2013年济南市中考数学模拟试题四
山东省济南市2013年中考数学模拟试题四

2013年济南市中考数学模拟试题四一、选择题:本大题共12个小题.每小题4分;共48分. 1.3的倒数的相反数是( ) A.3-B.3C.13D.13-2.下列计算正确的是( ) A .321x x -=B .2x x x =⨯C .2222x x x +=D .326()a a -=-3.如图,ABC △中,90ACB =∠,CD AB ⊥于D ,则图中与 ∠1与B ∠的关系成立的是( ) A .相等 B .互余 C .互补 D .互为对顶角4.若点(2)A n -,在x 轴上,则点(11)B n n -+,在( ) A.第一象限 B.第二象限C.第三象限D.第四象限5.如图,ABC △中,AB AC =,30A ∠=,DE 垂直平分AC ,则BCD ∠的度数 为( ) A.80B.75C.65D.456.下列列命题中,错误的是( ) A .矩形的对角线互相平分且相等 B .对角线互相垂直的四边形是菱形 C .等腰梯形的两条对角线相等D .等腰三角形底边上的中点到两腰的距离相等7.一组数据5,8,x ,10,4的平均数是2x ,则这组数据的方差是( ) A .6.5 B .6.6 C .6.7 D .6.88111)4-⎛⎫- ⎪⎝⎭的结果为( )A.4 B.3 C.3 D.4 9.若1m <-,则下列函数①()0my x x=>,②1y mx =-+,③y mx =,④()1y m x =+中,y 的值随x 的值增大而增大的函数共有( ) A.1个B.2个C.3个D.4个DAB1 2CB10.在同一平面直角坐标系中,一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )11.如果代数式238a b -++的值为18,那么代数式962b a -+的值等于( )A .28B .28-C .32D .32-12.在密码学中,直接可以看到的内容为明码,对明码进行某种处理后得到的内容为密码。
济南中考数学模拟试题五套4

新世纪教育网精选资料 版权全部 @新世纪教育网2013 年济南中考数学模拟试题一一、选择题:本大题共 12 个小题 .每题 4 分 ;共 48 分 . 1. 3 的倒数是()1 B .1 3D . 3A .C .332. 2007 年我市初中毕业生约为3.94 万人,把 3.94 万用科学记数表示且保存两个有效数字为()A. 4.0 104B. 3.9 104C. 39104 D. 4.0 万3.将直角三角尺的直角极点靠在直尺上,且斜边与这根直尺平行.那么,在形成的这个图中与 ∠ 互余的角共有( )A. 4 个B. 3 个C. 2 个D. 1 个14.计算: |5| 120070 的结果是()2A . 5B . 6C . 7D .85.在平面直角坐标系中,若点P x 2,x 在第二象限,则 x 的取值范围为()A. x 0B. x 2 C. 0 x 2D. x 2A6.如图是一个风筝的图案, 它是轴对称图形, 量得∠ B = 30°,则∠ E 的大小为 ( )BE A. 30 ° B. 35 ° C. 40 ° D. 45 °CDF7.三角形两边长分别为3 和 6,第三边是方程 x26x8 0 的解,则此三角形的周 (第 06 题图 )长是()A. 11B. 13C. 11 或 13D. 不可以确立8.在下边的四个几何体中,它们各自的左视图与主视图不同样的是()A.B.C.D.9.北京奥组委从 4 月 15 日起分三个阶段向境内民众销售门票, 第一周开幕式门票销售状况统计图 开幕式门票分为五个品位, 票价分别为人民币 5000 元、3000 数目(张)元、 1500 元、 800 元和 200 元.某网点第一周内开幕式门票 12 11 的销售状况见统计图, 那么第一周售出的门票票价 的众数是10.. 8 6()6 55A . 1500 元B . 11 张4 22C .5 张D . 200 元05000 3000 1500800 200档(元)ax by,x ,10.已知方程组42第 8 题ax by 的解为y,则 2a 3b 的21值为()新世纪教育网精选资料 版权全部 @新世纪教育网A. 4B. 6 C. 6 D. 411.抛物线 yx 2 bx c 的部分图象以下图,若y 0 ,则 x 的取值范y围是( )3A. 4 x 1B.3 x 1C. x 4 或 x 1– 1 O 1 xD. x3 或 x 1(第 11 题图 )12.如图,在 △ ABC 中, AB 10 , AC 8 , BC 6 ,经过点 C 且与边 AB相切的动圆与 CA , CB 分别订交于点 P , Q ,则线段 PQ 长度的最小值 B是( )A . 4.75B . 4.8C . 5D . 42QC AP5 个小题 .每题3 分 ;共 15 分 .把答案填在题中横线上 .二、填空题: 本大题共(第 12 题)13.分解因式: 3ax 2 3ay 2.14.袋中装有除颜色外其他都同样的红球和黄球共25 个,小明经过多次模拟实验后,发现摸到的红球、黄球的概率分别是2和 3,则袋中黄球有个.A5515.若分式x 1 .12x 的值为零,则 x 的值为1BC16.如图,已知△ ABC 中,∠ A = 40°,剪去∠ A 后成四边形,则y(第 16 题图 )∠ 1+∠ 2= __________.17.如图,已知双曲线k (x > 0)经过矩形 OABC 边 AB 的中点 F ,交CEB yxFBC 于点 E ,且四边形 OEBF 的面积为 2,则 k = ______________.x三、解答题:7 个小题, 57 分 .解答应写出文字说明、演算步骤 .OA18.(本小题满分 7 分)(第 17 题图 )122x 1 ≤ , ( 1)解方程( 2)解不等式组:x x 1x2(x 1) ≥.119.(本小题满分 7 分)如图,在ABCD 中, E 为 BC 边上一点,且( 1)求证: △ ABC ≌△ EAD .( 2)若 AE 均分 ∠ DAB , ∠ EAC25 ,求 ∠ AED 的度数.AB AE .ADBC E新世纪教育网精选资料版权全部@新世纪教育网20.(本小题满分8 分)亲爱的同学,下边我们来做一个猜颜色的游戏:一个不透明的小盒中,装有 A、B、C 三张除颜色之外完整同样的卡片,卡片 A 两面均为红,卡片 B 两面均为绿,卡片 C 一面为红,一面为绿.( 1)从小盒中随意抽出一张卡片放到桌面上,朝上一面恰巧是绿色,请你猜猜,抽出哪张卡片的概率为0?( 2)若要你猜( 1)中抽出的卡片朝下一面是什么颜色,猜哪一种颜色正确率可能高一些?请你列出表格,用概率的知识予以说明.21.(本小题满分 8 分)某县在实行“村村通”工程中,决定在 A、 B 两村之间修建一条公路,甲、乙两个工程队分别从 A、B 两村同时相向开始修建.施工时期,乙队因还有任务提前走开,余下的任务由甲队独自达成,直到道路修通.下列图是甲、乙两个工程队所修道路的长度 y(米 )与修建时间 x(天 )之间的函数图象,请依据图象所供给的信息,求该公路的总长度.840360048 12 16甲乙x(天)第 21 题图22.(本小题满分9 分)如图,在△ABC中,AB AC,以AB为直径的圆O交BC于点D ,交 AC 于点 E ,过点 D 作 DF AC ,垂足为 F .(1)求证:DF为O的切线;(2)若过A点且与BC平行的直线交BE的延伸线于G点,连接CG.当△ABC是等边三角形时,求AGC 的度数. AGOEFB D Cy(米)新世纪教育网精选资料版权全部@新世纪教育网23△ ABC 是等腰直角三角形,AB AC 8 2, D 为.如图,所示的直角坐标系中,若斜边 BC 的中点.点 P 由点 A 出发沿线段 AB 作匀速运动,P 是 P 对于 AD 的对称点;点Q 由点 D 出发沿射线 DC 方向作匀速运动,且知足四边形QDPP 是平行四边形.设平行四边形 QDPP 的面积为 y , DQ x .(1)求出y对于x的函数分析式;( 5 分)( 2)求当y取最大值时,过点P,A,P的二次函数分析式;( 4 分)(3)可否在( 2)中所求的二次函数图象上找一点 E 使△ EPP 的面积y为 20,若存在,求出E点坐标;若不存在,说明原因.( 4 分)AP PFB D QC x23 题24.(本小题满分9 分)如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A 在x轴上,点 C 在 y 轴上,将边 BC 折叠,使点B 落在边 OA 的点 D 处.已知折叠CE 5 5 ,且tan EDA 3.y 4(1)判断△OCD与△ADE能否相像?请说明原因;B (2)求直线CE与x轴交点P的坐标; C(3)能否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线 l 、直线 CE 与 y 轴所围成的三角形相像?假如存在,请直接写E出其分析式并画出相应的直线;假如不存在,请说明原因.O D A x(第 24 题)新世纪教育网精选资料 版权全部 @新世纪教育网2013 年济南市中考数学模拟试题 参照答案一、选择题:1. A2. B3. C4. B5. C6. A7. B8. D9. A10. B 11. B12. B 二、填空题:13. 3a ( x +y )( x - y ) 14. 1515. - 116. 220 ° 17.2三、解答题:18.( 1)解:去分母,得 x2( x 1) 去括号,得 x 2x 2整理,得x 2x 2 .经查验: x 2 是原方程的根. ∴原方程的根是x 2 .( 2)解:由①,得 x ≤ 1,由②,得 x ≥3.2因此原不等式组的解集为3≤ x ≤ 1.219.( 1)证明 四边形 ABCD 为平行四边形,∴ AD ∥ BC , AD BC .∴ ∠DAE ∠ AEB .AB AE ∴ ∠AEB ∠B ∴ ∠ B ∠DAE .∴ △ ABC ≌△ EAD .( 2) ∠ DAE∠ BAE ,∠ DAE ∠ AEB ,∴ ∠BAE ∠AEB ∠B .∴ △ ABE 为等边三角形.∴ ∠ BAE 60 .∠EAC 25 ∴ ∠BAC 85△ ABC ≌△ EAD ,∴ ∠ AED ∠ BAC 85 .20.解:( 1)依题意可知:抽出卡片A 的概率为 0;( 2)由( 1)知,必定不会抽出卡片A ,只会抽出卡片B 或C ,且抽出的卡片向上的一面是绿色,那么可列下表:向上 B (绿 1) B (绿 2) C (绿 ) 朝下B (绿 2) B (绿 1)C (红 )可见朝下一面的颜色有绿、绿、红三种可能,即:P (绿) = 2 ,P (红) = 1,33因此猜绿色正确率可能高一些 .21.解:设 y 乙 =kx ( 0≤x ≤ 12),∵ 840=12 ,∴ k=70 .∴ y 乙 =70x .当 x=8 时, y 乙 =560.4m n 360,m 50,y (米)设 y 甲=mx + n ( 4≤x ≤16),∴ n 560.∴160.9608m n840 ∴ y 甲=50x + 160.560360甲 乙当 x=16 时, y 甲=50×16+ 160=960.∴ 840+ 960=1800 米.故该公路全长为 1800 米.04 8 12 16 x (天 )22.( 1)证明:连接 AD , OD第 21 题图AB 是⊙ O 的直径AD BCA△ ABC 是等腰三角形GBD DCOE又 AO BOOD ∥ ACFDF AC BDCOFODDF OD(第 22 题)DF 是⊙ O 的切线( 2) AB 是⊙ O 的直径BG AC △ ABC 是等边三角形 BG 是 AC 的垂直均分线GA GC又AG ∥ BC , ACB 60CAGACB 60△ ACG 是等边三角形AGC 6023.解:( 1)∵△ ABC 是等腰直角三角形, AB=AC=8 2 ,∴ AD=BD=CD=8∵四边形 QDPP ′是平行四边形,且DQ = x ,∴ PP ′= DQ = x ,且 PP ′∥ DQ 。
山东省济南市2013年中考数学试题(解析版)

2013年山东省济南市中考数学试卷一、选择题(共15小题,每小题3分,满分45分)1.-12的绝对值是(A)A.12B.-12C.112D.112【考点】绝对值.【专题】【分析】根据绝对值的定义进行计算.【解答】解:|-12|=12,故选A.【点评】本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如图,直线a∥b,直线c与a,b相交,∠1=65°,则∠2=(B)A.115°B.65°C.35°D.25°【考点】平行线的性质.【专题】【分析】由直线a∥b,∠1=65°,根据两直线平行,同位角相等,即可求得∠3的度数,又由对顶角相等,即可求得答案.【解答】解:∵直线a∥b,∠1=65°,∴∠3=∠1=65°,∴∠2=∠3=65°.故选B.【点评】此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同位角相等定理的应用,注意数形结合思想的应用.3.2013年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为(C)A.1.28×103B.12.8×103C.1.28×104D.0.128×105【考点】科学记数法—表示较大的数.【专题】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于12800有5位,所以可以确定n=5-1=4.【解答】解:12 800=1.28×104.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.4.下列事件中必然事件的是(B)A.任意买一张电影票,座位号是偶数B.正常情况下,将水加热到100℃时水会沸腾C.三角形的内角和是360°D.打开电视机,正在播动画片【考点】随机事件.【专题】【分析】根据必然事件的定义就是一定发生的事件,即可作出判断.【解答】解:A、是随机事件,可能发生也可能不发生,故选项错误;B、必然事件,故选项正确;C、是不可能发生的事件,故选项错误;D、是随机事件,可能发生也可能不发生,故选项错误.故选B.【点评】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.下列各式计算正确的是(D)A.3x-2x=1B.a2+a2=a4C.a5÷a5=a D.a3•a2=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】【分析】根据合并同类项法则,同底数幂乘除法法则,逐一检验.【解答】解:A、3x-2x=x,本选项错误;B、a2+a2=2a2,本选项错误;C、a5÷a5=a5-5=a0=1,本选项错误;D、a3•a2=a3+2=a5,本选项正确;故选D.【点评】本题考查了同底数幂的乘除法,合并同类项法则.关键是熟练掌握每一个法则.6.下面四个立体图形中,主视图是三角形的是(C)A.B.C.D.【考点】简单几何体的三视图.【专题】【分析】找到立体图形从正面看所得到的图形为三角形即可.【解答】解:A、主视图为长方形,不符合题意;B、主视图为中间有一条竖线的长方形,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意;故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.化简5(2x-3)+4(3-2x)结果为(A)A.2x-3 B.2x+9 C.8x-3 D.18x-3【考点】考整式的加减.【专题】【分析】首先利用分配律相乘,然后去掉括号,进行合并同类项即可求解【解答】解:原式=10x-15+12-8x=2x-3.故选A.【点评】本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.8.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为(B)A.12B.13C.16D.19【考点】列表法与树状图法.