2Var F 最大,称为第二主成分;依次类推。

易知123,,,p F F F F 互不相关且方差递减。

实际处理中一般只选取前几个最大的主成分(总贡献率达到85%),达到了降维的目的。

2、主成分确定的原则假设某个总体共有n 个样本,而每个样本测得p 项指标:X 1,X 2,X 3……X p ,得到原始数据()11121212221212p p p n n np x x x x x x X X X X x x x ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦其中11211n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 1,2,3,i p = 。

将数据矩阵X 的p 个向量12p X X X 作线性组合'111121211'212122222'1122,,,p p p p p p p pp p p F a X a X a X a X F a X a X a X a X F a X a X a X a X ⎧==++⎪==++⎪⎨⎪⎪==++⎩简写成'1122,i i i pi p i F a X a X a X a X ==++ 其中1,2,3,i p =设均值()E X u =,协方差阵()D X =∑。

如何进行数据降维—主成分分析与因子分析的比较

如何进行数据降维—主成分分析与因子分析的比较当我们使用统计分析方法进行多变量分析的时候,变量个数太多就会增加分析的复杂性。

遇到这种情况,我们一般需要采取降维的方法对变量进行降维,以期更好来进行后续的分析工作。

因子分析和主成分分析就是我们常用的两种变量降维的方法。

但哪种方法更好呢?本文将对这两种方法来进行比较,希望大家能从相互的比较过程中,找到适合自己分析的降维方法。

首先,先来给大家简单的介绍下这两种方法的原理。

一般而言,针对某一个响应的若干因子之间存在着一定的相关性,因子分析就是在这些变量中找出隐藏的具有代表性的因子,将相同本质的变量归入一个因子,以此来减少变量的数目。

而对于主成分来说,这种相关性意味着这些变量之间存在着一定的信息重叠,主成分分析将重复的因子(相关性强的因子)删去,通过建立尽可能保持原有信息、彼此不相关的新因子来对响应进行重新的刻画。

从统计学上来看,主成分分析本质上是一种通过线性变换来进行数据集简化的技术,它是将数据从现有的坐标系统变换到一个新的坐标系统中,然后将数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。

相比较主成分分析,因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分,然后通过构造因子模型,将原始观察变量分解为公共因子因子的线性组合。

简而言之,主成分分析是将主要成分表示为原始观察变量的线性组合,而因子分析是将原始观察变量表示为新因子的线性组合。

基于两个方法的原理及实施步骤,我们不难看出,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。

大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。

而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。

主成分分析与因子分析的比较与应用

主成分分析与因子分析的比较与应用在数据分析领域,主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis,FA)是常用的降维技术。

它们可以帮助我们理解数据之间的关系、提取相关特征以及简化数据集。

本文将比较主成分分析和因子分析的不同之处,并探讨它们在实际应用中的具体用途。

一、主成分分析主成分分析是一种无监督学习方法,用于将高维数据转换为低维数据。

主成分分析的目标是找到一组新的低维变量,称为主成分,它们能够解释原始数据中最大的方差。

主成分分析的基本思想是将数据投影到方差最大的方向上,以便保留尽可能多的信息。

主成分分析的步骤如下:1. 标准化数据:将原始数据进行标准化处理,使得各个特征的均值为0,方差为1。

2. 计算协方差矩阵:通过计算特征之间的协方差矩阵,了解各个特征之间的相关性。

3. 计算特征值和特征向量:通过对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

4. 选择主成分:按照特征值从大到小的顺序,选择最大的k个特征值对应的特征向量作为主成分。

5. 数据转换:将原始数据投影到所选主成分上,得到降维后的数据集。

主成分分析在实际应用中具有广泛的用途。

例如,在图像处理中,主成分分析可用于图像压缩和降噪;在金融领域,主成分分析可用于投资组合优化和资产定价;在生物科学中,主成分分析可用于基因表达数据的分析等。

二、因子分析因子分析也是一种常用的无监督学习方法,其目标是通过观察变量之间的共同变异性,识别潜在的影响因素或隐含变量。

因子分析的基本思想是将多个观测变量解释为少数几个潜在因子的线性组合,从而减少原始数据的维度。

因子分析的步骤如下:1. 建立模型:选择适当的因子分析模型,包括确定因子个数和选择因子旋转方法。

2. 估计参数:使用最大似然估计等方法,对模型中的参数进行估计。

3. 因子旋转:为了使得因子更易于解释,通常需要对因子进行旋转,常见的旋转方法有方差最大旋转和直角旋转等。

主成分分析与因子分析的异同和SPSS软件——兼与刘玉玫、卢纹岱等同志商榷

主成分分析与因子分析的异同和SPSS软件——兼与刘玉玫、卢纹岱等同志商榷一、主成分分析与因子分析的异同主成分分析和因子分析都是通过线性组合原始变量来构建新的变量,以实现降维的目标。

