信号完整性名词解释

合集下载

信号完整性介绍

信号完整性介绍

信号完整性基础知识术语、符号和缩略语术语1.信号完整性(Signal Integrity)信号完整性是指信号在信号线上的质量。

信号具有良好的信号完整性是指当在需要的时候具有所必需达到的电压电平数值。

2.传输线(Transmission Line)传输线是一个网络(导线),并且它的电流返回到地或电源。

3.特性阻抗(Characteristic Impedance)组成信号传输回路的两个导体之间存在分布电感和分布电容,当信号沿该导体传输时,信号的跃变电压(V)和跃变电流(I)的比值称为特性阻抗(Z0),即Z0=V/I。

4.反射(Reflection)反射就是在传输线上的回波。

信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。

如果源端与负载端具有相同的阻抗,反射就不会发生。

5.串扰(Crosstalk)串扰是两条信号线之间的耦合。

信号线之间的互感和互容引起线上的噪声。

容性耦合引发耦合电流,而感性耦合引发耦合电压。

6.过冲(Overshoot)过冲就是第一个峰值或谷值超过设定电压。

对于上升沿是指最高电压,而对于下降沿是指最低电压。

过分的过冲能够引起保护二极管工作,导致过早地失效。

7.下冲(Undershoot)下冲是指下一个谷值或峰值。

过分的下冲能够引起假的时钟或数据错误(误操作)。

8.电路延迟指信号在器件内传输所需的时间(T pd)。

例如,TTL的电路延迟在3 ~ 20nS 范围。

9.边沿时间器件输出状态从逻辑低电平跃变到高电平所需要的时间(信号波形的10~90%),通常表示为上升沿(T r)。

器件输出状态从逻辑高电平下降到低电平所需要的时间(信号波形的90~10%),通常表示为下降沿(T f)。

10.占空比偏斜信号传输过程中,从低电平到高电平的转换时间与从高电平到低电平的转换时间之间的差别,称为占空比偏斜。

TTL和CMOS信号的占空比偏斜问题较为突出,主要是因为其输出的上升沿和下降沿延迟不同。

SI名词解释

SI名词解释
8、什么是过冲(overshoot)? 过冲(Overshoot)就是第一个峰值或谷值超过设定电压――对于上升沿是指最高电压而对于下 降沿是指最低电压。下冲(Undershoot)是指下一个谷值或峰值。过分的过冲(overshoot)能 够引起保护二级管工作,导致过早地失效。
9、什么是下冲(undershoot)(ringback)? 过冲(Overshoot)是第二个峰值或谷值超过设定电压――对于上升沿过度地谷值或对于下降沿 太大地峰值。过分地下冲(undershoot)能够引起假的时钟或数据错误(误操作)。
2、什么是串扰(crosstalk)? 串扰(crosstalk)是指在两个不同的电性能之间的相互作用。产生串扰(crosstalk)被称为 Aggressor,而另一个收到干扰的被称为Victim。通常,一个网络既是Aggressor(入侵者), 又是Victim(受害者)。振铃和地弹都属于信号完整性问题中单信号线的现象(伴有地平面回 路),串扰则是由同一PCB板上的两条信号线与地平面引起的,故也称为三线系统。串扰是两条 信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感 性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式
6 CAM350菜单…
28512
7 CAM350 系…
25154
8 《新编印制电路板… 24849
9 CAM350 数…
18585
10 《新编印制电路板… 16042
企业链接
招商广告
网站友情链接
技术文章
SI名词解释
行业术语 2003-6-10 中国PCB技术网
1、什么是信号完整性(Singnal Integrity)? 信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良 好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数 值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。 常见信号完整性问题及解决方 法:

芯片设计中的信号完整性与时序优化

芯片设计中的信号完整性与时序优化

芯片设计中的信号完整性与时序优化芯片设计是现代电子技术领域中的重要一环,而其中的信号完整性和时序优化更是至关重要的问题。

在当前高速、大规模集成电路的设计中,信号完整性和时序优化对电路性能和可靠性起着决定性的作用。

本文将从理论和实践两方面探讨芯片设计中信号完整性和时序优化的相关内容。

1. 信号完整性信号完整性是指保证信号在传输过程中不发生失真、干扰或衰减的能力。

在芯片设计中,信号完整性的提高是确保电路正常工作和数据可靠传输的基础。

下面介绍一些常见的信号完整性问题及其解决方法。

1.1 反射反射是信号完整性中常见的问题之一,它指的是信号在传输线上到达终端时,一部分能量反射回发送端,导致信号失真和抖动。

为了解决这个问题,可以使用终端阻抗匹配和终端终止电阻来减少反射的影响。

1.2 串扰串扰是信号完整性中另一个重要问题,它指的是信号在传输过程中受到相邻信号的干扰,导致信号质量下降。

为了减少串扰,可以采取减小信号线之间的距离、增加屏蔽层和引入阻抗匹配等措施。

1.3 信号功率衰减信号功率衰减是指信号在传输过程中的能量损失,导致信号变弱,难以被接收端正确解读。

为了解决信号功率衰减,可以采取合理的功率管理策略,包括增加信号驱动能力和优化传输线的设计等。

2. 时序优化时序优化是芯片设计中的另一个重要方面,它主要涉及到电路中各个时钟边沿之间的时间关系。

时序优化的目标是保证电路的正常工作,并尽可能减少时序违规和噪声干扰。

下面介绍一些常用的时序优化技术。

2.1 时钟树设计时钟树是芯片中时钟信号传输的网络,其设计合理与否对芯片的性能和功耗有着直接的影响。

在时钟树设计中,需要考虑时钟延迟、抖动、功耗等因素,并进行合理的布线和分层设计。

2.2 数据路径分析数据路径是芯片中数据信号传输的路径,而数据路径分析则是对数据路径中的时序关系进行分析和优化。

通过数据路径分析,可以提前发现时序违规和潜在的时序问题,并进行合理的调整和优化。

2.3 前端设计与后端布局芯片设计中的前端设计和后端布局是时序优化的两个关键环节。

集成电路设计中的信号完整性分析与优化

集成电路设计中的信号完整性分析与优化

集成电路设计中的信号完整性分析与优化随着现代电子技术的发展,集成电路已经成为大部分电子产品中不可或缺的一部分。

在集成电路设计中,信号完整性是一个绕不开的话题。

在高速集成电路系统中,信号完整性的保障至关重要。

本文将阐述集成电路设计中信号完整性的重要性,以及分析和优化信号完整性的方法。

一、信号完整性的概念信号完整性通常指的是信号在途中受到的损耗、反射和干扰等影响对信号质量的影响。

在高速集成电路设计中,主要涉及到共模噪声、串扰、时钟漂移、功率噪声等问题,这些问题都会对信号完整性产生负面影响。

在集成电路设计中,信号完整性对于电路性能的保障至关重要。

如果信号完整性存在问题,会导致信号失真、时序误差、电磁兼容性(EMC)问题等,从而影响产品的可靠性和性能。

因此,在高速集成电路设计中保障信号完整性已经成为了一项必须考虑的关键任务。

二、信号完整性分析与优化1.仿真与分析在设计一款高速集成电路时,仿真和分析是保障信号完整性的最基本手段。

信号完整性分析通常是通过工具仿真来完成的,主要包括电磁仿真、功率完整性仿真和时钟完整性仿真等。

通过仿真可以得到各种信号参数,如传输速率、时延、噪声干扰等,并以此为基础进行信号完整性的下一步优化。

2.布局与设计在信号完整性的优化中,良好的布局和设计也是至关重要的。

首先,需要避免布线的过长、过细,以免引发串扰、反射等问题。

其次,布局中会遵循规定的电性长度,以保证严格的时间同步,从而最大限度地减少时钟漂移、时序误差等问题。

3.电源和地线的设计在高速集成电路系统中,电源和地线的设计也是信号完整性的关键因素。

电源和地线的引入会造成电压变化和噪声产生,因此需要进行合理的布线。

在设计中应该避免信号线和电源/地线平行布线,以减少串扰和互感耦合的发生。

4.屏蔽和滤波为了进一步减少信号噪声和串扰,信号屏蔽和滤波也是信号完整性优化的常用方法。

具体来说,可以使用屏蔽罩、滤波器等措施来减少信号噪声和干扰。

5.仿真和测试信号完整性的评估离不开仿真和测试。

信号完整性复习