【专题】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小亮选到同一社区参加实践活动的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小明和小亮选到同一社区参加实践活动的有3种情况,∴小明和小亮选到同一社区参加实践活动的概率为:31 93 .故选B.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.9.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为(A)A.13B.12C.22D.3【考点】锐角三角函数的定义.【专题】网格型.【分析】结合图形,根据锐角三角函数的定义即可求解.【解答】解:由图形知:tan∠ACB=21 63 ,故选A.【点评】本题考查了锐角三角函数的定义,属于基础题,关键是掌握锐角三角函数的定义.10.下列命题是真命题的是(D)A.对角线相等的四边形是矩形B.一组邻边相等的四边形是菱形C.四个角是直角的四边形是正方形D.对角线相等的梯形是等腰梯形【考点】命题与定理.【专题】【分析】根据矩形、菱形的判定方法以及定义即可作出判断【解答】解:A、对角线相等的平形四边形是矩形,故选项错误;B、一组邻边相等的平行四边形是菱形,故选项错误;C、四个角是直角的四边形是矩形,故选项错误;D、正确.故选D.【点评】本题考查了真命题的判断,正确掌握定义、定理是关键.11.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为(C)A.x=2 B.y=2 C.x=-1 D.y=-1【考点】一次函数与一元一次方程.【专题】数形结合.【分析】直接根据函数图象与x轴的交点进行解答即可.【解答】解:∵一次函数y=kx+b的图象与x轴的交点为(-1,0),∴当kx+b=0时,x=-1.故选C.【点评】本题考查的是一次函数与一元一次方程,能根据数形结合求出x的值是解答此题的关键.12.已知⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,若圆心距O1O2=5,则⊙O1和⊙O 2的位置关系是( B )A .外离B .外切C .相交D .内切【考点】圆与圆的位置关系.【专题】【分析】先根据一元二次方程根与系数的关系,可知圆心距=两圆半径之和,再根据圆与圆的位置关系即可判断.【解答】:解:∵⊙O 1和⊙O 2的半径是一元二次方程x 2-5x +6=0的两根,∴两根之和=5=两圆半径之和,又∵圆心距O 1O 2=5,∴两圆外切.故选B .【点评】此题综合考查一元二次方程根与系数的关系及两圆的位置关系的判断.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d >R +r ;②两圆外切⇔d =R +r ;③两圆相交⇔R -r <d <R +r (R ≥r );④两圆内切⇔d =R -r (R >r );⑤两圆内含⇔d <R -r (R >r ).13.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD的形状保持不变,其中AB =2,BC =1,运动过程中,点D 到点O 的最大距离为(A)A .21B .5C .14555D .52【考点】直角三角形斜边上的中线;三角形三边关系;勾股定理;矩形的性质.【专题】代数综合题.【分析】取AB 的中点E ,连接OE 、DE 、OD ,根据三角形的任意两边之和大于第三边可知当O 、D 、E 三点共线时,点D 到点O 的距离最大,再根据勾股定理列式求出DE 的长,根据直角三角形斜边上的中线等于斜边的一半求出OE 的长,两者相加即可得解.【解答】解:如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD ≤OE +DE ,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB =2,BC =1,∴OE =AE =12AB =1, DE =2222112AD AE =+===,∴OD 的最大值为:21+.故选A .【点评】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O 、E 、D 三点共线时,点D 到点O 的距离最大是解题的关键.14.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2013次相遇地点的坐标是(D)A .(2,0)B .(-1,1)C .(-2,1)D .(-1,-1)【考点点的坐标.【专题】规律型【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×13=4,物体乙行的路程为12×23=8,在BC 边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE 边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×13=12,物体乙行的路程为12×3×23=24,在A 点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2013÷3=670…2,故两个物体运动后的第2013次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE 边相遇;此时相遇点的坐标为:(-1,-1),故选:D .【点评】此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.15.如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是( D )A .y 的最大值小于0B .当x =0时,y 的值大于1C .当x =-1时,y 的值大于1D .当x =-3时,y 的值小于【考点】二次函数的图象;二次函数的性质.【专题】【分析】根据图象的对称轴的位置、增减性及开口方向直接 回答.【解答】解:A 、由图象知,点(1,1)在图象的对称轴的左边,所以y 的最大值大于1,不小于0;故本选项错误;B 、由图象知,当x =0时,y 的值就是函数图象与y 轴的交点,而图象与y 轴的交点在(1,1)点的左边,故y <1;故本选项错误;C 、对称轴在(1,1)的右边,在对称轴的左边y 随x 的增大而增大,∵-1<1,∴x =-1时,y 的值小于x =-1时,y 的值1,即当x =-1时,y 的值小于1;故本选项错误;D、当x=-3时,函数图象上的点在点(-2,-1)的左边,所以y的值小于0;故本选项正确.故选D.【点评】本题主要考查了二次函数图象上点的坐标特征.解答此题时,需熟悉二次函数图象的开口方向、对称轴、与x轴的交点等知识.二、填空题(共6小题,每小题3分,满分18分)16.分解因式:a2-1=(a+1)(a-1).【考点】因式分解-运用公式法.【专题】【分析】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a2-b2=(a+b)(a-b).【解答】解:a2-1=(a+1)(a-1).【点评】本题主要考查平方差公式分解因式,熟记公式是解题的关键.17.计算:2sin30°-=-3 .【考点】实数的运算;特殊角的三角函数值.【专题】【分析】由特殊角的三角函数值与二次根式的化简的知识,即可将原式化简,继而求得答案.【解答】解:2sin=2×1 2 -4=1-4=-3.故答案为:-3.【点评】此题考查了实数的混合运算.此题难度不大,注意掌握特殊角的三角函数值与二次根式的化简,注意运算要细心.18.不等式组2x-4<0 x+1≥0 的解集为-1≤x<2 .【考点】解一元一次不等式组.【专题】【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:-⎧⎨+≥⎩2x40x10<①②,由①得,x<2;由②得,x≥-1,故此不等式组的解集为:-1≤x<2.故答案为:-1≤x<2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于8 .【考点】平移的性质;平行四边形的判定与性质.【专题】【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED 是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵将△ABC沿CB向右平移得到△DEF,平移距离为2,∴AD∥BE,AD=BE=2,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=2×4=8.故答案为8.【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.20.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是48 .【考点】切线的性质;勾股定理;矩形的性质.【专题】【分析】首先取AC的中点O,过点O作MN∥EF,PQ∥EH,由题意可得PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,PL,KN,OM,OQ分别是各半圆的半径,OL ,OK 是△ABC 的中位线,又由在Rt △ABC 中,∠B =90°,AB =6,BC =8,即可求得个线段长,继而求得答案.【解答】解:取AC 的中点O ,过点O 作MN ∥EF ,PQ ∥EH ,∵四边形EFGH 是矩形,∴EH ∥PQ ∥FG ,EF ∥MN ∥GH ,∠E =∠H =90°,∴PQ ⊥EF ,PQ ⊥GH ,MN ⊥EH ,MN ⊥FG ,∵AB ∥EF ,BC ∥FG ,∴AB ∥MN ∥GH ,BC ∥PQ ∥FG ,∴AL =BL ,BK =CK ,∴OL =12BC =12×8=4,OK =12AB =12×6=3, ∵矩形EFGH 的各边分别与半圆相切, ∴PL =12AB =12×6=3,KN =12BC =12×8=4, 在Rt △ABC 中,2210AC AB BC =+=, ∴OM =OQ =12AC =5, ∴EH =FG =PQ =PL +OL +OQ =3+4+5=12,EF =GH =MN =OM +OK +NK =5+3+4=12, ∴矩形EFGH 的周长是:EF +FG +GH +EH =12+12+12+12=48.故答案为:48.【点评】此题考查了切线的性质、矩形的性质,三角形中位线的性质以及勾股定理等知识.此题难度较大,解题的关键是掌握辅助线的作法,注意数形结合思想的应用.21.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y =ax 2+bx .小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 36 秒.【考点】二次函数的应用【专题】【分析】10秒时和26秒时拱梁的高度相同,则A ,B 一定是关于对称轴对称的点,据此即可确定对称轴,则O 到对称轴的时间可以求得,进而即可求得OC 之间的时间.【解答】解:设在10秒时到达A 点,在26秒时到达B ,∵10秒时和26秒时拱梁的高度相同,∴A ,B 关于对称轴对称.则从A 到B 需要16秒,则从A 到D 需要8秒.∴从O 到D 需要10+8=18秒.∴从O 到C 需要2×18=36秒.故答案是:36.【点评】本题考查了二次函数的应用,注意到A 、B 关于对称轴对称是解题的关键.三、解答题(共7小题,共57分,解答应写出文字说明,证明过程或演算步骤)22.(1)解不等式3x -2≥4,并将解集在数轴上表示出来.(2)化简:2121224a a a a a --+÷--. 【考点】分式的乘除法;在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】(1)先根据不等式的性质求出不等式的解集,然后在数轴上表示出来即可;(2)先将22124a a a -+-的分子和分母因式分解,再将除法转化为乘法进行解答. 【解答】解:(1)移项得,3x >6,系数化为1得,x >2,在数轴上表示为.(2)原式212(2)22(1)1a a a a a --=⨯=---. 【点评】本题考查了解一元一次不等式、在数轴上表示不等式的解集、分式的乘除法,不仅要熟悉不等式的性质,还要熟悉分式的除法法则.23.(1)如图1,在▱ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.(2)如图2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.【考点】平行四边形的性质;全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据四边形ABCD是平行四边形,利用平行四边形的性质得到一对边和一对角的对应相等,在加上已知的一对边的相等,利用“SAS”,证得△ADE≌△CBF,最后根据全等三角形的对应边相等即可得证;(2)首先根据AB=AC,利用等角对等边和已知的∠A的度数求出∠ABC和∠C的度数,再根据已知的BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,最后根据三角形的内角和定理即可求出∠BDC的度数.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,AD=CB,∠A=∠C,AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF;(2)解:∵AB=AC,∠A=40°,∴∠ABC=∠C=12(180°-40°)=70°,又BD是∠ABC的平分线,∴∠DBC=12∠ABC=35°,∴∠BDC=180°-∠DBC-∠C=75°.【点评】此题考查了平行四边形的性质,等腰三角形的性质,三角形的内角和定理,角平分线的定义以及全等三角形的性质与判定,熟练掌握定理与性质是解本题的关键.24.冬冬全家周末一起去济南山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?【考点】分式方程的应用.【专题】【分析】根据樱桃每斤价格是油桃每斤价格的2倍,得出设油桃每斤为x元,则樱桃每斤是2x元,再利用油桃比樱桃多摘了5斤,采摘油桃和樱桃分别用了80元,得出等式方程求出即可.【解答】解:设油桃每斤为x元,则樱桃每斤是2x元,根据题意得出:8080=+,52x x解得:x=8,经检验得出:x=8是原方程的根,则2x=16,答:油桃每斤为8元,则樱桃每斤是16元.【点评】此题主要考查了分式方程的应用,根据已知利用购买两种水果的质量得出等式方程求出是解题关键.25.济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:节水量(米3) 1 1.5 2.5 3户数50 80 100 700(1)300户居民5月份节水量的众数,中位数分别是多少米3?(2)扇形统计图中2.5米3对应扇形的圆心角为120 度;(3)该小区300户居民5月份平均每户节约用水多少米3?【考点】考点:扇形统计图;统计表;加权平均数;中位数;众数.【专题】【分析】(1)众数是一组数据中出现次数最多的数据;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,根据定义可求解;(2)首先计算出节水量2.5米3对应的居名民数所占百分比,再用360°×百分比即可;(3)根据加权平均数公式:若n 个数x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3,…,w n ,则112212n n nx w x w x w x w w w ++⋅⋅⋅+=++,进行计算即可; 【解答】解:(1)数据2.5出现了100次,次数最多,所以节水量的众数是2.5(米3);位置处于中间的数是第150个和第151个,都是2.5,故中位数是2.5米3.