它们都可以用来发现数据中的潜在结构,但其目标和原理有所不同。

1. 目标不同主成分分析的目标是将原始变量线性组合成少数几个互相无关的主成分,以尽可能保留原始数据的信息,并在缩减变量数目标同时实现数据降维。

主成分分析可以用于数据可视化、分类和猜测等领域。

因子分析的目标是确定观测变量背后的不行观测的潜在因子,并通过因子与变量之间的相干系数来诠释数据变异。

因子分析常用于心理学、社会学等领域,用于构建心理特质、社会经济指标等。

2. 原理不同主成分分析是基于协方差矩阵(或相关矩阵)进行计算的,通过寻找数据变异最大的新方向(主成分),依次确定其他主成分,来实现数据的最大可诠释性。

因子分析则是通过最大似然预估或主成分法进行计算的,假设观测变量是由潜在因子和随机误差共同决定的,因子分析的目标是推断出潜在因子及其与观测变量之间的干系。

3. 适用场景不同主成分分析适用于观测变量之间具有强相关性的状况,可以用于数据预处理、特征选择、信号处理等方面。

主成分分析对数据的线性性假设较强,对离群点比较敏感。

因子分析适用于观测变量之间存在潜在因子的状况,可以用于构建潜在因子模型、测量潜在心理特质等。

因子分析对数据的线性性假设较弱,对离群点相对不敏感。

4. 结果诠释不同主成分分析的结果可以诠释为数据中的主题或模式,各个主成分的贡献程度可以用特征值和累计方差贡献度来衡量。

因子分析的结果可以诠释为观测变量与潜在因子之间的干系,各个因子的诠释程度可以用因子载荷和共方差贡献度来衡量。

二、SPSS软件在主成分分析和因子分析中的应用SPSS是一款常用的统计分析软件,其提供了丰富的功能和简便的操作界面,可以便利地进行主成分分析和因子分析。

1. 主成分分析在SPSS中进行主成分分析的操作步骤为:点击“分析”菜单下的“降维”选项,选择“主成分...”进入主成分分析对话框。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何进行数据降维
—主成分分析与因子分析的比较
当我们使用统计分析方法进行多变量分析的时候,变量个数太多就会增加分析的复杂性。

遇到这种情况,我们一般需要采取降维的方法对变量进行降维,以期更好来进行后续的分析工作。

因子分析和主成分分析就是我们常用的两种变量降维的方法。

但哪种方法更好呢?本文将对这两种方法来进行比较,希望大家能从相互的比较过程中,找到适合自己分析的降维方法。

首先,先来给大家简单的介绍下这两种方法的原理。

一般而言,针对某一个响应的若干因子之间存在着一定的相关性,因子分析就是在这些变量中找出隐藏的具有代表性的因子,将相同本质的变量归入一个因子,以此来减少变量的数目。

而对于主成分来说,这种相关性意味着这些变量之间存在着一定的信息重叠,主成分分析将重复的因子(相关性强的因子)删去,通过建立尽可能保持原有信息、彼此不相关的新因子来对响应进行重新的刻画。

从统计学上来看,主成分分析本质上是一种通过线性变换来进行数据集简化的技术,它是将数据从现有的坐标系统变换到一个新的坐标系统中,然后将数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。

相比较主成分分析,因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分,然后通过构造因子模型,将原始观察变量分解为公共因子因子的线性组合。

简而言之,主成分分析是将主要成分表示为原始观察变量的线性组合,而因子分析是将原始观察变量表示为新因子的线性组合。

基于两个方法的原理及实施步骤,我们不难看出,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。

大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。

而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。

此外,主成分分析主要是作为一种探索性的技术,可以同聚类分析和判别分析一起使用,帮助我们更好的进行多元分析,特别是当变量很多,数据样本量少的情况,一些统计分析方
法可能不能很好的进行分析,这时候可以使用主成分分析对变量数量进行简化。

例如在进行图像识别时,通过主成分分析,我们可以用更少的维度特征对图像进行识别,从而帮助我们快速的进行图像的识别和后续的分类分析等。

图:运用主成分分析,进行图像的降维处理
当然,其他降维分析的方法还有很多,这里只是列举了两种最常用的方法抛砖引玉,大家也可以去发现更多的分析方法。

相关文档
最新文档