2021年甘肃省中考数学模拟四试题

合集下载

2021年甘肃省中考数学试卷(含答案解析)

2021年甘肃省中考数学试卷(含答案解析)

2021年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( ) A .-2018 B .2018 C .12018- D .120182.下列计算结果等于3x 的是( )A .62x x ÷B .4x x -C .2x x +D .2x x ⋅ 3.若一个角为65°,则它的补角的度数为( ) A .25° B .35° C .115° D .125°4.已知(0,0)23a ba b =≠≠,下列变形错误的是( ) A .23a b = B .23a b = C .32b a = D .32a b =5. 若分式24x x-的值为0,则的值是( )A. 2或-2B. 2C. -2D. 06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:甲 乙 丙 丁 平均数(环) 11.1 11.1 10.9 10.9 方差s 21.11.21.31.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A .甲 B .乙 C .丙 D .丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( ) A .k≤﹣4 B .k <﹣4 C .k≤4 D .k <48.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为( )A. 5B.C. 7D.9.如图,⊙A 过点O (0,0),C (,0),D (0,1),点B 是x 轴下方⊙A上的一点,连接BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°10.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤二、填空题:本大题共8小题,每小题2018年甘肃省定西市,共32分11.计算:2018112sin 30(1)()2-+--= .12.3x -有意义的x 的取值范围是 . 13.若正多边形的内角和是1080°,则该正多边形的边数是 .14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .15.已知a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c = .16.如图,一次函数2y x =--与2y x m =+的图象相交于点(,4)P n -,则关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为 .17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为 .18.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为 .三、解答题(一);本大题共5小题,共32018年甘肃省定西市,解答应写出必要的文字说明,证明过程或演算步骤 19.计算:22(1)b aa b a b÷---.20.如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁可以缩短从A 地到B 地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将约缩短多少公里?(参考数据:3 1.7≈,2 1.4≈)23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。

2021年中考数学模拟试卷(含答案解析) (37)

2021年中考数学模拟试卷(含答案解析) (37)

数学试题卷 第 1 页 (共 6 页)2021年中考模拟试题数 学(本试题卷共6页,满分120分,考试时间120分钟)★ 祝 考 试 顺 利 ★注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上指定位置。

2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

作图一律用2B 铅笔或0.5毫米的黑色签字笔。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答. 1. 如果a 的相反数是2,那么a 等于A.-2B.2C.21D.21- 2. 下列运算正确的是A.532a a a =+B.632a a a =•C.a a a =÷23 D.832)(a a =3. 如图,在Rt △ABC 中,∠ACB=90°,直线DE 过点C ,且DE ∥AB ,若∠ACD=50°,则∠B 的度数是A.50°B.40°C.30°D.25°4. 一个几何体的三视图如图所示,则这个几何体是 A.圆柱 B.三棱锥 C.球 D.圆锥5. 下列图形中,既是轴对称图形,又是中心对称图形的是A. B. C. D.数学试题卷 第 2 页 (共 6 页)6. 不等式组的解集是A. -1≤x <2B. -1<x ≤2C. -1≤x ≤2D. -1<x <27. 以Rt △ABC 的锐角顶点A 为圆心,适当长为半径作弧,与边AB ,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A 作直线,与边BC 交于点D.若∠ADB=60°,点D 到AC 的距离为2,则AB 的长为 A.3 B.32 C.23 D.4 8. 下列事件中,是必然事件的是A.车辆随机到达一个路口,遇到红灯B.将油滴在水中,油会浮在水面上C.如果22a b =,那么a b =D.掷一枚质地均匀的硬币,一定正面向上9. 