(2)100300×100%×360°=120°; (3)(50×1+80×1.5+2.5×100+3×70)÷300=2.1(米3).【点评】此题主要考查了统计表,扇形统计图,平均数,中位数与众数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.26.如图1,在菱形ABCD 中,AC =2,BD =2 3 ,AC ,BD 相交于点O .(1)求边AB 的长;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF 与AC 相交于点G .①判断△AEF 是哪一种特殊三角形,并说明理由;②旋转过程中,当点E 为边BC 的四等分点时(BE >CE ),求CG 的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理;菱形的性质.【专题】几何综合题.【分析】(1)根据菱形的性质,确定△AOB 为直角三角形,然后利用勾股定理求出边AB的长度;(2)①本小问为探究型问题.要点是确定一对全等三角形△ABE≌△ACF,得到AE=AF,再根据已知条件∠EAF=60°,可以判定△AEF是等边三角形;②本小问为计算型问题.要点是确定一对相似三角形△CAE∽△CFG,由对应边的比例关系求出CG的长度.解答:【解答】解:(1)∵四边形ABCD是菱形,∴△AOB为直角三角形,且OA=12AC=1,OB=12BD= 3 .在Rt△AOB中,由勾股定理得:AB2==.(2)①△AEF是等边三角形.理由如下:∵由(1)知,菱形边长为2,AC=2,∴△ABC与△ACD均为等边三角形,∴∠BAC=∠BAE+∠CAE=60°,又∠EAF=∠CAF+∠CAE=60°,∴∠BAE=∠CAF.在△ABE与△ACF中,∵∠BAE=∠CAF,AB=AC=2 ,∠EBA=∠FCA=60°,∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF是等腰三角形,又∵∠EAF=60°,∴△AEF是等边三角形.②BC=2,E为四等分点,且BE>CE,∴CE=12,BE=32.由①知△ABE≌△ACF,∴CF=BE=32.∵∠EAC+∠AEG+∠EGA=∠GFC+∠FCG+∠CGF=180°(三角形内角和定理),∠AEG=∠FCG=60°(等边三角形内角),∠EGA=∠CGF(对顶角)∴∠EAC =∠GFC .在△CAE 与△CFG 中,∵ ∠EAC =∠GFC ,∠ACE =∠FCG =60°,∴△CAE ∽△CFG , ∴ =CG CF CE AC ,即32 122=CG , 解得:CG =38. 【点评】本题是几何综合题,综合考查了相似三角形、全等三角形、四边形(菱形)、三角形(等边三角形和等腰三角形)、勾股定理等重要知识点.虽然涉及考点众多,但本题着重考查基础知识,难度不大,需要同学们深刻理解教材上的基础知识,并能够熟练应用.27.如图,已知双曲线k y x=,经过点D (6,1),点C 是双曲线第三象限上的动点,过C 作CA ⊥x 轴,过D作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC .(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式;(3)判断AB 与CD 的位置关系,并说明理由.【考点】反比例函数综合题.【专题】综合题.【分析】(1)把点D 的坐标代入双曲线解析式,进行计算即可得解;(2)先根据点D 的坐标求出BD 的长度,再根据三角形的面积公式求出点C 到BD 的距离,然后求出点C 的纵坐标,再代入反比例函数解析式求出点C 的坐标,然后利用待定系数法求一次函数解析式解答;(3)根据题意求出点A 、B 的坐标,然后利用待定系数法求出直线AB 的解析式,可知与直线CD 的解析式k 值相等,所以AB 、CD 平行.【解答】解:(1)∵双曲线k y x=经过点D (6,1),∴16k =,解得k =6; (2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6•h =12,解得h =4, ∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1,∴点C 的纵坐标为1-4= -3, ∴63x=,解得x = -2, ∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则2361k b k b -+=-⎧⎨+=⎩, 解得122k b ⎧=⎪⎨⎪=-⎩,所以,直线CD 的解析式为122y x =-; (3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点C 的坐标为(-2,-3),点D 的坐标为(6,1), ∴点A 、B 的坐标分别为A (-2,0),B (0,1),设直线AB 的解析式为y =mx +n , 则201m n n -+=⎧⎨=⎩,解得121m n ⎧=⎪⎨⎪=⎩, 所以,直线AB 的解析式为112y x =+, ∵AB 、CD 的解析式k 都等于12相等, ∴AB 与CD 的位置关系是AB ∥CD .【点评】本题是对反比例函数的综合考查,主要利用了待定系数法求函数解析式,三角形的面积的求解,待定系数法是求函数解析式最常用的方法,一定要熟练掌握并灵活运用.28.如图1,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.(1)求抛物线的解析式;(2)求cos∠CAB的值和⊙O1的半径;(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.【考点】二次函数综合题.【专题】【分析】(1)利用待定系数法求出抛物线的解析式;(2)如答图1所示,由△AOC为等腰直角三角形,确定∠CAB=45°,从而求出其三角函数值;由圆周角定理,确定△BO1C为等腰直角三角形,从而求出半径的长度;(3)如答图2所示,首先利用圆及抛物线的对称性求出点D坐标,进而求出点M的坐标和线段BM的长度;点B、P、C的坐标已知,求出线段BP、BC、PC的长度;然后利用△BMN∽△BPC相似三角形比例线段关系,求出线段BN和MN的长度;最后利用两点间的距离公式,列出方程组,求出点N的坐标.【解答】解:(1)∵抛物线y =ax 2+bx +3与x 轴相交于点A (-3,0),B (-1,0),∴933030a b a b -+=⎧⎨-+=⎩,解得a =1,b =4,∴抛物线的解析式为:y =x 2+4x +3.(2)由(1)知,抛物线解析式为:y =x 2+4x +3,∵令x =0,得y =3,∴C (0,3),∴OC =OA =3,则△AOC 为等腰直角三角形,∴∠CAB =45°,∴cos ∠CAB =22. 在Rt △BOC 中,由勾股定理得:BC =221310+=. 如答图1所示,连接O 1B 、O 1B ,由圆周角定理得:∠BO 1C =2∠BAC =90°,∴△BO 1C 为等腰直角三角形,∴⊙O 1的半径O 1B =22BC =5. (3)抛物线y =x 2+4x +3=(x +2)2-1,∴顶点P 坐标为(-2,-1),对称轴为x = -2. 又∵A (-3,0),B (-1,0),可知点A 、B 关于对称轴x =2对称.如答图2所示,由圆及抛物线的对称性可知:点D 、点C (0,3)关于对称轴对称,∴D (-4,3).又∵点M 为BD 中点,B (-1,0),∴M (52-,32),- 21 - ∴BM= 在△BPC 中,B (-1,0),P (-2,-1),C (0,3),由两点间的距离公式得:BP,BCPC=∵△BMN ∽△BPC , ∴ ==BM BN MN BP BC PC==,解得:=BN ,MN = 设N (x ,y ),由两点间的距离公式可得:222222(1)53()()22x y x y ⎧++=⎪⎪⎨⎪++-=⎪⎩, 解之得,117232x y ⎧=⎪⎪⎨⎪=⎪⎩,221292x y ⎧=⎪⎪⎨⎪=-⎪⎩∴点N 的坐标为(72,32-)或(12,92-). 【点评】本题综合考查了二次函数的图象与性质、待定系数法、圆的性质、相似三角形、勾股定理、两点间的距离公式等重要知识点,涉及的考点较多,试题难度较大.难点在于第(3)问,需要认真分析题意,确定符合条件的点N 有两个,并画出草图;然后寻找线段之间的数量关系,最终正确求得点N 的坐标.。
2013山东省济南市中考数学试题及答案Word解析版

2013年济南中考数学试题解析一、选择题(本大题共12小题,每小题选对得3分.)1.(3分)(2013•济南)下列计算正确的是()A.=9 B.=﹣2C.(﹣2)0=﹣1 D.|﹣5﹣3|=2考点:负整数指数幂;绝对值;算术平方根;零指数幂.分析:对各项分别进行负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,然后选出正确选项即可.解答:解:A、()﹣2=9,该式计算正确,故本选项正确;B 、=2,该式计算错误,故本选项错误;C、(﹣2)0=1,该式计算错误,故本选项错误;D、|﹣5﹣3|=8,该式计算错误,故本选项错误;故选A.点评:本题考查了负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,属于基础题,掌握各知识点运算法则是解题的关键.2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:28.3亿=28.3×108=2.83×109.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A.68°B.32°C.22°D.16°考点:平行线的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.解答:解:∵CD=CE,∴∠D=∠DEC,∵∠D=74°,∴∠C=180°﹣74°×2=32°,∵AB∥CD,∴∠B=∠C=32°.故选B.点评:本题考查了两直线平行,内错角相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.5.(3分)(2013•济南)图中三视图所对应的直观图是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切高度相同.只有C满足这两点.故选C.点评:本题考查了三视图的概念.易错易混点:学生易忽略圆柱的高与长方体的高的大小关系,错选B.6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多考点:函数的图象.分析:利用图象可得出,甲,乙的速度,以及所行路程等,注意利用所给数据结合图形逐个分析.解答:解:结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.点评:本题考查了函数的图象,关键是会看函数图象,要求同学们能从图象中得到正确信息.7.(3分)(2013•济南)下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形考点:命题与定理.分析:根据矩形、菱形、正方形的判定与性质分别判断得出答案即可.解答:解:A、根据对角线相等的四边形也可能是矩形,故此选项错误;B、根据对角线互相垂直平分的四边形是菱形,故此选项错误;C、根据对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据四个角相等的四边形是矩形,是真命题,故此选项正确.故选:D.点评:此题主要考查了命题与定理,熟练掌握矩形、菱形、正方形的判定与性质是解题关键.8.(3分)(2013•济南)下列函数中,当x>0时,y随x的增大而增大的是()D.y=﹣x2+1A.y=﹣x+1 B.y=x2﹣1 C.y=考点:二次函数的性质;一次函数的性质;反比例函数的性质.分析:根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.解答:解:A、y=﹣x+1,一次函数,k<0,故y随着x增大而减小,错误;B、y=x2﹣1(x>0),故当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧(x<0),y随着x的增大而减小,正确.C、y=,k=1>0,在每个象限里,y随x的增大而减小,错误;D、y=﹣x2+1(x>0),故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,错误;故选B.点评:本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是()A.B.C.D.考点:列表法与树状图法.分析:由在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于n2,则算过关;可得能过第二关的抛掷所出现的点数之和需要大于5,然后根据题意列出表格,由表格求得所有等可能的结果与能过第二关的情况,再利用概率公式求解即可求得答案.解答:解:∵在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于n2,则算过关;∴能过第二关的抛掷所出现的点数之和需要大于5,列表得:6 7 8 9 10 11 125 6 7 8 9 10 114 5 6 7 8 9 103 4 5 6 7 8 92 3 4 5 6 7 81 2 3 4 5 6 71 2 3 4 5 6∵共有36种等可能的结果,能过第二关的有26种情况,∴能过第二关的概率是:=.故选A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算.分析:首先利用扇形公式计算出半圆的面积和扇形AOB的面积,然后求出△AOB的面积,用S+S△AOB半圆﹣S扇形AOB可求出阴影部分的面积.解答:解:在Rt△AOB中,AB==,S半圆=π×()2=π,S△AOB=OB×OA=,S扇形OBA==,故S阴影=S半圆+S△AOB﹣S扇形AOB=.故选C.点评:本题考查了扇形的面积计算,解答本题的关键是熟练掌握扇形的面积公式,仔细观察图形,得出阴影部分面积的表达式.11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入计算即可.解答:解:cos30°=×=.故答案为:.点评:本题考查了特殊角的三角函数值,属于基础题,掌握几个特殊角的三角函数值是解题的关键.14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种第1年第2年第3年第4年第5年甲9.8 9.9 10.1 10 10.2乙9.4 10.3 10.8 9.7 9.8经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.考点:方差.分析:根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出两种水稻的产量的方差,再进行比较即可.解答:解:甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.124.∴0.02<0.124,∴产量比较稳定的小麦品种是甲,故答案为:甲点评:此题考查了方差,用到的知识点是方差和平均数的计算公式,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到=x﹣2,去分母化为一元二次方程得到x2﹣2x﹣1=0,根据根与系数的关系得到a+b=2,ab=﹣1,然后变形+得,再利用整体思想计算即可.解答:解:根据题意得=x﹣2,化为整式方程,整理得x2﹣2x﹣1=0,∵函数y=与y=x﹣2图象交点的横坐标分别为a,b,∴a、b为方程x2﹣2x﹣1=0的两根,∴a+b=2,ab=﹣1,∴+===﹣2.