信号完整性复习

第一章概论狭义的信号完整性(SI),是指信号电压(电流)完美的波形形状及质量。

广义的信号完整性(SI),指在高速产品中,由互连线引起的所有信号电压电平和电流不正常现象,包括:噪声、干扰和时序等。

由于物理互连造成的干扰和噪声,使得连线上信号的波形外观变差,出现非正常形状的变形,称为信号完整性被破坏。

信号完整性问题是物理互连在高速情况下的直接结果。

信号完整性强调信号在电路中产生正确响应的能力。

信号无失真:信号经过一个系统后,各个参数被等比例地放大或缩小。

高速的含义:(严格地,高频不一定高速,低频也不一定低速)当系统中的数字信号的上升边小于1ns或时钟频率超过100MHz时,我们称之为高速运行。

物理互连的电阻、电容、电感和传输线效应影响了系统性能。

作者Eric将后果归结为四类SI问题:反射(reflection);串扰(crosstalk);电源噪声(同步开关SSN、地弹、轨道塌陷);电磁干扰(EMI)。

反射(reflection)是指传输线上有回波。

信号功率(电压和电流)的一部分经传输线上传输到负载端,但是有一部分被反射回来形成振铃(ringing),振铃就是反复出现过冲和下冲。

(过冲是指第一个峰值或谷值超过设定电压;下冲类似)。

振铃现象实际上是由阻抗突变产生的反射引起的。

减小阻抗突变问题的方法就是让整个网络中的信号所感受的阻抗保持不变当信号从驱动源输出时,构成信号的电流和电压将互连线看做一个阻抗网络。

当信号沿网络传播时,它不断感受到互连线引起的瞬态阻抗变化。

如果信号感受到的阻抗保持不变,则信号就保持不失真。

一旦阻抗发生变化,信号就会在变化处产生反射,并在通过互连线的剩余部分时发生失真。

如果阻抗改变的程度足够大,失真就会导致错误的触发。

串扰crosstalk)是指两个不同的电性能网络之间的相互作用。

通常,每一个网络既产生串扰,也会被干扰。

电源噪声主要指同步开关噪声(SSN)。

地弹是返回路径中两点之间的电压,它是由于回路中电流变化而产生的。

电气工程中的信号完整性分析

电气工程中的信号完整性分析

电气工程中的信号完整性分析在当今高度数字化和信息化的时代,电气工程领域的发展日新月异。

从智能手机到超级计算机,从医疗设备到航空航天系统,电子设备在我们的生活中无处不在。

而在这些复杂的电子系统中,信号完整性成为了确保设备性能稳定、可靠运行的关键因素。

信号完整性,简单来说,就是指信号在传输过程中保持其准确性、完整性和及时性的能力。

如果信号在传输过程中出现失真、衰减、反射、串扰等问题,就可能导致系统性能下降、误码率增加、甚至系统故障。

因此,对电气工程中的信号完整性进行深入分析和研究具有极其重要的意义。

首先,让我们来了解一下信号完整性问题产生的原因。

信号在传输线上传播时,会遇到各种阻抗不匹配的情况。

比如,当信号从驱动源输出,经过传输线到达负载时,如果驱动源的输出阻抗、传输线的特性阻抗和负载的输入阻抗不匹配,就会引起信号的反射。

反射的信号会与原信号叠加,导致信号波形失真。

此外,相邻传输线之间的电磁耦合会产生串扰,使得相邻信号之间相互干扰。

同时,传输线的损耗会导致信号的衰减,从而影响信号的强度和质量。

为了分析信号完整性问题,我们需要一些重要的工具和技术。

时域反射计(TDR)就是其中之一。

TDR 可以通过向传输线发送一个快速上升的脉冲,并测量反射回来的脉冲,来确定传输线中的阻抗不连续点和故障位置。

另一个常用的工具是示波器,它可以直观地显示信号的波形,帮助我们观察信号的失真、噪声等问题。

此外,还有一些仿真软件,如ADS、HFSS 等,可以在设计阶段对电路进行建模和仿真,预测可能出现的信号完整性问题,并提前采取优化措施。

在实际的电气工程应用中,信号完整性问题在高速数字电路中尤为突出。

随着数字信号的频率不断提高,信号的上升时间和下降时间变得越来越短,这对信号传输的要求也越来越高。

例如,在计算机主板上,高速的总线信号需要在严格的时序要求下进行传输,如果出现信号完整性问题,可能会导致数据传输错误,影响计算机的性能。

在通信系统中,高速的射频信号也需要保持良好的完整性,以确保信号的质量和传输距离。

信号完整性分析概论

信号完整性分析概论

11.总结