《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著, 与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》 中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸, 锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如 图所示,已知:锯口深为 1寸,锯道AB=1尺(1尺=10寸),则该圆 材的直径为A.13B.24C.26D.2810. 如图所示的二次函数c bx ax y ++=2的图象中,刘星同学观察得出了下面四条信息:(1)ac b 42->0;(2)c >1;(3)c b a +->0;(4)c b a ++<0.你认为其中错误 的有:A.2个B.3个C.4个D.1个二、填空题:本大题共6个小题,每小题3分,共18分.把答案填在答题卡的相应位置上.11. 中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有 人工智能的手机处理器,将120亿个用科学记数法表示为 个. 12. 对于非零的两个实数a ,b ,规定b a b a 2+=*,若3=*b a且4)2(=*b a ,则=-b a .13. 如图,已知矩形ABCD 中,AB=3cm,AD=4cm,过对角线BD 的中点O 作BD 的垂直平分线EF ,分别交AD 、BC 于点E 、F ,则AE 的 长为 .14. 把1枚质地均匀的普通硬币重复掷三次,落地后三次都是正面朝上的概率是 .数学试题卷 第 3 页 (共 6 页)15. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:11052++-=t t h ,则小球距离地面的最大高度是m.16. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,P 为△ABC内部一点,且∠APB=∠BPC=135°.若PB 22=,则PC= .三、解答题:本大题共9个小题,共72分.解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内. 17.(本小题满分6分)先化简,再求值:)1()2)(2(a a a a ---+,其中12-=a .18.(本小题满分6分)我市某初中课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188 186 198 202 221 199 219 208 187 224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:谷粒颗数 175≤x <185 185≤x <195 195≤x <205 205≤x <215 215≤x <225频数8 10 3 对应扇形图中区域D E C(2)如图所示的扇形统计图中,扇形A 对应的圆心角为 度,扇形B 对应的圆心角为 度;(3)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?数学试题卷 第 4 页 (共 6 页)19.(本小题满分6分)小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车 吊臂的支点O 距离地面的高度OO′=2米.当吊臂顶端由A 点抬升至 A′点(吊臂长度不 变)时,地面B 处的重物(大小忽略不计)被吊至B′处,紧绷着的吊绳A′B′=AB .AB 垂直地面 O′B 于点B ,A′B′垂直地面O′B 于点C ,吊臂长度OA′=OA=10米,且cosA 53=, sinA′21=.求此重物在水平方向移动的距离BC.20. (本小题满分7分)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工;若甲、乙共同整理 20分钟后,乙需再单独整理20分钟才能完工. (1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?21.(本小题满分6分)如图,一次函数b kx y +=的图象与反比例函数xmy =的 图象交于点A (-3,m +8),B (n ,-6)两点. (1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.22.(本小题满分8分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2,求阴影部分的面积.23.(本小题满分10分)在新冠疫情防控期间,某医疗器械商业集团新进了40台A型电子体温测量仪,60台B 型电子体温测量仪,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30A型B型甲连锁店200 170乙连锁店160 150y(元).(1)求y关于x的函数关系式,并求出x的取值范围:(2)为了促销,集团决定仅对甲连锁店的A型测量仪每台让利a元销售,其他的销售利润不变,并且让利后每台A型测量仪的利润仍然高于甲连锁店销售的每台B型测量仪的利润,问该集团应该如何设计调配方案,使总利润达到最大?数学试题卷第 5 页(共6 页)数学试题卷 第 6 页 (共 6 页)24.(本小题满分11分)在△ABC 中,∠A=90°,点D 在线段BC 上,∠EDB=21∠C ,BE ⊥DE,垂足为E ,DE 与AB 相交于点F.图3图2图1ABCDEFABD EFF ED )C BA探究:当AB=AC 且C ,D 两点重合时(如图1)探究(1)线段BE 与FD 之间的数量关系,直接写出结果 ;(2)∠EBF= .证明:当AB=AC 且C ,D 不重合时,探究线段BE 与FD 的数量关系,并加以证明. 计算:当AB=k AC 时,如图,求FDBE的值 (用含k 的式子表示).25.(本小题满分12分)已知关于x 的二次函数c bx ax y ++=2(a >0)的图象经过点C(0,1),且与x 轴交于不同的两点A 、B ,点A 的坐标是(1,0). (1)求c 的值和a ,b 之间的关系式; (2)求a 的取值范围;(3)该二次函数的图象与直线1=y 交于C 、D 两点,设 A 、B 、C 、D 四点构成的四边形的对角线相交于点P ,记△PCD 的面积为S 1,△PAB 的面积为S 2,当0<a <l 时,求证:S 1-S 2为常数,并求出该常数.。