故答案为﹣2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了一元二次方程根与系数的关系.17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC 和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正确,利用解三角形求正方形的面积等知识可以判断④的正误.解答:解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,∵在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAD≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为①②④.点评:本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.考点:分式的化简求值.专题:计算题.分析:将括号内的部分通分后相减,再将除法转化为乘法后代入求值.解答:解:原式=[﹣]•=•=•=.当a=﹣1时,原式==1.点评:本题考查了分式的化简求值,熟悉通分、约分及因式分解是解题的关键.19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5频数分布表分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.08.0<x≤9.5 合计2 50(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?考点:频数(率)分布直方图;频数(率)分布表.分析:(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与6.5<x≤8.0 的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)本题答案不唯一.例如:从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨.解答:解:(1)频数分布表如下:分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.0 13 58.0<x≤9.5 合计2 50频数分布直方图如下:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为5吨,因为月平均用水量不超过5吨的有30户,30÷50=60%.点评:本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.考点:切线的判定与性质;直角三角形斜边上的中线;平行四边形的性质.专题:计算题.分析:(1)连接BD,由ED为圆O的直径,利用直径所对的圆周角为直角得到∠DBE为直角,由BCOE 为平行四边形,得到BC与OE平行,且BC=OE=1,在直角三角形ABD中,C为AD的中点,利用斜边上的中线等于斜边的一半求出AD的长即可;(2)连接OB,由BC与OD平行,BC=OD,得到四边形BCDO为平行四边形,由AD为圆的切线,利用切线的性质得到OD垂直于AD,可得出四边形BCDO为矩形,利用矩形的性质得到OB 垂直于BC,即可得出BC为圆O的切线.解答:解:(1)连接BD,则∠DBE=90°,∵四边形BCOE为平行四边形,∴BC∥OE,BC=OE=1,在Rt△ABD中,C为AD的中点,∴BC=AD=1,则AD=2;(2)连接OB,∵BC∥OD,BC=OD,∴四边形BCDO为平行四边形,∵AD为圆O的切线,∴OD⊥AD,∴四边形BCDO为矩形,∴OB⊥BC,则BC为圆O的切线.点评:此题考查了切线的判定与性质,直角三角形斜边上的中线性质,以及平行四边形的判定与性质,熟练掌握切线的判定与性质是解本题的关键.21.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?考点:反比例函数的应用;分式方程的应用.专题:应用题.分析:(1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;(2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;解答:解:(1)由题意得,y=把y=120代入y=,得x=3把y=180代入y=,得x=2,∴自变量的取值范围为:2≤x≤3,∴y=(2≤x≤3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:解得:x=2.5或x=﹣3经检验x=2.5或x=﹣3均为原方程的根,但x=﹣3不符合题意,故舍去,答:原计划每天运送2.5万米3,实际每天运送3万米3.点评:本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值表2.a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:改变第4列改变第2行(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则①如果操作第三列,则第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,,解得a=1,此时2﹣2a2,=0,2a2=2,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数.23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.考点:四边形综合题.专题:计算题.分析:(1)分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形ABD与三角形ACE全等,利用全等三角形的对应边相等即可得证;(2)BE=CD,理由与(1)同理;(3)根据(1)、(2)的经验,过A作等腰直角三角形ABD,连接CD,由AB=AD=100,利用勾股定理求出BD的长,由题意得到三角形DBC为直角三角形,利用勾股定理求出CD的长,即为BE的长.解答:解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.点评:此题考查了四边形综合题,涉及的知识有:全等三角形的判定与性质,等边三角形,等腰直角三角形,以及正方形的性质,勾股定理,熟练掌握全等三角形的判定与性质是解本题的关键.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;(2)①由(1)的解析式可以求出抛物线的对称轴,分类讨论当∠CEF=90°时,当∠CFE=90°时,根据相似三角形的性质就可以求出P点的坐标;②先运用待定系数法求出直线CD的解析式,设PM与CD的交点为N,根据CD的解析式表示出点N的坐标,再根据S△PCD=S△PCN+S△PDN就可以表示出三角形PCD的面积,运用顶点式就可以求出结论.解答:解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,解得:.∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴l=﹣=﹣1,∴E点的坐标为(﹣1,0).如图,当∠CEF=90°时,△CEF∽△COD.此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于点M,则△EFC∽△EMP.∴,∴MP=3EM.∵P的横坐标为t,∴P(t,﹣t2﹣2t+3).∵P在二象限,∴PM=﹣t2﹣2t+3,EM=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得:t1=﹣2,t2=﹣3(与C重合,舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P(﹣2,3).∴当△CEF与△COD相似时,P点的坐标为:(﹣1,4)或(﹣2,3);②设直线CD的解析式为y=kx+b,由题意,得,解得:,∴直线CD的解析式为:y=x+1.设PM与CD的交点为N,则点N的坐标为(t,t+1),∴NM=t+1.∴PN=PM﹣NM=t2﹣2t+3﹣(t+1)=﹣t2﹣+2.∵S△PCD=S△PCN+S△PDN,∴S△PCD=PM•CM+PN•OM=PN(CM+OM)=PN•OC=×3(﹣t2﹣+2)=﹣(t+)2+,∴当t=﹣时,S△PCD的最大值为.点评:本题考查了相似三角形的判定及性质的运用,待定系数法求函数的解析式的运用,三角形的面积公式的运用,二次函数的顶点式的运用,解答本题时,先求出二次函数的解析式是关键,用函数关系式表示出△PCD的面积由顶点式求最大值是难点.。
2013年济南市中考数学模拟题(1—5)及答案

2013年中考山东济南卷模拟试题一、选择题:本大题共12个小题.每小题4分;共48分. 1.计算:29= ( )A.-1 B.-3 C.3 D.52.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为 ( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯3.已知,如图,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D=400,那么∠BOD 为( )A. 40°B. 50°C. 60°D. 70° 4.已知2243a b x y x y x y -+=-,则a +b 的值为( ).A. 1B. 2C. 3D. 4 5.因式分解()219x --的结果是( )A. ()()24x x +-B. ()()81x x ++C. ()()24x x -+D. ()()108x x -+6.如图,DE 是ABC △的中位线,则ADE △与ABC △的面积之比是( )A .1:1B .1:2C .1:3D .1:4 7.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形8.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几 何体的小正方体的个数有( )A. 2个B. 3个C. 4个D. 6个9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( )A.掷一枚正六面体的骰子,出现1点的概率B .从一个装有2个白球和1个红球的袋子中任取一球,取 到红球的概率C .抛一枚硬币,出现正面的概率D .任意写一个整数,它能被2整除的概率10.若二次函数222y ax bx a =++-(a b ,为常数)的图象如下,则a 的值为( )A .2- B .2- C .1 D 211.如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =23AOC 为( )(第10题) y O A x BACE D A DOACBOACDO12.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰。
2013年中考数学模拟试卷(带答案)

2013年中考数学模拟试卷(带答案)2013年济南市中考数学模拟试题三一、选择题:本大题共12个小题.每小题4分;共48分.1.的绝对值是()A.B.C.D.2.如图,,点在的延长线上,若,则的度数为()A.B.C.D.3.点关于原点对称的点的坐标是()A.B.C.D.4.同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是()A.B.C.D.15.不等式组的解集用数轴表示为()6.若分式的值为,则的值为(A)A.B.C.D.或7.与如图所示的三视图对应的几何体是()8.如图,与的边分别相交于两点,且.若,则AC等于().A.1B.C.D.29.如图,矩形OABC的边OA在x轴上,O与原点重合,OA=1,OC =2,点D的坐标为(2,0),则直线BD的函数表达式为()A.B.C.D.10.如图,已知AD是△ABC的外接圆的直径,AD=13cm,,则AC的长等于()A.5cmB.6cmC.10cmD.12cm11.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1B.2C.3D.412.已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数)其中正确的结论有()A.2个B.3个C.4个D.5二、填空题:本大题共5个小题.每小题3分;共15分.13.分解因式:2x2-18=.14.已知反比例函数的图象在第二、四象限,则取值范围是__________. 15.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是.宇宙中一块陨石落在地球上,落在陆地的概率是_________16.若,则下列函数①,②,③,④中,的值随的值增大而增大的函数是_______________(填上序号即可)17.如图,已知,点在边上,四边形是矩形.请你只用无刻度的直尺在图中画出的平分线(请保留画图痕迹).三、解答题:7个小题,57分.18.(本小题满分7分)(1)化简(2)解方程:.19.(7分)(1)如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=300,求BC的长。
济南市长清区2013届九年级学业模拟考试数学试题(解析版)