7.测量无源器件和互连线的电气特性的仪器一般有三种:阻抗分 析仪、网络分析仪和时域反射仪; 8.这些仪器对减小设计风险、提高建模仿真和仿真过程精度的可 信度起着重要作用: 9.理解这些时钟信号完整性问题可以得出消除这些问题的最重要 的方法: 信号质量——信号在经过整个互连线时所感受到的阻抗应相同; 串扰——保持线条见的间隔大于最小值,并使线条与非理想返回 路径的互感最小; 轨道塌陷——使电源/地路径的阻抗和I噪声最小; 电磁干扰——使带宽以及地阻抗最小,采取屏蔽措施。
良好的屏蔽来弥补; 4.I/O接头的阻抗,特别是返回路径连接件的阻抗,会严重影响能产生辐射电流的
噪声电压,使用低阻抗连接的屏蔽电缆线是减小EMI问题的有效办法。
3.信号完整性的两个重要推论
1.随着上升边的减小,这四种问题(网络的信号质量、串扰、轨道塌 陷噪声和电磁干扰)都会变更严重。
前面所有的信号完整性问题都是以电流或电压变化速度来衡量的, 通常指的是dI/dt或dV/dt,上升边越短意味着dI/dt或dV/dt就越大。
单一网络的信号质量与信号路径和返回路径的物理特征都有很大的关系 。主要的表现就是网络中信号传输路径的阻抗发生突变,减小阻抗突变问题 的方法是让整个网络中的信号所感受到的阻抗保持不变。
信号所感受到的阻抗发生变化的情况: 1.线宽变化; 2.层变化; 3.返回路径平面上的间隙; 4.接插件; 5.分支线、T型线和桩线; 6.网络末端。
2.四类特定噪声源
4.电磁干扰EMI
EMI是指电子产品工作会对周边的其他电子产品造成干扰,EMI问题随着时 钟频率的提高而解决难度加大。
电磁干扰问题三个方面:噪声源、辐射传播路径和天线。
最常见电磁干扰源: 1.一部分差分信号转换成共模信号,最终在外部的双绞电缆线上输出; 2.电路板上的地弹在外部单端屏蔽线上产生共模电流,附加的噪声可以由内部

信号完整性

信号完整性

3.2 信号完整性仿真3.2.1 信号完整性基础高速PCB的信号线必须按照传输线理论去设计,否则就会产生反射、串扰、过冲和下冲等问题而严重影响信号的完整性。

信号完整性是指信号在电路中以正确的时序和电压作出响应的能力。

如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。

反之,当信号不能正常响应时,就出现了误触发、阻尼振荡、过冲、欠冲等时钟间歇振荡和数据出错等信号完整性问题。

当频率超过50MHz或信号上升时间Tr小于6倍传输线延时时,系统的设计必然面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性问题。

以下是印象信号完整性的一些现象。

①反射反射就是信号在传输线上的回波现象。

此时信号功率没有全部传输到负载处,有一部分被反射回来了。

在高速的PCB中导线必须等效为传输线,按照传输线理论,如果源端与负载端具有相同的阻抗,反射就不会发生了。

如果二者阻抗不匹配就会引起反射,负载会将一部分电压反射回源端。

根据负载阻抗和源阻抗的关系大小相同,反射电压可能为正,也可能为负。

如果反射信号很强,叠加在原信号上,很可能改变逻辑状态,导致接受数据错误。

如果在时钟信号上可能引起时钟沿不单调,进而引起误触发。

一般布线的几何形状、不正确的线端接、经过连接器的传输以及电源平面的不连续等因素均会导致此类反射。

;另外常有一个输出多个接收,这时不同的布线策略产生的反射对每个接收端的影响也不相同,所以布线策略也是影响反射的一个不可忽视的因素。

②串扰在所有的信号完整性问题中,串扰现象是非常普遍的。

串扰可能会出现在芯片内部,也可能出现在电路板、连接器、芯片封装以及线缆上。

串扰是指在两个不同的电性能之间的相互作用。

产生串扰被称为Aggressor,而另一个收到串扰的被称为Victim。

通常,一个网络既是入侵者,又是受害者。

振铃和地弹都属于信号完整性问题中单信号线的现象,串扰则是自同一块PVB板上的两条信号线与地平面引起的,故也称为三线系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号完整性名词解释1、什么是信号完整性(Singnal Integrity)?信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。