2021年初三数学中考模拟试题(附解析)

2021年初三数学中考模拟试题(附解析)

2021年九年级中考模拟考试数学试题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.下列各数中,最小的数是()A.3B.﹣2C.﹣D.02.据统计,2021年第一季度全球手机出货量达到3.4亿部,将数据3.4亿用科学记数法表示为()A.3.4×108B.3.4×1010C.0.34×109D.34×1073.下列图形中,不能经过折叠围成正方体的是()A.B.C.D.4.下列计算正确的是()A.a+b=ab B.3a2+2a2=5a4C.(﹣a3b)2=a6b2D.a2b3c÷(﹣ab2)=﹣ab5.下列说法中,错误的是()A.明天会下雨是随机事件B.某发行量较大的彩票中奖概率是,那么购买1001张彩票一定会中奖C.要了解某市初中生每天的睡眠时间,应该采用抽样调查的方式进行D.乘客乘坐飞机前的安检应采取全面调查的方式进行6.已知y是x的一次函数,下表给出5组自变量x及其对应的函数y的值.x…﹣2﹣1012…y…﹣3﹣1136…其中只有1个函数值计算有误,则这个错误的函数值是()A.﹣1B.1C.3D.67.如图,点A、C在∠FBD的两条边BF、BD上,BE平分∠FBD,CE平分∠ACD,连接AE,若∠BEC=35°,则∠FAE的度数为()A.35°B.45°C.55°D.65°8.如图,一次函数y=﹣x+2的图象与坐标轴的交点为A和B,下列说法中正确的是()A.点(2,﹣1)在直线AB上B.y随x的增大而增大C.当x>0时,y<2D.△AOB的面积是29.如图,菱形OABC的边OA在x轴上,点B坐标为(9,3),分别以点B、C为圆心,以大于BC 的长为半径画弧,两弧交于点D、E,作直线DE,交x轴于点F,则点F的坐标是()A.(7.5,0)B.(6.5,0)C.(7,0)D.(8,0)10.如图,矩形ABCD中,AB=8cm,BC=4cm,动点E和F同时从点A出发,点E以每秒2cm的速度沿A→D的方向运动,到达点D时停止,点F以每秒4cm的速度沿A→B→C→D的方向运动,到达点D时停止.设点F运动x(秒)时,△AEF的面积为y(cm2),则y关于x的函数的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.写出一个比﹣3大且比2小的负无理数.12.有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是.13.已知关于x的一元二次方程mx2+x﹣3=0有两个不相等的实数根,则m的取值范围是.14.如图,半圆O的直径AB=4cm,=,点C是上的一个动点(不与点B,G重合),CD ⊥OG于点D,CE⊥OB于点E,点E与点F关于点O中心对称,连接DE、DF,则△DEF面积的最大值为cm2.15.如图,正方形ABCD的边长为3,点G在边AD上,GD=1,GH⊥BC于点H,点E是边AB 上一动点(不与点A,B重合),EF⊥CD于点F,交GH于点Q,点O、P分别是EH和GQ的中点,连接OP,则线段OP的长度为.三、解答题(本大题共8个小题,满分75分)16.(1)化简:(a﹣2)2﹣(a+1)(a﹣6);(2)计算:2sin45°﹣20210﹣+|﹣1|.17.为了解某校七年级男生的身高情况,某数学活动小组进行了抽样和分析,过程如下:[收集数据]随机抽取了七年级若干名男生,测得他们的身高(单位:cm),记录如下:152 153 154 155 155 155 156 156 157 157 158 160 160 160161 161 162 162 162 163 163 163 163 164 164 164 165 165165 166 167 168 169 169 170 170 172 172 175 175[整理数据]整理以上数据,得到如下尚不完整的频数分布表和直方图:调查结果频数分布表组别身高(单位:cm)频数频率A150≤x<155a0.075B155≤x<16080.2C160≤x<165150.375D165≤x<1700.2E170≤x<17560.15 [分析数据]根据以上频数分布表和直方图,即可对数据进行针对性的分析.根据以上信息解答下列问题:(1)此次抽样调查的样本容量是,统计表中a=.(2)所抽取的样本中,男生身高的中位数所在的组别是.(3)请把频数分布直方图补充完整.(4)若该校七年级有男生400人,根据调查数据估计身高不低于165cm的大约有多少人?18.某数学兴趣小组进行了一次有趣的数学探究:如图①所示,在钝角∠AOB的边OB上任取一点C,过点C作CE∥OA,以点C为圆心,CO的长为半径画弧,交射线CE于点D,在上任取一点P,作射线OP,交射线CE于点F,当点P在上移动时,点F也随之移动,是否存在某个时刻,∠AOF恰好等于∠AOB呢?经过试验、猜想、推理验证,他们发现:当PF与OC满足某种数量关系时,∠AOF=∠AOB.请你根据以上信息,把如下不完整的“图②”和“已知”补充完整,并写出“证明”过程.已知:如图②,点C在钝角∠AOB的边OB上,CE∥OA,以点C为圆心、CO的长为半径画弧,交射线CE于点D,点P在上,射线OP交CE于点F,(填PF与OC的数量关系).求证:∠AOF=∠AOB.19.钓鱼岛是我国固有领土,2021年4月26日,中华人民共和国自然资源部在其官网上公布《钓鱼岛及其附属岛屿地形地貌调查报告》,报告公布了钓鱼岛及其附属岛屿的高分辨率海岛地形数据.如图所示,点A是岛上最西端“西钓角”,点B是岛上最东端“东钓角”,AB长约3641米,点D是岛上的小黄鱼岛,且A、B、D三点共线.某日中国海监一艘执法船巡航到点C处时,恰好看到正北方的小黄鱼岛D,并测得∠ACD=70°,∠BCD=45°.根据以上数据,请求出此时执法船距离小黄鱼岛D的距离CD的值.(参考数据:tan70°≈2.75,sin70°≈0.94,cos70°≈0.34,结果精确到1米.)20.如图,已知二次函数y=x2﹣2mx﹣2+m2的顶点为P,矩形OABC的边OA落在x轴上,点B的坐标是(6,2).(1)求点P的坐标,并说明随着m值的变化,点P的运动轨迹是什么?(2)若该二次函数的图象与矩形OABC的边恰好有2个交点,请直接写出此时m的取值范围.21.某水果批发店销售粑粑柑和苹果,均按整箱出售,粑粑柑比苹果每箱贵30元.某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍.(1)求粑粑柑、苹果每箱各是多少元?(2)某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,那么可最多购买多少箱粑粑柑?22.研究函数y=+3的图象和性质,可以通过列表、描点、连线画出函数图象,然后结合函数图象进行分析.探究过程如下:(1)函数y=+3的自变量x的取值范围是.(2)y与x的几组对应值如表:x…﹣3﹣2﹣101 1.5 2.534567…y… 2.8 2.75m 2.52154 3.5n 3.25 3.2…根据表格中的数据,在同一平面直角坐标系中描点,并用平滑的曲线进行连线,画出图象的另外一支,并写出m+n﹣2=.(3)观察图象可知,函数图象既是中心对称图形,又是轴对称图形,它的对称中心的坐标是,它的对称轴的解析式是.(4)当x满足时,y随x的增大而减小.(5)结合函数图象填空:当关于x的方程+3=k(x﹣2)+3有两个不相等的实数根时,实数k的取值范围是;关于x的方程+3=k(x﹣2)+3无实数根时,实数k的取值范围是.23.已知点M是矩形ABCD的边AB上一个动点,过点M作MG⊥CD于点G,交对角线AC于点E,连接BE,过点E作EF⊥BE,交射线DC于点F.(1)如图1,若AB=AD,则FG与DG的数量关系是;(2)如图2.若AB=4,AD=3,①当点M在边AB上移动时,FG与DG的数量关系是否保持不变?若不变,请仅就图2求出它们之间的数量关系;若变化,请说明理由.②当时,请直接写出AM的最大值和最小值.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