山东省济南市长清区2013届九年级学业水平模拟考试数学试题一、第Ⅰ卷选择题:本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2012•巴中)的倒数是()B|)∴的倒数是﹣.2.(3分)(2006•北京)如图,AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为()3.(3分)(2013•长清区二模)嫦娥三号,是嫦娥绕月探月工程计划中嫦娥系列的第三颗人造绕月探月卫+2=5+25.(3分)(2013•长清区二模)如图,一个正在绘制的扇形统计图,整个圆表示某班参加体育活动的总人数,那么表示参加实心球训练的人数占总人数的35%的扇形是()6.(3分)(2013•长清区二模)如果函数y=ax+b(a<0,b>0)和y=kx(k>0)的图象交于点P,那么点7.(3分)(2013•长清区二模)如图,甲、乙两图是分别由五个棱长为“1”的立方块组成的两个几何体,它们的三视图中完全一致的是()8.(3分)(2013•长清区二模)化简:的结果是()﹣•9.(3分)(2009•内江)若关于x,y的方程组的解是,则|m﹣n|为()解:根据定义,把代入方程,得,所以11.(3分)(2006•临沂)如图,在矩形ABCD中,E在AD上,EF⊥BE,交CD于F,连接BF,则图中与△ABE一定相似的三角形是()12.(3分)(2006•湛江)如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM的取值范围是()=313.(3分)(2011•宜宾)如图,正方形的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()B14.(3分)(2003•哈尔滨)下列各图是在同一直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+cB.,轴的交点为(﹣,15.(3分)(2010•武汉)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()二、第Ⅱ卷填空题:本大题共6小题,每小题3分,共18分,把答案填写在题中的横线上.16.(3分)(2007•哈尔滨)分解因式:3ax2﹣3ay2=3a(x+y)(x﹣y).17.(3分)(2005•山西)如图,将三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为.=18.(3分)(2010•武汉)某校八年级(2)班四名女生的体重(单位:kg)分别是:35,36,38,40.这组数据的中位数是37.19.(3分)(2013•长清区二模)如图,△ABC的3个顶点都在⊙O上,直径AD=2,∠ABC=30°,则AC的长度是1.AC=AD=20.(3分)(2013•长清区二模)如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式﹣2<kx+b<1的解集为﹣1<x<2.21.(3分)(2013•长清区二模)如图1,Rt△ABC中,∠ACB=90°,AC=1,BC=2,将△ABC放置在平面直角坐标系中,使点A与原点重合,点C在x轴正半轴上.将△ABC按如图2方式顺时针滚动(无滑动),则滚动2013次后,点B的坐标为(2014+671,2).OB=,=3+3+=2014+6712014+6712014+671三、第Ⅱ卷解答题:本大题共7题,共57分,解答应写出文字说明或演算步骤.22.(7分)(2013•长清区二模)(1)计算:;(2)解分式方程:.23.(7分)(2013•长清区二模)如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF.求证:∠AEB=∠CFB.∵,24.(2013•长清区二模)如图,PA为⊙O的切线,A为切点,⊙O的割线PBC过点O与⊙O分别交于B、C,PA=8cm,PB=4cm,求⊙O的半径.25.(8分)(2013•长清区二模)重庆一中综合实践活动艺体课程组为了解学生最喜欢的球类运动,对足球、乒乓球、篮球、排球四个项目进行了调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息解答下列问题:(1)求这次接受调查的学生人数,并补全条形统计图;(2)求扇形统计图中喜欢排球的圆心角度数;(3)若调查到爱好“乒乓球”的5名学生中有3名男生,2名女生,现从这5名学生中任意抽取2名学生,请用列表法或画树状图的方法,求出刚好抽到一男一女的概率.所占百分比为:×)可知喜欢排球所占的百分比为:×26.(8分)(2012•潍坊)为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明2012年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t元(t为整数),求t的最小值.,解可得答案;,解得,27.(9分)(2012•义乌)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB 的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y 轴正半轴交于点H、G,求线段OG的长.BOA=即可求出BOA=×∴=1y=∴=n;∴=2,.28.(9分)(2009•绥化)直线y=﹣x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.S=S=的时间是(秒)=2,得PD=.S=S=时,∵S=时,﹣=PD==,AD==(,,)(﹣,,﹣)29.(9分)(2012•衡阳)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)(1)求此抛物线的解析式.(2)过点P作CB所在直线的垂线,垂足为点R,①求证:PF=PR;②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.﹣,﹣a=a﹣(﹣a a=a2+1,即:a4﹣a2﹣3=0,得:2,﹣2=2=。
2013年济南市中考数学试题(word版,含答案)
济南市2013年初中三年级学业水平考试数学试题第Ⅰ卷(选择题 共45分)注意事项:满分120分,考试时间120分钟一、选择题(本大题共15个小题,每小题3分,共45分.)1.-6的相反数是的相反数是 (A )16-(B )16(C )-6 (D )6 2.下图是由3个相同的小立方体组成的几何体,它的主视图是个相同的小立方体组成的几何体,它的主视图是3.十八大以来,我国经济继续保持稳定增长,2013年第一季度国内生产总值约为118 118 900900亿元,将数字118 900用科学记数法表示为用科学记数法表示为(A )60.118910´ (B )51.18910´ (C )411.8910´ (D )41.18910´4.如图,直线a ,b 被直线c 所截,a b ∥,1130Ð=°,则2Ð的度数是的度数是 (A )130° (B )60° (C )50° (D )40° 5.下列各式计算正确的是.下列各式计算正确的是 (A )()224aa = (B )2a a a += (C )22232a a a ¸= (D )428a a a =·6.不等式组31526x x ->ìíî,≤的解集在数轴上表示正确的是的解集在数轴上表示正确的是7.为了解七年级学生参与家务劳动的时间,李老师随机调查了七年级8名学生一周内参与家务劳动的时间(单位:小时)分别是1,2,3,3,3,4,5,6.则这组数据的众数是则这组数据的众数是 (A )2.5 (B )3 (C )3.375 (D )5 8.计算2633x x x +++,其结果是,其结果是(A )2 (B )3 (C )2x + (D )26x +9.如图,在平面直角坐标系中,ABC △的三个顶点的坐标分别为()10A -,,()23B -,,()31C -,.将ABC △绕点A 按顺时针方向旋转90°,得到AB C ¢¢△,则点B ¢的坐标为的坐标为(A )(2,1) (B )(2,3) (C )(4,1) (D )(0,2)10.如图,AB 是O ⊙的直径,C 是O ⊙上一点,AB =10,AC =6,OD BC ^,垂足为D ,则BD 的长为的长为(A )2 (B )3 (C )4 (D )6 11.已知2280x x --=,则23618x x --的值为的值为 (A )54 (B )6 (C )10- (D )18-12.如图,.如图,小亮将升旗的绳子拉到旗杆底端,小亮将升旗的绳子拉到旗杆底端,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m.则旗杆的高度(滑轮上方的部分忽略不计)为计)为(A )12m (B )13 m (C )16 m (D )17 m 13.如图,平行四边形OABC 的顶点B ,C 在第一象限,点A 的坐标为(3,0),点D 为边AB 的中点,反比例函数ky x=(x >0)的图象经过C ,D 两点,若COA Ð=α,则k 的值等于(A )28sin a (B )28cos a (C )4tan a (D )2tan a14.已知直线1234l l l l ∥∥∥,相邻的两条平行直线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,AB =4,BC =6,则tan a 的值等于的值等于 (A )23(B )34 (C )43 (D )3215.如图,二次函数2y ax bx c =++的图象经过点(1,2-),与x 轴交点的横坐标分别为1x ,2x ,且110x -<<,212x <<,下列结论正确..的是的是 (A )0a < (B )0a b c -+< (C )12b a->(D )248ac b a -<-第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上) 16.计算:()3216x x +-=________. 17.分解因式:24a -=_________. 18.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是____________.(填“小明”或“小华”) 19.如图,AB 是O ⊙的直径,点D 在O ⊙上,35BAD Ð=°,过点D 作O ⊙的切线交AB 的延长线于点C ,则C Ð=_________度.20.若直线y kx =与四条直线1x =,2x =,12y y ==,围成的正方形有公共点,则k 的取值范围是________. 21.如图,D 、E 分别是ABC △边AB ,BC 上的点,AD =2BD ,BE =CE ,设ADF △的面积为1S ,CEF △的面积为2S ,若6ABCS=△,则12SS -的值为____________. 三、解答题(本大题共7个小题,共57分. 解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)分)(1)计算:()20131tan 45-+°. (2)解方程:321xx =-. 23.(本小题满分7分)分)(1)如图,在ABC △和DCE △中,AB DC ∥,AB=DC ,BC=CE ,且点B ,C ,E 在一条直线上. 求证:A D Ð=Ð. (2)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AB =4,120AOD Ð=°,求AC 的长. 24.(本小题满分8分)某寄宿制学校有大、小两种类型的学生宿舍共50间,间,大宿舍每间可大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好..住满这50间宿舍.求大、小宿舍各有多少间?少间?25.(本小题满分8分)在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同. (1)搅匀后从中随机摸出一球,请直接写出摸到红球的概率;)搅匀后从中随机摸出一球,请直接写出摸到红球的概率; (2)如果第一次随机摸出一个小球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)(用树状图或列表法求解)26.(本小题满分9分)分)如图,如图,如图,点点A 的坐标是的坐标是((2-,0),点B 的坐标是的坐标是((6,0),点C 在第一象限内且OBC △为等边三角形,直线BC 交y 轴于点D ,过点A 作直线AE BD ^,垂足为E ,交OC 于点F . (1)求直线BD 的函数表达式;的函数表达式; (2)求线段OF 的长;的长;(3)连接BF ,OE ,试判断线段BF 和OE 的数量关系,并说明理由. 第25题图题图27.(本小题满分9分)如图1,在ABC △中,AB =AC =4,67.5ABC Ð=°,ABD △和ABC △关于AB 所在的直线对称,点M 为边AC 上的一个动点(重合),点M 关于AB 所在直线的对称点为N ,CMN △的面积为S . (1)求CAD Ð的度数;的度数;(2)设CM =x ,求S 与x 的函数表达式,并求x 为何值时S 的值最大?的值最大?(3)S 的值最大时,过点C 作EC AC ^交AB 的延长线于点E ,连接EN (如图2).P 为线段EN 上一点,Q 为平面内一点,当以M ,N ,P ,Q 为顶点的四边形是菱形时,请直接..写出..所有满足条件的NP 的长. 28.(本小题满分9分)如图1,抛物线223y x bx c =-++与x 轴相交于点A ,C ,与y 轴相交于点B ,连接AB ,BC ,点A 的坐标为(2,0),t a n 2BAO Ð=以线段BC 为直径作M⊙交AB 于点D .过点B 作直线l AC ∥,与抛物线和M ⊙的另一个交点分别是E ,F .(1)求该抛物线的函数表达式;)求该抛物线的函数表达式; (2)求点C 的坐标和线段EF 的长;的长;(3)如图2,连接CD 并延长,交直线l 于点N .点P ,Q 为射线NB 上的两个动点(点P 在点Q 的右侧,且不与N 重合)线段PQ 与EF 的长度相等,连接DP ,CQ ,四边形CDPQ 的周长是否有最小值?若有,请求出..此时点P 的坐标并直接写出....四边形CDPQ 周长的最小值;若没有,请说明理由. 济南市2013年初中三年级学业水平考试数学试题参考答案及评分意见一、选择题 题号题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案答案 D A B C A C B A A C B D C C D 二、填空题16.3 17.()()22a a +- 18.小明小明 19. 20 20.122k ≤≤ 21. 1 三、解答题 22.(1)解:()20131tan 45-+°=1+1(2分)=2(3分)分)(2)解:去分母,得()312x x -=,(5分)解得3x =.(6分)分)检验:把3x =代入原方程,左边=1=右边,∴3x =是原方程的解(7分)分)23.(1)证明:∵AB DC ∥,∴B DCE Ð=Ð.(1分)分)又∵AB =DC ,BC =CE ,∴ABC DCE △≌△.(2分)∴A D Ð=Ð.(3分)分) (2)解:∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,(4分)分) 又∵120AOD Ð=°,∴60AOB Ð=°,∴AOB △为等边三角形,(6分)∴AO =AB =4,∴AC =2AO =8.(7分)分)24.解法一:设大宿舍有x 间,小宿舍有y 间,(1分)分)根据题意得5086360x y x y +=ìí+=î,(5分)解方程组得3020x y =ìí=î,.(7分)分) 答:大宿舍有30间,小宿舍有20间.(8分)分)解法二:设大宿舍有x 间,则小宿舍有()50x -间,(1分)分)根据题意得()8650360x x +-=,(5分)解方程得30x =.∴5020x -=(间).(7分)分) 答:大宿舍有30间,小宿舍有20间.(8分)分)25.解:(1)P (红球)=23(2分)分) (2)解:所有可能出现的结果如图所示:)解:所有可能出现的结果如图所示:第25题答图题答图或所有可能出现的结果如下表所示:或所有可能出现的结果如下表所示:共有6种结果,其中两次都摸到红球的有2种,∴P (两次都摸到红球)=2163=.(8分)分)26.解:(1)∵O B C △是等边三角形,是等边三角形,∴∴60OBC BOC OCB Ð=Ð=Ð=°,OB=BC=CO. ∵B (6,0),∴BO =6.∴OD =OB ·tan 6063°=,∴点D 的坐标为(0,63).(1分)分)设直线BD 的表达式为y=kx+b ,∴6063k b b +=ìïí=ïî,.(2分)∴363k b ì=-ïí=ïî,.∴直线BD 的函数表达式为363y x =-+.(3分)分)(2)解法一:∵A ()20-,,∴AO =2.∵60AE BD OBC ^Ð=,°,∴30EAO Ð=°.(4分)又∵60BOC Ð=°,∴30AFO Ð=°,(5分)∴OAF OFA Ð=Ð,∴OF =AO =2.(6分)解法二:∵A ()20-,,∴AO =2.∵OB=OC=BC =6,OA =2,∴AB =8. ∵60AE BD OBC ^Ð=,°,∴30BAE Ð=°,∴BE =4,(4分)分) ∴CE=BC-BE =6-4=2,∴CF =24cos cos60CE ECF==а.(5分)分)∴OF =OC -CF =6-4=2.(6分)(3)BF=OE .(7分)分)解法一:∵A ()20-,,B (6,0),∴AB =8.∵60CBO AE BD Ð=^°,,∴30EAB Ð=°,∴EB =4. ∵CB =6,∴CE =2.∵OF =2,∴CE =OF .(8分)分)又∵60OCE BOF CO BO Ð=Ð==°,,∴COE OBF △≌△,∴OE=BF .(9分)分)解法二:过点E 作EG AB ^,垂足为G . ∵A ()20-,,B (6,0),∴AB =8.∵60CBO AE BD Ð=^°,, ∴30EAB Ð=°,∴EB =4.∵CB =6,∴CE =2. 在Rt EGB △和Rt CEF △中易求2323EG EF ==,,EB =4,GB =2,OG =4, 在Rt EGO △和Rt FEB △中,由勾股定理得中,由勾股定理得2227OE EG OG =+=.