信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。

主要的信号完整性问题包括反射、振荡、地弹、串扰等。

常见信号完整性问题及解决方法:问题可能原因解决方法其他解决方法过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面过大的串扰线间耦合过大使用上升时间缓慢的发送驱动器使用能提供更大驱动电流的驱动源时延太大传输线距离太长替换或重新布线, 检查串行端接头使用阻抗匹配的驱动源, 变更布线策略振荡阻抗不匹配在发送端串接阻尼电阻2、什么是串扰(crosstalk)?串扰(crosstalk)是指在两个不同的电性能之间的相互作用。

产生串扰(crosstalk)被称为Aggressor,而另一个收到干扰的被称为Victim。

通常,一个网络既是Aggressor(入侵者),又是Victim(受害者)。

振铃和地弹都属于信号完整性问题中单信号线的现象(伴有地平面回路),串扰则是由同一PCB板上的两条信号线与地平面引起的,故也称为三线系统。

串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。

容性耦合引发耦合电流,而感性耦合引发耦合电压。

PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。

3、什么是电磁兼容(EMI)?电磁干扰(Ectromagnetioc Interference),或者电磁兼容性(EMI),是从一个传输线(transmission line)(例如电缆、导线或封装的管脚)得到的具有天线特性的结果。

印制电路板、集成电路和许多电缆发射并影响电磁兼容性(EMI)的问题。

FCC定义了对于一定的频率的最大发射的水平(例如应用于飞行控制器领域)。

4、在时域(time domain)和频域(frequency domain)之间又什么不同?时域(time domain)是一个波形的示波器观察,它通常用于找出管脚到管脚的延时(delays)、偏移(skew)、过冲(overshoot)、下冲(undershoot)以及设置时间(setting times)。

频域(frequency domain)是一个波形的频谱分析议的观察,它通常用于波形与频谱分析议的观察、它通常用于波形与FCC和其他EMI控制限制之间的比较。

(有一个比喻,它就象收音机——你在时域(time domain)中听见,但是你要找到你喜欢的电台是在频域(frequency domain)内。

)5、什么是传输线(transmission line)?传输线(transmission line)是一个网络(导线),并且它的电流返回的地和电源。

电路板上的导线具有电阻、电容和电感等电气特性。

在高频电路设计中,电路板线路上的电容和电感会使导线等效于一条传输线。

传输线是所有导体及其接地回路的总和。

6、什么是阻抗(impedance)?阻抗(Impedance)是传输线(transmission line)上输入电压对输入电流地比率值(Z0=V/I)。

当一个源发出一个信号到线上,它将阻碍它驱动,直到2*TD时,源并没有看到它地改变,在这里TD时线的延时(delay)。

7、什么是反射(reflection)?反射(reflection)就是在传输线(transmission line)上回波(echo)。

信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射(reflected)了。

如果负载和线具有相同的(impedance),发射(Reflections)就不会发生了。

如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。

布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。

8、什么是过冲(overshoot)?过冲(Overshoot)就是第一个峰值或谷值超过设定电压——对于上升沿是指最高电压而对于下降沿是指最低电压。

下冲(Undershoot)是指下一个谷值或峰值。

过分的过冲(overshoot)能够引起保护二级管工作,导致过早地失效。

9、什么是下冲(undershoot)(ringback)?过冲(Overshoot)是第二个峰值或谷值超过设定电压——对于上升沿过度地谷值或对于下降沿太大地峰值。

过分地下冲(undershoot)能够引起假的时钟或数据错误(误操作)。

10、什么是振荡(ringing)?振荡(ringing)就是在反复出现过冲(overshoots)和下冲(undershoots)。

信号的振铃(ringing)和环绕振荡(rounding)由线上过度的电感和电容引起,振铃属于欠阻尼状态而环绕振荡属于过阻尼状态。

信号完整性问题通常发生在周期信号中,如时钟等,振荡和环绕振荡同反射一样也是由多种因素引起的,振荡可以通过适当的端接予以减小,但是不可能完全消除。

11、什么是设置时间(settling time)?设置时间(settling time)就是对于一个振荡的信号稳定到指定的最终值所需的时间。

12、什么是管脚到管脚(pin-to-pin)的延时(delay)管脚到管脚(pin-to-pin)的延时(delay)是指在驱动器状态的改变到接收器状态的改变之间的时间。