2021年中考数学模拟试卷含答案解析 (15)

2021年中考数学模拟试卷含答案解析 (15)

2021年中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.在下列六个数中:0,,,0.101001,﹣10%,5213,分数的个数是()A.2个B.3个C.4个D.5个2.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.3.二次函数y=2(x﹣1)2﹣3的顶点坐标为()A.(1,3)B.(﹣1,﹣3)C.(﹣1,3)D.(1,﹣3)4.下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等5.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时B.小时C.小时D.小时6.若a是﹣1的整数部分,b是5+的小数部分,则a(﹣b)的值为()A.6B.4C.9D.37.一次数学竞赛共有30道题,规定答对一道得10分,答错一道或者不答扣3分,在这次竞赛中,小亮想至少得120分,设他答对了x道题,则根据题意可列出不等式为()A.10x﹣(30﹣x)≤120B.10x≥120C.10x>120D.10x﹣3(30﹣x)≥1208.根据流程图中的程序,当输入x的值为﹣2时,输出y的值为()A.4B.6C.8D.109.用若干大小相同的黑白两种颜色的正方形瓷砖,按下列规律铺成一列图案,其中,第①幅图中黑、白色瓷砖共5块;第②幅图中黑、白色瓷砖共12块:第③幅图中黑、白色瓷砖共21块.则第6幅图案中黑、白色瓷砖共()块.A.45B.49C.60D.6410.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3.直径为5的⊙O分别与AC、BC相切于点F、E,与AB交于点M、N,过点O作OP⊥MN于P,则OP的长为()A.1B.C.D.11.“大金鹰”雕塑,雄居在重庆南山671米高的鹞鹰岩上,家住南山的小星同学利用周末去测量大金鹰的大致高度.大金鹰是雄踞在一人造石台上,石台侧面BC长15米,坡度i=1:0.75,小星站在距离C点16米的D点,测得大金鹰顶部A的仰角为64°,则大金鹰AB的高度约为()米.(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,结果保留一位小数)A.37.3B.37.2C.39.3D.39.212.关于x的分式方程+=﹣2的解为正数,且关于x的不等式组有解,则满足上述要求的所有整数a的和为()A.﹣16B.﹣12C.﹣10D.﹣6二.填空题(共6小题,满分24分,每小题4分)13.港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为元.14.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)15.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为,则袋中共有小球只.16.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为.17.上周日,小飞与小林参加了“青春劲跑”长跑比赛.点A,点B及终点C顺次在一条直线上比赛时,小飞从A点起跑,同时小林则从与A点相距200米的B点起跑,小飞全程都保持匀速跑,小林按某一速度匀速跑一段时间后,感觉状态良好,于是将跑速提高了40米/分,并按新的速度匀速前进直至终点C.如图为比赛开始后,两人的跑步时间x (单位:分)与两人距离终点的距离y(单位:米)之间的函数图象.则在本次比赛中,小林从出发到完成比赛,共用时分.18.某个“清凉小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮料的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出,但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元,则这个“清凉小屋”自动售货机一个工作日的销售收入是元.三.解答题(共8小题,满分78分)19.(10分)计算:(1)(x+2y)2﹣(x﹣y)(x﹣4y)(2)(﹣x+2)÷20.(10分)如图,Rt△ACB中,∠ACB=90°,∠A=30°,∠ABC的角平分线BE交AC于点E.点D为AB上一点,且AD=AC,CD,BE交于点M.(1)求∠DMB的度数;(2)若CH⊥BE于点H,证明:AB=4MH.21.(10分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生.请按要求回答下列问题:收集数据(1)若要从全年级学生中抽取一个96人的样本,你认为以下抽样方法中比较合理的有.(只要填写序号即可)①随机抽取两个班级的96名学生;②在全年级学生中随机抽取96名学生;③在全年级12个班中分别各随机抽取8名学生;④从全年级学生中随机抽取96名男生.整理数据(2)将抽取的96名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为、;②估计全年级A、B类学生大约一共有名.成绩(单位:分)频数频率A类(80~100)0.5B类(60~79)0.25C类(40~59)16D类(0~39)8分析数据(3)学校为了解其它学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和第一中学71524320.75第二中学71804970.82你认为哪所学校的教学效果较好?结合数据,请提出一个合理解释来支持你的观点.22.