(8分)2227BF EF EB =+=.∴OE=BF .(9分)分)(注:此题解法多样,请阅卷老师根据答题情况合理赋分.)27.解:(1)∵AB=AC ,67.5ABC Ð=°,∴67.5A B C A C B Ð=Ð=°,∴45CAB Ð=°.(2分)分)∵ABD △和ABC △关于AB 所在直线对称,∴45BAD CAB Ð=Ð=°,∴90CAD Ð=°. (2)由(1)可知AN AM ^,∵点M ,N 关于AB 所在直线对称,∴AM=AN . ∵CM=x ,∴AN=AM =4-x ,∴()11422S CM AN x x ==-·.∴2122S x x =-+.(5分)分) ∴当22122x =-=æö´-ç÷èø时,S 最大.(6分)(3)122NP =(7分)225NP =(8分)3455NP =.(9分)分)28.解:(1)∵点A (2,0),t an 2BAOÐ=,∴AO =2,BO =4,∴点B 的坐标为(0,4).(1分)分)∵抛物线223y x bx c =-++过点A ,B ,∴82034b c c ì-++=ïíï=î,(2分)解得234.b c ì=-ïíï=î,∴此抛物线的解析式为222433y x x =--+.(3分)分) (2)解法一:在图1中连接CF ,令0y =,即2224033x x --+=,解得1232x x =-=,. ∴点C 坐标为()30-,,CO =3.(4分)令4y =,即2224433x x --+=,解得1201x x ==-,.∴点E 坐标为()14-,,∴BE =1.(5分)分)∵BC 为O ⊙直径,∴90CFB Ð=°.又∵B O A C l A C ^,∥,∴B O l ^,∴90FBO BOC Ð=Ð=°, ∴四边形BFCO 为矩形,∴BF=CO =3.∴EF=BF -BE =3-1=2.(6分)分) 解法二:∵抛物线对称轴为直线12x =-, ∴点A 的对称点C 的坐标为()30-,.(4分)点B 的对称点E 的坐标为()14-,(5分) ∵BC 是M ⊙的直径,∴点M 的坐标为322æö-ç÷èø,. 如图2,过点M 作MG FB ^,则GB GF =,∵322M æö-ç÷èø,,∴32BG =,∴BF =2BG =3.∵点E 的坐标为()14-,,∴BE =1.∴EF=BF -BE =3-1=2.(6分)分)(3)四边形CDPQ 的周长有最小值.(7分)分)理由如下:∵2222345BC OC OB =+=+=,AC=OC+OA =3+2=5,∴AC=BC . ∵BC 为M ⊙直径,∴90BDC Ð=°,即CD AB ^,∴D 为AB 中点,∴点D 的坐标为(1,2). 作点D 关于直线l 的对称点()116D ,,点C 向右平移2个单位得点()110C -,,连接11C D 与直线l 交于点P ,点P 向左平移两个单位得点Q ,四边形CDPQ 即为周长最小的四边形. 解法一:设直线1D D 的函数表达式为y mx n =+,∴06m n m n -+=ìí+=î,∴33m n =ìí=î,∴直线11C D 的表达式为33y x =+.∵4p y =,∴13px =,∴点P 的坐标为143æöç÷èø,(8分)分) 解法二:如图3,直线1D D 交直线l 于点H ,交x 轴于点K ,易得111D K C K D H PH ^^,, 由题意可知111262D H D K C K ===,,,由直线l x ∥轴,易证111D PH D C K △∽△,∴111D H PH C K D K =,∴23PH =.∴21133BP BH PH =-=-=,∴点P 的坐标为143æöç÷èø,.(8分)分)25210 2.CDPQ C =++四边形最小(9分)分)注:本试卷解答题的其他正确解法,请参照上述参考答案及评分意见酌情赋分. 。
济南市2013初中数学学业水平模拟考试
济南市学业水平考试数学模拟试题一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目) 1.2的倒数是( )A.2 B . 2- C .12- D .122.sin60°的值等于 ( )A .21 B .22 C .23 D .13.右图是由四个小正方体摆成的一个立体图形,那么它的俯视图是 ( )4. 未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为 ( )A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元 5. 下列运算正确的是 ( )A .523x x x =+B .x x x =-23C .623x x x =⋅D .x x x =÷23 6.若相交两圆的半径分别为1和2,则此两圆的圆心距可能是 ( )A .1B .2C .3D .47.同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是 ( )A.41 B.21 C.43 D. 18. - )B.CD .29.已知反比例函数2a y x-=的图象在第二、四象限,则a 的取值范围是( )A.a ≤2B.a ≥2 C.a <2D.a >210.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则此三角形周长是( ) A. 11 B. 13 C. 11或13 D. 不能确定 11.如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA =4, OA =3,则cos∠APO 的值为( )A .34B .35C .45D .4312.若3m =,则m 的范围是 ( )A .1 < m < 2B .2 < m < 3C .3 < m < 4D .4 < m < 513. △ABC 的三个顶点的坐标分别为A (1,0)、B (3,0)、C (2,-4),将△ABC 各点的横坐标都乘以-1,得到△DEF ,则△DEF 与△ABC 的位置关系是( )A. 关于x 轴对称B. 关于y 轴对称C. 关于原点对称D. △DEF 是△ABC 向下平移1个单位得到的A .B .C .D .14. 矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至 点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的( )15.如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2011次交换位置后,小鼠所在的座号是( ).A. 1B.2C.3D.4 二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上) 16.分解因式:x 2-4=.17.右图是一组数据的折线统计图,这组数据的 极差_________.18.如图,将三角板的直角顶点放置在直线AB 上的点O 处,使斜边CD ∥AB .则α∠值为 .19.不等式2x -1<5的解集为___________.20.如图,已知两点A (2,0), B (0,4),且∠1=∠2,则点C 的坐标是 .21.如图,正方形OABC 的面积是4,点B 在反比例函数(00)k y k x x=><,的图象上.若点R 是该反比例函数图象上异于点B的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S =m(m 为常数,且 0<m<4)时,点R 的坐标是________________________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(本小题满分7分)(1)(3分)计算: 021( 3.14)2cos 30(3π---︒++A D F CE H B730 1A 2A 3A 4A 5A 6AAABCDE(2) (3分)(2)解方程:解不等式组x x -<+>⎧⎨⎩2121023. (本小题满分7分)(1) (4分)已知:如图,在Rt △ABC 和Rt △BAD 中,AB 为斜边,AC =BD ,BC ,AD 相交于点E .求证:AE =BE .(2)(4分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米. 坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米. 试求旗杆BC 的高度.24. (本小题满分8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.ABCD日本在地震后,核电站出现严重的核泄漏事故,为了防止民众受到更多的核辐射,我国某医疗公司主动承担了为日本福田地区生产2万套防辐射衣服的任务,计划10天完成,在生产2天后,日本的核辐射危机加重了,所以需公司提前完成任务,于是公司从其他部门抽调了50名工人参加生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务。
2013山东济南中考数学-答案及解析
2013山东济南中考数学-答案及解析2013年济南市数学学考试题一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (2013山东济南,1,3分)-6的相反数是( )A. 1B. 16C. -66D. 6【答案】 D【考点解剖】本题考查如何求实数的相反数,解题的关键是正确掌握相反数的概念.【解题思路】(1)只有符号不同的两个数互为相反数,0的相反数是0;(2)互为相反数的两个数,绝对值相等.(3)互为相反数的两个数在数轴上位于原点的两侧,且到原点的距离相等.【解答过程】解:∵6和-6在原点的两侧,且到原点的距离都是6,故选D.【方法规律】互为相反数的两个数的和为0.【关键词】相反数.【易错点睛】考查相反数的选择题往往会在四个选项中设置一些倒数和负倒数的选项,因此注意审题是正确解答的关键.2. (2013山东济南,2,3分)下图是由3个相同的小正方A B C D体组成的几何体,它的主视图是( )【答案】A【考点解剖】本题考查识别简单几何体三视图的识别,了解主视图的概念是解题关键.【解题思路】从正面看过去就是左边一个立方块,右边两个立方块.【解答过程】解:因为从正面看过去就是左边一个立方块,右边两个立方块,因此选A.【方法规律】三视图实际就是平行光线垂直照射该物体投到平面上的影子,“主视图、俯视图、左视图”符合“长对正、高平齐、宽相等”的规律.【关键词】三视图【易错点睛】看清题目中问的是主视图、左视图还是俯视图.3. (2013山东济南,3,3分)十八大以来,我国经济继续保持稳定增长,2013年第一季度国内生产总值约为118900亿元,将数字118900用科学记数法表示为( ) 正A. 0.1189×106B. 1.189×105C. 11.89×104D. 1.189×104【答案】B【考点解剖】本题考查用科学记数法表示一个数字,掌握将一个数表示成科学记数法的规律是关键.【解题思路】用科学记数法表示一个数时一般要分为两个步骤:第一步确定乘号前面的数,第二步确定10的指数.【解答过程】解:∵118900的整数位数为6,∴118900=1.189×105,因此选B.【方法规律】科学记数法就是把一个数表示为a×10n 的形式,其中1≤|a|<10,n为整数. 绝对值大于1的数表示成科学记数法时,n等于要表示的数的整数位数减1;绝对值小于1的数表示成科学记数法时,n为负整数其绝对值等于表示的数的第一个非零数字前面所有0的个数.【关键词】科学记数法.【易错点睛】容易搞错n的符号和数值解题时的常犯错误.4. (2013山东济南,4,3分)如图,直线a、b被直线c 所截,a∥b,∠1=130°,则∠2的度数是( )A. 130°B. 60°C. 50°【答案】C【考点解剖】本题考查平行线的性质和邻补角的性质.如解答图所示,知道∠3是求解∠2度数的桥梁,这是解题关键.【解题思路】先利用邻补角的性质求出∠1的邻补角∠3的度数为50°,再根据两直线平行同位角相等求得∠2的度数.【解答过程】解:如图,∵∠1+∠3=180°,∴∠3=50°,∵a ∥b ,∴∠2=∠3=50°.故选C.【方法规律】1.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.如果题目出现的和平行线有关的角中,角的位置关系不属于同位角、内错角、同旁内角的范围,则一般要利用邻补角、对顶角的关系将其进行转化.【归纳拓展】选择题中的和平行线有关的试题多数都是和角联系在一起,因此其解题时多数都要用到平行线的1 2 a b c 31 2 abc【关键词】平行线的性质,邻补角【易错点睛】要分清题目中三线八角的关系.5. (2013山东济南,5,3分)下列各式计算正确的是( )A.224= B. 2()a aa a a32÷= D. a4·a2=a8a a a+= C. 222【答案】A【考点解剖】本题考查幂的运算法则和合并同类项法则,正确选用相应的运算法则是解题关键.【解题思路】利用幂的运算法则和合并同类项法则逐次判断每个选项的正确与否,B、C、D选项的正确结果分别应为:2a,3,a6.【解答过程】解:故选A.【方法规律】1. 对于幂的有关运算,关键掌握其运算法则:2.合并同类项法则:只把同类项的系数相加,字母和字母的指数不变.【归纳拓展】在选择题中对于幂的运算考查主要有两种形式:(1)计算……的结果是;(2)下列运算正确的是……,其中第(2)类形式一般会与合并同类项、完全平方公式及平方差公式结合考查,解此类题的方法就是利用各自运算法则仔细计算即可.【关键词】幂的乘方、合并同类项、同底数幂的除法、同底数幂的乘法.【易错点睛】此类题目中,易错点为:①符号问题,会忽视式子中的符号而导致错误;②对有关运算公式不熟悉而导致错误.6. (2013山东济南,6,3分)不等式组3152x x ->⎧⎨⎩≤6的解集在数轴上表示正确的是( )【答案】C【考点解剖】本题考查解一元一次不等式组和利用数轴表示一元一次不等式组的解集,先正确求得不等式组的解集是解题关键.【解题思路】分别求出两个不等式的解集,取其公共部分就是不等式组的解集.【解答过程】解:不等式①的解集为x>2,不等式②的解集为x≤3,∴不等式组的解集为2<x≤3,因此2用空心点,3用实心点.故选C.【方法规律】两大取大;两小取小;大于小数、小于大数取中间;小于小数、大于大数无解.【关键词】一元一次不等式组、数轴【易错点睛】用数轴表示不等式组的解集,要注意实心点与空心点的区别.7. (2013山东济南,7,3分)为了解七年级学生参与家务劳动的时间,李老师随机调查了七年级8名学生一周内参与家务劳动的时间(单位:小时)分别是:1,2,3,3,3,4,5,6.则这组数据的众数是( )A. 2.5B. 3C.3.375 D. 5【答案】B【考点解剖】本题考查众数的概念,正确理解众数的概念是解题关键.【解题思路】众数就是一组数据中个数最多的数,而这组数据之中个数最多的数据是3.【解答过程】解:因为数据“3”的个数为3个,为最多,因此众数是3.故选B.【方法规律】一组数据中个数最多的数是这组数据的众数,注意众数不一定只有一个.【关键词】众数【易错点睛】一组数据的众数、平均数、中位数是选择题中经常要考到的内容,答题之前一定要准题目要求的是什么.8. (2013山东济南,8,3分)计算2633x x x +++,其结果是( ) A. 2 B. 3 C. x +2D. 2x +6【答案】A【考点解剖】本题考查同分母分式的加法以及分式的化简,正确掌握运算法则是解题的关键.【解题思路】同分母分式相加,分母不变,分子相加.【解答过程】解:2633x x x +++=263x x ++=2(3)3x x ++=2,故选A.【方法规律】分式的加减运算,要先看分母是否相同,分母相同时,直接把分子相加,分母不同时,需要找到各分母的最简公分母进行通分把异分母分式化为同分母分式.【思维模式】(1)在计算的时候,整式可以看作分母为1的分式;(2)分子、分母是多项式的时候,先将多项式因式分解,便于约分和通分.