这些改变通常发生在给定电压的50%,最小延时发生在当输出第一个越过给定的阀值(threshold),最大延时发生在当输出最后一个越过电压阀值(threshold),测量所有这些情况。

13、什么是偏差(skew)?信号的偏移(skew)是对于同一个网络到达不同的接收器端之间的时间偏差。

偏移(skew)还被用于在逻辑门上时钟和数据达到的时间偏差。

14、什么是斜率(slew rate)?Slew rate就是边沿斜率(-个信号的电压有关的时间改变的比率)。

I/O的技术规范(如PCI)状态在两个电压之间,这就是斜率(slew rate),它是可以测量的。

15、什么是静态线(quiescent line)?在当前的时钟周期内它不出现切换。

另外也被称为“stuck-at”线或static线。

串扰(crosstalk)能够引起一个静态线在时钟周期内出现切换。

16、什么是假时钟(false clocking)?假时钟是指时钟越过阀值(threshold)无意识的改变了状态(有时在VIL或VIH之间)。

通常由过分的下冲(undershoot)或串扰(crostalk)引起。

17、什么是IBIS?IBIS是描述一个输入/输出(I/O)的EIA/ANSI标准。

它包括DC(V/I)特性曲线,也包括瞬态(transient)(V/T)特性曲线curves as tables of points。

HyperLynx的网页(Web site)上有连接到IBIS的主页,另外还有许多供应商的IBIS模型网页。

18、什么是IC 的高低电平切换门限?IC 的高低电平切换门限指的是信号从一个状态向另一个状态转换所需的电压值。

当发生阻尼现象时,信号电平可能会超过IC 输入脚的切换门限,从而将IC 输入信号变为不确定状态,这会导致时钟出错或数据的错误接收。

19、什么是地电平面反弹噪声和回流噪声?在电路中有大的电流涌动时会引起地平面反弹噪声(简称为地弹),如大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面(0V)上产生电压的波动和变化,这个噪声会影响其它元器件的动作。

负载电容的增大、负载电阻的减小、地电感的增大、同时开关器件数目的增加均会导致地弹的增大。

由于地电平面(包括电源和地)分割,例如地层被分割为数字地、模拟地、屏蔽地等,当数字信号走到模拟地线区域时,就会产生地平面回流噪声。

同样电源层也可能会被分割为2.5V,3.3V,5V等。

所以在多电压PCB设计中,地电平面的反弹噪声和回流噪声需要特别关心。

20、高频电路的定义在数字电路中,是否是高频电路取决于信号的上升沿和下降沿,而不是信号的频率。

F=1/(Tr*л),Tr为上升/下降延时时间,当F>100MH他(Tr<3.183ns)时就应该按照高频电路进行考虑,下列情况必须按照高频规则进行设计:l 系统时钟超过50Hzl 采用了上升/下降时间少于5ns的器件l 数字/模拟混合电路高频电路是取决于信号的上升沿和下降沿,而不是信号的频率,但是不是Tr>100MHz时才考虑高频规则进行设计,还要看传输介质而定。

通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。

信号的传递发生在信号状态改变的瞬间,如上升或下降时间。

信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。

反之,反射信号将在信号改变状态之后到达驱动端。

如果反射信号很强,叠加的波形就有可能会改变逻辑状态。

21、什么是长线高速系统中的长线(Electrically Long Trace)定义可以从频域和时域两个角度来定义:1、频域定义当线的物理长度和相应频率的波长具有可比性的时候(一般的说法是大于1/20波长),这样的trace就叫做Electrically Long Trace,或者transmission line(传输线)。

2、时域定义当信号线的传输延迟(propagation delay)大于1/4信号上升时间(rise time)的时候,该信号线就应视为传输线。

22、什么是微带线和带状线1.微带线参考平面(reference plane)只有一个。

有些朋友认为微带线就是位于PCB表层的传输线。

这种看法不全面。

设想一种情形:一个多层板的第一和第二层都是信号层,而第三层为地平面,那么在第一和第二层上的传输线都叫微带线。

位于第二层的微带线也叫做掩埋式微带线(embedded microstrip)。

微带线的阻抗与它的线宽、频率和它到参考平面的垂直距离有关。

2.带状线位于两个参考平面之间,所以它有两个参考平面,阻抗的计算公式与微带线的也不一样。

当然,带状线肯定是位于PCB的内层。

相关文档
最新文档