(10分)亲子装是现代家庭中的一种流行趋势,亲子装不仅能表达“我们是亲密的一家人”的浓浓亲情,同时家长可以过一把“孩意”瘾,重温那份久违的童真.某专卖店购进一批甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,其中每套甲款亲子装进价200元,每套乙款亲子装进价160元,进行试销售,供不应求,很快全部销售完毕,已知每套乙款亲子装售价为240元,(1)求购进甲、乙两款亲子装各多少套?(2)六一儿童节临近,专卖店又购入第二批甲、乙两款亲子装并进行促销活动,在促销期间,每套甲款亲子装在进价的基础上提高(a+10)%销售,每套乙款亲子装在第一批售价的基础上降低a%销售,结果在促销活动中,甲款亲子装的销售量比第一批甲款销售量降低了a%,乙款亲子装的销售量比第一批乙款销售量上升了25%,结果本次促销活动共获利5200元,求a的值.23.(10分)在平面直角坐标系中,若点P的坐标为(x,y),则定义:d(x,y)=|x|+|y|为点P到坐标原点O的“折线距离”.(1)若已知P(﹣2,3),则点P到坐标原点O的“折线距离”d(﹣2,3)=;(2)若点P(x,y)满足2x+y=0,且点P到坐标原点O的“折线距离”d(x,y)=6,求出P的坐标;(3)若点P到坐标原点O的“折线距离”d(x,y)=3,试在坐标系内画出所有满足条件的点P构成的图形,并求出该图形的所围成封闭区域的面积.24.(10分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,我们把形如a+bi(a,b为实数,i是虚数单位)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2+)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i﹣(﹣1)=3+i.根据以上信息,解答下列问题:(1)下列等式或命题中,错误的是A.i4=1B.复数(1+i)2的实部为0C.(1+i)×(3﹣4i)=﹣1﹣iD.i+i2+i3+i4+…+i2019=﹣1(2)计算:①(1+2i)(2﹣i)+(2﹣i)2;②(1+2)3(1﹣2i)3.25.(10分)在平行四边形ABCD中,BC的垂直平分线交AC于F,连线AE、BF.(1)如图1,若BF⊥AC,AE=3,AD=6,求AF的长;(2)如图2,若AE,BF交于点G,且∠ACD=∠BGE,求证:AF+2FG=FC.26.(8分)综合与探究:如图1,Rt△AOB的直角顶点O在坐标原点,点A在y轴正半轴上,点B在x轴正半轴上,OA=4,OB=2.将线段AB绕点B顺时针旋转90°得到线段BC,过点C作CD⊥x 轴于点D,抛物线y=ax2+3x+c经过点C,与y轴交于点E(0,2),直线AC与x轴交于点H.(1)求点C的坐标及抛物线的表达式;(2)如图2,已知点G是线段AH上的一个动点,过点G作AH的垂线交抛物线于点F (点F在第一象限).设点G的横坐标为m.①点G的纵坐标用含m的代数式表示为;②如图3,当直线FG经过点B时,求点F的坐标,判断四边形ABCF的形状并证明结论;③在②的前提下,连接FH,点N是坐标平面内的点,若以F,H,N为顶点的三角形与△FHC全等,请直接写出点N的坐标.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.在下列六个数中:0,,,0.101001,﹣10%,5213,分数的个数是()A.2个B.3个C.4个D.5个【分析】根据分数的定义解答即可.【解答】解:在下列六个数中:0,,,0.101001,﹣10%,5213中,分数有,0.101001,﹣10%共3个.故选:B.2.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.【分析】俯视图是从上面看,注意所有的看到的棱都应表现在主视图中.【解答】解:如图所示:它的俯视图是:.故选:C.3.二次函数y=2(x﹣1)2﹣3的顶点坐标为()A.(1,3)B.(﹣1,﹣3)C.(﹣1,3)D.(1,﹣3)【分析】二次函数的顶点式方程:y=a(x﹣h)2+k,其顶点坐标是P(h,k).【解答】解:∵二次函数的顶点式方程是:y=2(x﹣1)2﹣3,∴该函数的顶点坐标是:(1,﹣3);故选:D.4.下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6﹣2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【解答】解:A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选:D.5.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时B.小时C.小时D.小时【分析】过点C作CD⊥AB,交AB的延长线于点D.设CD=x海里.解Rt△CAD,得出AD=x海里.解Rt△CBD得出BD=x海里.根据AD﹣BD=AB列出方程x﹣x =20(﹣1),求出x=20,那么BC=CD=20海里,再利用时间=路程÷速度求解.【解答】解:如图,过点C作CD⊥AB,交AB的延长线于点D.由题意,得∠CAD=30°,设CD=x海里.在Rt△CAD中,∵∠CAD=30°,∴AC=2CD=2x海里,AD=CD=x海里.在Rt△CBD中,∵∠CBD=45°,∴BD=CD=x海里.∵AD﹣BD=AB,∴x﹣x=20(﹣1),解得x=20,∴BC=CD=20海里,∵救援艇的速度为30海里/小时,∴救援艇到达C处所用的时间为=(小时).故选:C.6.若a是﹣1的整数部分,b是5+的小数部分,则a(﹣b)的值为()A.6B.4C.9D.3【分析】先估算和的大小,然后求出a、b的值,代入所求式子计算即可.