(3)计算后的结果应是最简分式.【易错点睛】分式的运算结果要注意化为最简分式,经常有同学忘记将分式的运算结果进行约分.【关键词】同分母分式加法、分解因式、约分.9. (2013山东济南,9,3分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (-1,0),B (-2,0),C (-3,1).将△ABC 绕点A 按顺时针方向旋转90°,得到△AB ′C ′,则点B ′的坐标为( )A. (2,1)B. (2,3)C. (4,1)D. (0,2)【答案】A【考点解剖】本题考查平面直角坐标系、图形的旋转、三角形全等,借助网格确定旋转的角度是解题关键. 【解题思路】先确定AB和AC旋转后的对应线段AB′和AC′,再连接B′C′即可得到旋转后的图形.【解答过程】解:如图所示,点B′的坐标是(2,1).故选A.【方法规律】在网格中旋转的题目,解题时往往要借助全等三角形.【思维模式】网格的题目中用到的长和宽相等的矩形的对角线往往是平行或者垂直的关系.【关键词】平面直角坐标系、图形的旋转、全等三角形10. (2013山东济南,10,3分)如图,AB是⊙O的直径,C是⊙O上一点,AB=10,AC=6,垂足为D,则BD的长为( )A. 2B. 3C. 4D. 6【答案】C【考点解剖】本题考查垂径定理、直径所对的圆周角是直角、勾股定理,点D 实际是BC 中点,这是关键.【解题思路】根据垂径定理,BD 是BC 的一半,因此只要求出BC 即可.【解答过程】解:因为AB 是直径,因此∠C 是直角,∴BC,∵OD ⊥BC ,根据垂径定理,BD 等于BC 的一半,所以BD =4.故选C.【方法规律】在圆的问题中,碰到直径往往要作直径做对的圆周角,碰到弦,经常要作垂直于弦的直径.【思维模式】在直角三角形中,知道两条边的长求第三边,经常要用到勾股定理.【关键词】垂径定理、勾股定理11. (2013山东济南,11,3分)已知2280xx --=,则23618x x --的值为( )A. 54B. 6C. -10 A BC ODD. -18【答案】B【考点解剖】本题考查代数式求值、解一元二次方程,合理的将2280xx --=进行变形是解题关键. 【解题思路】将已知条件2280x x --=的常数项移项到等式的右侧得到228xx -=,然后代入待求值的代数式即可. 【解答过程】解:由2280x x --=可得228x x -=,所以23618x x --=23(22)18x x --=3×8-18=6.故选B.【方法规律】此类问题如果解出已知方程的根然后代入求值的话,计算量往往比较大,因此恒等变形是解决此类问题的常用方法.【思维模式】这一类和方程有关的代数式求值问题,往往不需要解已知给出的方程,而是采取将该方程的常数项移到等号另一侧,采取代入求值的方式进行计算.【关键词】代数式的值、一元二次方程的解.12. (2013山东济南,12,3分)如图,小亮将升旗的绳子拉倒旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m.则旗杆的高度(滑轮上方的部分忽略不计)为( )A. 12mB. 13mC. 16mD. 17m【答案】D【考点解剖】本题考查勾股定理、矩形的性质、解一元一次方程,如解答图,知道AB =AE 是解题关键.【解题思路】欲求旗杆AE 的长度,需利用绳子AB 的长度,而作BC ⊥AE 后,可将旗杆的高度转化为AC +CE 的和,CE 与BD 的长度相等,AC 的长度可在Rt △ABC 之中求得.【解答过程】解:如图所示,作BC ⊥AE 于点C ,则BC =DE =8,设AE =x ,则AB =x ,AC =x -2,在Rt △ABC 中,222AC BC AB +=,即222(2)8x x -+=,解得x =17.【方法规律】求线段长的题目,除了可以利用三角形全等等知识直接求出的外,还经常需要将所求线段转化为几条线段的和或者几条线段的差..【思维模式】牵扯到和直角三角形有关的问题往往需要A B C D E利用勾股定理转化成解方程的问题来解决.【关键词】勾股定理、矩形、方程与函数思想.13. (2013山东济南,13,3分)如图,□OABC 的顶点B ,C 在第一象限,点A 的坐标为(3,0),点D 为边AB 的中点,反比例函数(0)k y x x=>的图象经过C ,D 两点,若∠COA =α,则k 的值等于( )A. 8sin 2αB. 8cos 2αC. 4tan αD. 2tan α【答案】C【考点解剖】本题考查反比例函数、三角函数、平行四边形的性质、三角形中位线、全等三角形等知识,解题关键是能用点C 坐标来表示点D 的坐标.【解题思路】因为点C 、D 都在反比例函数的图象上,因此这两个点的坐标的乘积相等.可设点C 的坐标为(a ,atanα),然后利用点C 的坐标表示先表示出点B 的坐标,然后再表示点D 的坐标即可求出k 的值.【解答过程】解:设点C (a ,a tan α),则点B (a +3,a tan α),因此点D (3+2a ,(3)tan 2a α+),所以22tan (3)tan 2a a αα=+,解得a =3或a =6(舍去),所以k =2·2tan α=4tan α.故选C.【方法规律】先设出一个点的坐标,然后设法用点的坐标去表示题目中另外的点的坐标是解决此类问题的常用方法.【方法指导】(1)在和直角三角形有关的一些问题中,利用三角函数来表示线段的长,比用相似比表示来的更加直观;(2)一个点的纵坐标与横坐标的比值往往会和正切联系在一起.【关键词】反比例函数、三角函数、平行四边形的性质、三角形中位线.14. (2013山东济南,14,3分)已知直线l 1∥l 2∥l 3∥l 4,相邻的两条平行直线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,AB =4,BC =6,则tan α的值等于( )A. 23B. 34C. 43D. 32【答案】C 【考点解剖】本题考查相似三角形的性质、三角函数、A B C D α lll l平行线的距离,找出相似三角形是解题的关键.【解题思路】过点A 、C 分别作AM ⊥l 4于点M ,CN ⊥l 4于点N ,构造相似三角形△ABM 和△BCN .在两个三角形中,利用比例关系BM CN AB BC=可求得答案. 【解答过程】解:如图,做AM ⊥l 4于点M ,做CN ⊥l 4于点N ,则AM =h ,CN =2h ,∠ABM +∠BAM =90°,∴BM =AM ·tanα=htanα,∵四边形ABCD 是矩形,∴∠ABC =90°,∴∠ABM +∠α=90°,∴∠BAM =∠α,∴△ABM ∽△BCN ,BM CN AB BC=, ∴h tan α=46·2h ,∴tan α=43.故选C. 【方法规律】设法构造相似的直角三角形是解决此类问题的常用方法,如图所示是一个解题中经常见到的图形,△ABC 为直角三角形,∠ACB =90°,MN 为经过顶点C 的一条直线,AM ⊥MN 于点M ,BN ⊥MN 于点N ,则此时有结论△ACM ∽△CBN 成立.B C Dα lll l A M N【方法指导】相邻的两条平行直线间的距离均为h ,是一个重要的潜在条件【关键词】相似三角形的性质、锐角三角函数、平行线的距离、矩形15. (2013山东济南,15,3分)如图,二次函数2y ax bx c =++的图象经过点(1,-2),与x 轴交点的横坐标分别为x 1、x 2,且-1<x 1<0,1<x 2<2,下列结论正确的是( )A. a <0B. a -b +c <0C. 12b a ->D. 248ac b a -<- 【答案】D【考点解剖】本题考查二次函数的相关知识,先正确判断a 、b 、c 的符号是关键.【解题思路】根据抛物线开口方向可判断a 的符号;自变量x=-1时对应的函数值是a -b +c ;根据对称轴的位ABC M N置可判断-2ba 的值的范围;248acb a -<-可转化为判断244ac b a -<2,而这根据抛物线的最值即可得出结论.【解答过程】解:根据图象可知:(1)a >0;(2)当x =-1对应的函数值a -b +c >0;(3)对称轴在0和1之间,因此0<2b a -<1;(4)函数的最大值小于2,因此244ac b a -<2,即248ac b a -<-.故选D.【方法规律】这种和抛物线有关的选择题,要熟悉一些特殊的函数值的意义,比如自变量取0,±1,±2等值时对应的函数值是多少.【思维模式】对于这一类和二次函数图象有关的问题往往需要首先判断a 、b 、c 、2b a -、244ac b a -的符号. 【关键词】二次函数二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16. (2013山东济南,16,3分)计算:3(2x +1)-6x =___________.【答案】3.【考点解剖】本题考查去括号法则、合并同类项法则,掌握正确的运算顺序和运算法则是关键.【解题思路】根据单项式乘以多项式的法则,先去掉3(2x+1)的括号.【解答过程】解:3(2x+1)-6x=6x+3-6x=3.故答案为3 【方法规律】这一类的简单的整式化简的题目,一般是先去括号再合并同类项.【关键词】单项式、多项式、去括号、合并同类项17. (2013山东济南,17,3分)分解因式:a2-4=_____________.【答案】(a+2)(a-2)【考点解剖】本题考查平方差公式,选对公式是关键. 【解题思路】此题是利用平方差公式分解因式.【解答过程】解:a2-4=a2-22=(a+2)(a-2).故答案为(a+2)(a-2)【方法规律】1.能用提公因式法分解因式的多项式,各项必须存在公因式,这个公因式可以是单项式,也可以是多项式;2.能用平方差公式分解因式的多项式应满足条件是二项式,两项都能写成平方的形式,且符号相反;能用完全平方公式分解因式的多项式应符合a2±2ab+b2=(a±b)2,左边是三项式,两项都能写成平方的形式且符号相同,另一项是这两个数乘积的2倍.【思维模式】因式分解时,先考虑能否用提公因式法,再考虑公式法.【关键词】因式分解、平方差公式.18. (2013山东济南,18,3分)小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是______________.(填“小明”或“小华”)【答案】小明.【考点解剖】本题考查折线统计图,正确理解成绩稳定的含义是解题关键.【解题思路】成绩稳定的意思就是成绩的波动比较小. 【解答过程】解:由图中可以看出小明的设计环数都在8环上下,因此小明的成绩更稳定一些. 故答案为小明. 【方法规律】折线统计图可以直观的判断数据的波动性,方差或者标准差是用数字来衡量数据的波动性,方差或者标准差较小时说明数据的波动性小.【关键词】折线统计图19. (2013山东济南,19,3分)如图,AB是⊙O的直径,点D在⊙O上,∠BAO=35°,过点D作⊙O的切线交AB的延长线于点C,则∠C=__________度.【答案】20.【考点解剖】本题考查切线的性质、圆的基本性质、直角三角形的性质、三角形外角定理等知识点,作出过切点的半径、掌握直角三角形两锐角的关系是关键.【解题思路】作半径OD构造直角△COD,又∠BAO的度数可求得∠DOC的度数,进而可求得∠C的度数.. 【解答过程】解:连接OD,则∠ODC=90°,∠DOC=2∠BAO=70°,因此∠C=90°-70°=20°. 故答案为20°.【方法规律】和切线有关的问题往往需要连接圆心和切点.【关键词】切线、直角三角形、外角定理.20. (2013山东济南,20,3分)若直线y=kx与四条直线x =1,x =2,y =1,y =2围成的正方形有公共点,则k 的取值范围是___________.【答案】12≤k ≤2 【考点解剖】本题考查平面直角坐标系、求一次函数解析式,找准题目中四条直线围成的正方形是关键.【解题思路】直线过点(1,2)时的位置是最上边的位置,直线过点(2,1)时的位置是最下边的位置,其它都在这两条直线之间,因此只要求出上述两直线的斜率即可求得k 的取值范围..【解答过程】直线过点(1,2)和(2,1)时的解析式分别为y =2x 和12y x ,故答案为12≤k ≤2. 【方法规律】求取值范围的题目往往需要先找到边界的位置,求出边界直线的解析式即可确定k 的取值范围.【方法指导】直线过点(1,2)和(2,1)时与正方形只有一个公共点,在这两者之外则与正方形没有公共点.21. (2013山东济南,21,3分)如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD =2BD ,BE =CE ,设△ADF的面积为S 1,△CEF 的面积为S 2,若S △ABC =6,则S 1-S 2=_________.【答案】1.【考点解剖】三角形的面积,通过转化的思想将所求问题转为求△ABE 和△BCD 的面积之差是关键.【解题思路】将△ADF 加上四边形BDFE 补成△ABE ,△CEF 加上四边形BDFE 补成△BCD .【解答过程】解:∵AD =2BD ,BE =CE ,∴S △ABE =12S △ABC =3,S △BCD =13S △ABC =2, ∴S 1+S BDFE =3,S 2+ S BDFE =2,∴S 1-S 2=3-2=1.故答案为1.【方法规律】高相等的三角形的面积之比等于其底之比.【关键词】三角形的面积.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22. (2013山东济南,22,7分)(1)计算:1)0+tan45°【考点解剖】本题考查0指数、45度的正切值、实数的AB D E F运算,掌握正确的运算顺序是解题关键.【解题思路】先求出1)0和 tan45°的值,再计算. 【解答过程】解:1)0+tan45°=1+1=2.【方法规律】要牢记任何一个非零实数的零次幂都是1以及特殊角的三角函数值.【关键词】零次幂、正切(2)解方程:321x x =- 【考点解剖】本题考查分式方程的解法,确定正确的最简公分母(1)x x -是解题关键.【解题思路】先在方程的两侧乘以分母的最简公分母去分母化为整式方程.【解答过程】解:去分母得:3x -3=2x ,解得 x =3, 经检验,x =3是原方程的根.【方法规律】解分式方程的一般步骤:1.去分母;2.解化简后的整式方程;3.检验.【注意事项】1.去分母的方法是在方程两边乘以分母的最简公分母;2.解分式方程一定要记得验根.【关键词】解分式方程23. (2013山东济南,23,7分)(1)如图1,在△ABC 和△DCE 中,AB ∥DC ,AB =DC ,BC =CE ,且点B 、C 、E 在一条直线上.求证:∠A =∠D .【考点解剖】本题考查全等三角形的判定和性质,平行线的性质,知道利用全等三角形对应角相等来得出结论是关键.【解题思路】需要先证明△ABC ≌△DCE ,然后利用全等的性质证明∠A =∠D .【解答过程】解:∵AB ∥DC ,∴∠B =∠DCE ,∵AB =DC ,BC =CE ,∴△ABC ≌△DCE ,∴∠A =∠D .【方法规律】全等三角形的对应角相等是证明角相等的常用方法.【方法指导】∠A 和∠D 分别在两个三角形中,因此应该考虑证明这两个三角形全等.【关键词】全等三角形、平行线的性质.(2)如图2,在矩形ABCD 中,对角线AC 、BD 相交于点AB C D EO ,AB =4,∠AOD =120°,求AC 的长.【考点解剖】本题考查矩形的性质,等边三角形判定和性质,根据条件推得△AOB 是等边三角形是解题关键.【解题思路】由矩形的对角线相等且互相平分得到OA =12AC ,而OA 的长可在判断出△AOB 是等边三角形后求得.【解答过程】解:∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∵∠AOD =120°,∴∠AOB =60°,∴△AOB 是等边三角形,∴AO =AB =4,∴AC =2AO =8.【方法规律】矩形的对角线的夹角为120度和60度是等价的,这时候矩形的对称中心和矩形的短边构成等边三角形.