【解答】解:∵2<﹣1<3,∴a=2,又∵7<5+<8,∴5+的整数部分为7∴b=5+﹣7=﹣2;∴a(﹣b)=2×(﹣+2)=4.故选:B.7.一次数学竞赛共有30道题,规定答对一道得10分,答错一道或者不答扣3分,在这次竞赛中,小亮想至少得120分,设他答对了x道题,则根据题意可列出不等式为()A.10x﹣(30﹣x)≤120B.10x≥120C.10x>120D.10x﹣3(30﹣x)≥120【分析】将答对题数所得的分数减去答错或不答所扣的分数,在由题意知小亮答题所得的分数大于等于120分,列出不等式即可.【解答】解:设他答对了x道题,根据题意可得:10x﹣3(30﹣x)≥120.故选:D.8.根据流程图中的程序,当输入x的值为﹣2时,输出y的值为()A.4B.6C.8D.10【分析】根据所给的函数关系式所对应的自变量的取值范围,将x的值代入对应的函数即可求得y的值.【解答】解:∵x=﹣2,不满足x≥1∴对应y=﹣x+5,故输出的值y=﹣x+5=﹣×(﹣2)+5=1+5=6.故选:B.9.用若干大小相同的黑白两种颜色的正方形瓷砖,按下列规律铺成一列图案,其中,第①幅图中黑、白色瓷砖共5块;第②幅图中黑、白色瓷砖共12块:第③幅图中黑、白色瓷砖共21块.则第6幅图案中黑、白色瓷砖共()块.A.45B.49C.60D.64【分析】设第n幅图案中黑、白色瓷砖共a n块(n为正整数),观察图形,根据各图案中黑、白色瓷砖数量的变化可得出变化规律“a n=n2+4n(n为正整数)”,再代入n=6即可求出结论.【解答】解:设第n幅图案中黑、白色瓷砖共a n块(n为正整数).观察图形,可知:a1=12+1×4=5,a2=22+2×4=12,a3=32+3×4=21,…,∴a n=n2+4n(n为正整数),∴a6=62+4×6=60.故选:C.10.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3.直径为5的⊙O分别与AC、BC相切于点F、E,与AB交于点M、N,过点O作OP⊥MN于P,则OP的长为()A.1B.C.D.【分析】连结OE,OF,则四边形OFCE为正方形,可证明△AFG∽△ACB,可求出OG 长,证明△OGP∽△ABC可求出OP的长.【解答】解:连结OE,OF,∵⊙O分别与AC、BC相切于点F、E,∴OE⊥BC,OF⊥AC,∵OE=OF,∴四边形OFCE为正方形,设FG=x,∵FG∥BC,∴△AFG∽△ACB,∴,∴,解得x=,∴OG=,∵∠OGP=∠AGF=∠ABC,∴△OGP∽△ABC,∴,∴,∴.故选:B.11.“大金鹰”雕塑,雄居在重庆南山671米高的鹞鹰岩上,家住南山的小星同学利用周末去测量大金鹰的大致高度.大金鹰是雄踞在一人造石台上,石台侧面BC长15米,坡度i=1:0.75,小星站在距离C点16米的D点,测得大金鹰顶部A的仰角为64°,则大金鹰AB的高度约为()米.(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,结果保留一位小数)A.37.3B.37.2C.39.3D.39.2【分析】延长AB交DC的延长线于H,根据坡度的概念分别求出CH、BH,根据正切的定义求出AH,结合图形计算得到答案.【解答】解:延长AB交DC的延长线于H,则AH⊥DC,设CH=3x米,∵石台侧面BC的坡度i=1:0.75,∴BH=4x米,在Rt△BCH中,BC2=CH2+BH2,即152=(3x)2+(4x)2,解得,x=3,则CH=3x=9,BH=4x=12,∴DH=DC+CH=25,在Rt△ADH中,tan∠ADH=,∴AH=DH•tan∠ADH≈25×2.05=51.25,∴AB=AH﹣BH=39.25≈39.3,故选:C.12.关于x的分式方程+=﹣2的解为正数,且关于x的不等式组有解,则满足上述要求的所有整数a的和为()A.﹣16B.﹣12C.﹣10D.﹣6【分析】根据分式方程的解为正数即可得出a<2且a≠1,根据不等式组有解,即可得出a>﹣5,找出﹣5<a<2且a≠1中所有的整数,将其相加即可得出结论.【解答】解:解分式方程得x=,因为分式方程的解为正数,所以>0且≠4,解得:a<2且a≠1,解不等式,得:x≤a+5,∵不等式组有解,∴a+5>0,解得:a>﹣5,综上,﹣5<a<2,且a≠1,则满足上述要求的所有整数a的和为﹣4+(﹣3)+(﹣2)+(﹣1)+0=﹣10,故选:C.二.填空题(共6小题,满分24分,每小题4分)13.港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为7.2×1010元.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:720亿=72000000000=7.2×1010.故答案为:7.2×1010.14.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为2﹣π.(结果保留π)【分析】根据菱形的性质得到AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.15.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为,则袋中共有小球10只.【分析】直接利用概率公式计算.【解答】解:设袋中共有小球只,根据题意得=,解得x=10,所以袋中共有小球10只.故答案为10.16.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为.【分析】连接AF,由矩形的性质得AD∥BC,AD=BC,由平行线的性质得∠AEF=∠GFE,由折叠的性质得∠AFE=∠GFE,AF=FG,推出∠AEF=∠AFE,则AF=AE,AE =FG,得出四边形AFGE是平行四边形,则AF∥EG,得出∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB==,即可得出结果.【解答】解:连接AF,如图所示:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∴∠AEF=∠GFE,由折叠的性质可知:∠AFE=∠GFE,AF=FG,∴∠AEF=∠AFE,∴AF=AE,∴AE=FG,∴四边形AFGE是平行四边形,∴AF∥EG,∴∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB===,∴cos∠EGF=,故答案为:.17.上周日,小飞与小林参加了“青春劲跑”长跑比赛.点A,点B及终点C顺次在一条直线上比赛时,小飞从A点起跑,同时小林则从与A点相距200米的B点起跑,小飞全程都保持匀速跑,小林按某一速度匀速跑一段时间后,感觉状态良好,于是将跑速提高了40米/分,并按新的速度匀速前进直至终点C.如图为比赛开始后,两人的跑步时间x (单位:分)与两人距离终点的距离y(单位:米)之间的函数图象.则在本次比赛中,小林从出发到完成比赛,共用时分.【分析】小飞全程匀速,速度为10200÷34=300米/分,经过2分小飞追上小林,因此速度差为200÷2=100米/分,小林的速度为300﹣100=200米/分,小林15分钟行15×200=3000米,15分钟以后的速度为200+40=240米/分,以后行至C地所用时间为(10000﹣3000)÷240=分,因此行完全程的时间为15+=分.【解答】解:小飞的速度:10200÷34=300米/分,速度差为:200÷2=100米/分,小林的原速度为300﹣100=200米/分,小林后速度为:200+40=240米/分,小林前15分钟行驶的路程200×15=3000米,小林行完剩下路程需要时间(10000﹣3000)÷240=分,因此小林从出发到完成比赛,共用时15+=分,故答案为:.18.某个“清凉小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮料的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出,但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元,则这个“清凉小屋”自动售货机一个工作日的销售收入是760元.【分析】设C饮料数量工作日时有x瓶,根据题意,得A、B两种饮料数量工作日时4x 瓶、2x瓶,A、B、C三种饮料周六数量分别为:6x(瓶),3.2x(瓶),1.5x(瓶),设变化了y元,得10.1x+y=403,其中x为整数,即可求得y的值,进而求得工作日销售额.【解答】解:设C饮料数量工作日时有x瓶,根据题意,得A、B两种饮料数量工作日时4x瓶、2x瓶,A、B、C三种饮料周六数量分别为:4x(1+50%)=6x(瓶),2x(1+60%)=3.2x(瓶),x(1+50%)=1.5x(瓶),∴工作日钱数:2×4x+3×2x+5x=19x(元),周六钱数:2×6x+3×3.2x+5×1.5x=29.1x(元),当不发生任何故障时,多出29.1x﹣19x=10.1x(元),其中x为整数,由于发生了故障,周六的销售额发生了变化,设变化了y元,则10.1x+y=403,其中x为整数,y=1、2、3、﹣1、﹣2、﹣3,得y=﹣1时,x=40,所以工作日销售额为:19×40=760(元).故答案为760.三.解答题(共8小题,满分78分)19.(10分)计算:(1)(x+2y)2﹣(x﹣y)(x﹣4y)(2)(﹣x+2)÷【分析】(1)先利用完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+4xy+4y2﹣(x2﹣4xy﹣xy+4y2)=x2+4xy+4y2﹣x2+4xy+xy﹣4y2=9xy;(2)原式=÷=•=﹣.20.(10分)如图,Rt△ACB中,∠ACB=90°,∠A=30°,∠ABC的角平分线BE交AC 于点E.点D为AB上一点,且AD=AC,CD,BE交于点M.(1)求∠DMB的度数;(2)若CH⊥BE于点H,证明:AB=4MH.【分析】(1)根据角平分线的性质得到∠ABE=∠CBE=30°,根据等腰三角形的性质得到∠ACD=∠ADC=75°,根据三角形的外角性质计算,得到答案;(2)根据含30度角的直角三角形的性质,等腰直角三角形的性质计算,即可证明.【解答】(1)解:∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BE是∠ABC的角平分线,∴∠ABE=∠CBE=30°,∵∠A=30°,AC=AD,∴∠ACD=∠ADC=75°,∴∠DMB=∠ADC﹣∠ABE=45°;(2)证明:∵∠ACB=90°,∠A=30°,∴AB=2BC,∵CH⊥BE,∠CBE=30°,∴BC=2CH,∴AB=4CH,在Rt△CHM中,∠CMH=45°,∴CH=MH,∴AB=4MH.21.(10分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生.请按要求回答下列问题:收集数据(1)若要从全年级学生中抽取一个96人的样本,你认为以下抽样方法中比较合理的有②、③.(只要填写序号即可)①随机抽取两个班级的96名学生;②在全年级学生中随机抽取96名学生;③在全年级12个班中分别各随机抽取8名学生;④从全年级学生中随机抽取96名男生.整理数据(2)将抽取的96名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为60°、30°;②估计全年级A、B类学生大约一共有432名.成绩(单位:分)频数频率A类(80~100)0.5B类(60~79)0.25C类(40~59)16D类(0~39)8分析数据(3)学校为了解其它学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和第一中学71524320.75第二中学71804970.82你认为哪所学校的教学效果较好?