【关键词】矩形、等边三角形.24. (2013山东济南,24,8分)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿AB C D O舍每间可住6人.该校360名住宿生恰好注满这50见宿舍.求大、小宿舍各有多少间.【考点解剖】本题考查列一元一次方程(二元一次方程组)解应用题,找出题目中的等量关系是解题关键.【解题思路】设大宿舍有x 间,则小宿舍有(50-x )间,从而大宿舍可住8x 人,小宿舍可住6(50-x )人.【解答过程】解法1:设大宿舍有x 间,则小宿舍有(50-x )间,8x +6(50-x )=360,解得x =30∴50-x =20(间)答:大宿舍有30间,小宿舍有20间.解法2:设大宿舍有x 间,小宿舍有y 间,根据题意得5086360x y x y +=⎧⎨+=⎩,解得3020x y =⎧⎨=⎩. 答:大宿舍有30间,小宿舍有20间.【方法规律】列方程解应用题一般有设未知数、根据等量关系列出方程、解列出的方程、写答案这四个步骤.【方法指导】和实际问题有关的应用题,有时候需要检验求出来的解是否符合实际情况,不符合的要进行一些取舍.【关键词】一元一次方程、二元一次方程组.25.(2013山东济南,25,8分)在一个不透明的袋子中,装有两个红球和1个白球,这些球除了颜色外都相同.(1)搅匀后从中随机摸出一球,请直接写出摸到红球的概率;(2)如果第一次随机摸出一个小球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)【考点解剖】本题考查概率的求法,掌握概率的概念是解题关键.【解题思路】两个红球可以编号,这样有利于解题时的描述.【解答过程】解:(1)因为共有两个红球和1个白球,这些球除了颜色外都相同, 所以搅匀后从中随机摸出一球,摸到红球的概率为22123=+; (2) 第2总共有6种结果,每种结果出现的可能性相同,其中两次都摸到红球的情况有两种,∴P(两次都摸到红球)=26=13 .【方法规律】概率问题是中考试题中的必考题型之一,对于摸球问题,通常采用列表法或者树状图法加以解决. 【方法指导】1.要注意放回和不放回的区别.2.在利用列表法求解概率的问题时,要注意不要把次序弄反了. 【关键词】概率.26. (2013山东济南,26,9分)如图,点A的坐标是(-2,0),点B的坐标是(6,0),点C在第一象限内且△OBC 为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.【考点解剖】本题考查一次函数表达式、等边三角形的性质、全等三角形的判定和性质,能够确定题目中隐含的全等三角形是解题关键.【解题思路】(1)由△OBC是等边三角形可确定∠OBD=60°,从而可求得点D的坐标;(2)要求得OF,可先求得CF的长;要求得CF的长,可先求得CE的长;而CE的长可由BE的长来确定;(3)可通过证明△COE和△OBF全等来得到结论.【解答过程】(1)∵△OBC为等边三角形,∴∠OBC=∠BOC=∠OCB=60°,OB=BC=CO,∵B(6,0),∴BO=6,∴OD=OB·tan60°,即点D坐标为(0,Array设直线BD的表达式为y=kx+b,则60k b b +=⎧⎪⎨=⎪⎩,∴k b ⎧=⎪⎨=⎪⎩∴直线BD的函数表达式为y =+.(2)解法1:∵点A (-2,0), ∴OA =2, ∴AB =8, ∴BE =12AB =4, ∴CE =BC -BE =6-4=2, ∴CF =2CE =4, ∴OF =OC -CF =2. 解法2:∵点A (-2,0), ∴AO =2,∵OB =OC =BC =6,OA =2, ∴AB =8,∵AE ⊥BD ,∠OBC =60°, ∴∠BAE =30°, ∴BE =4,∴CE =BC -BE =6-4=2,∴CF =24cos cos60CE ECF ==∠︒, ∴OF =OC -CF =6-4=2. (3)BF =OE .解法1:由(2)问可知OF =CE , 有∵∠FOB =∠ECO =60°,OB =CO ,∴△OBF≌△COE,∴BF=OE.解法2:过点E作EG⊥AB,垂足为G,则EG=BE·sin60°EF=CF·sin60°∴OE==BF==.【方法规律】求一次函数解析式的基本方法就是待定系数法,当直线和30°、45°、60°等特殊角度联系在一起时,其k、1.【思维模式】本题采用了多种学生熟悉的几何图形组合在一起,如△OBD为一个锐角为30度的直角三角形(30度角所对的直角边等于斜边的一半、斜边上的中线等于短直角边),△OBC为等边三角形(,面积等于边长的平方的),熟悉括号中的这些常用结论对解题帮助很大.【关键词】待定系数法、一次函数、等边三角形、勾股AM N CB D E定理、三角函数.27.(2013山东济南,27,9分)如图1,在△ABC 中,AB =AC =4,∠ABC =67.5°,△ABD 和△ABC 关于AB 所在的直线对称,点M 为边AC 上的一个动点(不与点A 、C 重合),点M 关于AB 所在直线的对称点为N ,△CMN 的面积为S .(1)求∠CAD 的度数;(2)设CM =x ,求S 与x 的函数表达式,并求x 为何值时S 的值最大?(3)S 的值最大时,过点C 做EC ⊥AC 交AB 的延长线于点E ,连接EN (如图2).P 为线段EN 上一点,Q 为平面内一点,当以M 、N 、P 、Q 为顶点的四边形是菱形时,请直接写出所有满足条件的NP 的长.【考点解剖】本题综合考查了等腰三角形、轴对称、三角形内角和定理、三角形的面积、二次函数的最值、菱形等知识点以及函数思想、方程思想、分类思想等,第AM N CB D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年济南市中考数学模拟试题四一、选择题:本大题共12个小题.每小题4分;共48分. 1.3的倒数的相反数是( ) A.3-B.3C.13D.13-2.下列计算正确的是( ) A .321x x -=B .2x x x =⨯C .2222x x x +=D .326()a a -=-3.如图,ABC △中,90ACB =∠,CD AB ⊥于D ,则图中与 ∠1与B ∠的关系成立的是( ) A .相等 B .互余 C .互补 D .互为对顶角4.若点(2)A n -,在x 轴上,则点(11)B n n -+,在( ) A.第一象限 B.第二象限C.第三象限 D.第四象限5.如图,ABC △中,AB AC =,30A ∠= ,DE 垂直平分AC ,则BCD ∠的度数 为( ) A.80B.75C.65D.456.下列列命题中,错误的是( ) A .矩形的对角线互相平分且相等 B .对角线互相垂直的四边形是菱形 C .等腰梯形的两条对角线相等D .等腰三角形底边上的中点到两腰的距离相等7.一组数据5,8,x ,10,4的平均数是2x ,则这组数据的方差是( ) A .6.5 B .6.6 C .6.7 D .6.881011)4-⎛⎫- ⎪⎝⎭的结果为( )A.4 B.3 C.3 D.4 9.若1m <-,则下列函数①()0my x x=>,②1y mx =-+,③y mx =,④()1y m x =+中,y 的值随x 的值增大而增大的函数共有( ) A.1个 B.2个 C.3个D.4个10.在同一平面直角坐标系中,一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )11.如果代数式238a b -++的值为18,那么代数式962b a -+的值等于( )A .28B .28-C .32D .32-DAB1 2CA. B. C. D.BC12.在密码学中,直接可以看到的内容为明码,对明码进行某种处理后得到的内容为密码。
有一种密码,将英文26个字母a,b,c ……z (不论大小写)依次对应1,2,3……26(见表格)。
当明码对应的序号x 为奇数时,密码对应序号12x y +=;当明码对应的序号x 为偶数时,密码对应的序号为13xy =+。
按上述规定,将明码“love ”译成的密码是( )A .gawqB .shxcC .sdriD .love 二、填空题:每小题3分,共15分。
13.不等式组210x x >-⎧⎨-⎩≤的解集为 . 14.把代数式29xy x -分解因式,结果是____________。
15.某年我国外汇储备为8189 亿美元,8189 亿用科学记数法(保留3个有效数字)表示是__________。
16.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c,正好是直角三角形三边长的概率是_________________。
17.右图中阴影部分是一个正方体的表面展开平面图形的一部分,请你在方格纸 中补全这个正方体的表面展开平面图.(只填一种情形即可) 三、解答题: 7个小题,共57分。
18.(7分)(1)解方程:12211xx x +=-+ (2)解方程组:355223x y x y -=⎧⎨+=⎩,.19.(7分)(1)已知:如图,ABC △和ECD △都是等腰直角三角形,90ACB DCE ==︒∠∠,D 为AB 边上一点.求证:ACE BCD △≌△(2)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽16cm AB =,水面最深地方的高度为4cm ,求这个圆形截面的半径. 20.(8分)在一个不透明的盒子中放有四张分别写有数字1、2、3、41、2、3的蓝色卡片,卡片除颜色和数字外完全相同。
(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内A DBCE各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率。
21.(8分)“五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.22.(9分)如图,四边形OABC 是等腰梯形,BC OA ∥,7460OA AB COA ===,,∠,点P 为平面直角坐标系x 轴上的一个动点,点P 不与点O 、点A 重合.连结CP ,过点P 作PD 交AB 于点D .(1)求B 点坐标;(2)当点P 运动什么位置时,OCP △为等腰三角形,求此时P 点坐标;(3)当点P 运动什么位置时,使得CPD OAB =∠∠且58BD AB =,求此时P23.(9分)如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画O ,P 是O 上一动点,且P 在第一象限内.过点P 作O 的切线与x 轴相交于点A ,与y 轴相交于点B .(1)点P 在运动时,线段AB 的长度也在发生变化,请写出线段AB 长度的最小值,并说明理由;(2)在O 上是否存在一点Q ,使得以Q ,O ,A ,P 为顶点的四边形是平行四边形?若存在,请求出Q 点的坐标;x若不存在,请说明理由.24.(9分)如图,对称轴为直线72x =的抛物线经过点A (6,0)和B (0,4)(1)求抛物线的解析式及顶点坐标;(2)设点E (x,y )是抛物线上的一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求□OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当□OEAF 的面积为24时,请判断□OEAF 是否为菱形?②是否存在点E ,使□OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由。
2013年济南市中考数学模拟试题参考答案一、选择题:1.D2. B3. A4. B5. D6. B7. D8. C.9. B 10. A 11. C 12. B 二、选择题:13. 21x -<≤ 14. (3)(3)x y y +- 15. 118.1910⨯16.13617.如图:18.(1)解:(1)2(1)2(1)(1)x x x x x ++-=+-. 2212222x x x x ++-=-. 3x =.经检验3x =是原方程的解.所以原方程的解是3x =. (2)解:355223x y x y -=⎧⎨+=⎩,.由①得:35y x =- ③把③代入②得:()523523x x +-=1133x = 3x =把3x =代入③得:4y =。
所以34x y =⎧⎨=⎩,.19.(1)证明:(1)ACB DCE = ∠∠,ACD BCD ACD ACE ∴+=+∠∠∠∠. 即BCD ACE =∠∠.B C A C D C E C == ,,BCD ACE ∴△≌△. (2)解:假设O 为圆形截面所在圆的圆心过O 作OC AB ⊥于D ,交AB 于CO CA B ∵⊥,11168cm 22BD AB ==⨯=∴. 由题意可知,4cm CD =. 设半径为cm x ,则(4)cm OD x =-. 在Rt BOD △中,由勾股定理得: 222O D B D O B +=222(4)8x x -+=∴.10x =∴.即这个圆形截面的半径为10cm .20.解:(1)∵在7张卡片中共有两张卡片写有数字1∴从中任意抽取一张卡片,卡片上写有数字1的概率是27(2)组成的所有的两位数为:∴这个两位数大于22的概率为1221.解:(1)385429.2÷≈,∴单独租用42座客车需10辆,租金为320103200⨯=元.385606÷≈,∴单独租用60座客车需7辆,租金为46073220⨯=元 (2)设租用42座客车x 辆,则60座客车(8)x -辆,由题意得:4260(8)38320460(8)3200.x x x x +-⎧⎨+-⎩,≥≤解之得:3535718x ≤≤. x ∵取整数,45x =,∴. 当4x =时,租金为3204460(84)3120⨯+⨯-=元; 当5x =时,租金为3205460(85)2980⨯+⨯-=元.ADBCE答:租用42座客车5辆,60座客车3辆时,租金最少. 22.解:(1)过B 点作BE OA ⊥,垂足是点E ,四边形OABC 是等腰梯形,60OC AB BAO COA ∴===,∠∠,在Rt BAE △中,sin 60cos 604BE AEAB AB AB=== ,,,14422BE AE ===⨯=. 725O E O AA E =-=-=,B ∴点的坐标(5,.(2)60COA = ∠ ,OCP △为等腰三角形,OCP ∴△为等边三角形.4OC OP PC ∴===,∵P 点是在x 轴上,P ∴点的坐标(40),或(40)-,. (3)58BD AB =,且342AD BD AB AB AD +==∴=,,. 60CPD OAB COA ===∠∠∠,1201806012O C PC P O C P O A PD +=+=-=,∠∠∠∠,∴ OCP DPA =∠∠. OCP APD ∴△∽△,OP OCAD AP∴=, 设7OP x AP x ==-,,即472x x =-. 21276016x x x x -+===,,. 这时P 点的坐标(10)(60),,,. 23.解:(1)线段AB 长度的最小值为4.理由如下:连接OP ,因为AB 切O 于P ,所以OP AB ⊥.取AB 的中点C ,则2AB OC =, 当OC OP =时,OC 最短.即AB 最短,此时4AB =.(2)设存在符合条件的点Q .如图①,设四边形APOQ 为平行四边形. 因为90APO =︒∠,所以四边形APOQ 为矩形.又因为OP OQ =,所以四边形APOQ 为正方形.所以45OQ QAQOA ==︒,∠. 在Rt OQA △中,根据245OQ AOQ ==︒,∠,得Q点坐标为.24.解:(1)由抛物线的对称轴是72x =可设解析式为27()2y a x k =-+ 把A 、B 两点坐标代入上式,得227(6)027(0)42a k a k -+=-+=⎧⎨⎩ 解之得225,36a k ==-x所以抛物线的解析式为22725()326y x =-- 123,4x x ==顶点为725(,)26-(2)∵点E (x ,y )在抛物线上,位于第四象限,且坐标适合22725()326y x =--, ∴y<0, 即-y>0, -y 表示点E 到OA 的距离。