结合数据,请提出一个合理解释来支持你的观点.【分析】(1)根据抽样调查的代表性和可靠性求解可得;(2)①用360°分别乘以C、D类人数所占比例即可得;②用总人数乘以A、B的频率和可得;(3)根据极差、方差和A、B的频率的意义给出合理解释即可(答案不唯一).【解答】解:(1)抽样方法中比较合理的有②、③,故答案为:②、③;(2)①C类部分的圆心角度数为360°×=60°,D类部分的圆心角度数为360°×=30°;②估计全年级A、B类学生大约一共有12×48×(0.5+0.25)=432名.故答案为:60°,30°,432;(3)第一中学教学效果好,极差、方差小于第二中学,说明第一中学学生两极分化,学生之间的差距较第二中学好.第二中学教学效果好,A、B类的频率和大于第一中学,说明第二中学学生及格率较第一中学学生好.(答案不唯一).22.(10分)亲子装是现代家庭中的一种流行趋势,亲子装不仅能表达“我们是亲密的一家人”的浓浓亲情,同时家长可以过一把“孩意”瘾,重温那份久违的童真.某专卖店购进一批甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,其中每套甲款亲子装进价200元,每套乙款亲子装进价160元,进行试销售,供不应求,很快全部销售完毕,已知每套乙款亲子装售价为240元,(1)求购进甲、乙两款亲子装各多少套?(2)六一儿童节临近,专卖店又购入第二批甲、乙两款亲子装并进行促销活动,在促销期间,每套甲款亲子装在进价的基础上提高(a+10)%销售,每套乙款亲子装在第一批售价的基础上降低a%销售,结果在促销活动中,甲款亲子装的销售量比第一批甲款销售量降低了a%,乙款亲子装的销售量比第一批乙款销售量上升了25%,结果本次促销活动共获利5200元,求a的值.【分析】(1)设购进甲、乙两款亲子装分别为x、y套,根据甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意先分别求出促销活动中甲、乙两款亲子装单件利润和销售总量(用a表示),然后由促销活动共获利5200元,可以列出相应的方程,从而可以求得a的值.【解答】解:(1)设购进甲、乙两款亲子装分别为x、y套.依题意得,解得:,答:购进甲款亲子装60套,乙款亲子装40套.(2)依题意可知:第二批甲亲子装每件利润为:200(a+10)%=(2a+20)(元),第二批乙款亲子装售价为:240•(1﹣a%)=240﹣1.2a(元),乙亲子装每件利润为:(240﹣1.2a﹣160)=(80﹣1.2a)元第二批甲款亲子装的销售量为:60•(1﹣a%)=(60﹣0.6a)(件)第二批乙款亲子装的销售量为:40×(1+25%)=50(件)依题意得:(2a+20)(60﹣0.6a)+50(80﹣1.2a)=5200解得:a1=0(不合题意舍去),a2=40,∴a的值为40.答:a的值为40.23.(10分)在平面直角坐标系中,若点P的坐标为(x,y),则定义:d(x,y)=|x|+|y|为点P到坐标原点O的“折线距离”.(1)若已知P(﹣2,3),则点P到坐标原点O的“折线距离”d(﹣2,3)=5;(2)若点P(x,y)满足2x+y=0,且点P到坐标原点O的“折线距离”d(x,y)=6,求出P的坐标;(3)若点P到坐标原点O的“折线距离”d(x,y)=3,试在坐标系内画出所有满足条件的点P构成的图形,并求出该图形的所围成封闭区域的面积.【分析】(1)根据新定义和绝对值的意义计算;(2)利用题意得到|x|+|y|=6和y=﹣2x,然后解方程组求出x和y即可得到P点坐标;(3)利用题意得到所有满足条件的点P构成的图形为正方形ABCD,然后计算它的面积即可.【解答】解:(1)点P到坐标原点O的“折线距离”d(﹣2,3)=|﹣2|+|3|=2+3=5;故答案为5;(2)根据题意得|x|+|y|=6,而2x+y=0,即y=﹣2x,∴|x|+|﹣2x|=6,∴3|x|=6,解得x=2或﹣2,当x=2时,y=﹣2x=﹣4;当x=﹣2时,y=﹣2x=4,∴P点坐标为(2,﹣4),(﹣2,4);(3)如图,所有满足条件的点P构成的图形为正方形ABCD,该图形的所围成封闭区域的面积=×6×6=18.24.(10分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,我们把形如a+bi(a,b为实数,i是虚数单位)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2+)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i﹣(﹣1)=3+i.根据以上信息,解答下列问题:(1)下列等式或命题中,错误的是CA.i4=1B.复数(1+i)2的实部为0C.(1+i)×(3﹣4i)=﹣1﹣iD.i+i2+i3+i4+…+i2019=﹣1(2)计算:①(1+2i)(2﹣i)+(2﹣i)2;②(1+2)3(1﹣2i)3.【分析】(1)利用题中的新定义判断即可;(2)①原式利用多项式乘以多项式法则,完全平方公式化简,再利用题中的新定义计算即可求出值;②原式利用完全平方公式,以及多项式乘以多项式法则计算,再利用新定义化简即可求出值.【解答】解:(1)A.i4=i2•i2=(﹣1)×(﹣1)=1,不符合题意;B.复数(1+i)2=1+2i﹣1=2i,实数部分为0,不符合题意;C.(1+i)×(3﹣4i)=3﹣4i+3i+4=7﹣i,符合题意;D.i+i2+i3+i4+…+i2019=i﹣1﹣i+1+…+i﹣1﹣i=﹣1,不符合题意,故选C;(2)①原式=2﹣i+4i+2+4﹣4i﹣1=7﹣i;②原式=27(﹣3﹣4i)(1﹣2i)=27(﹣3+6i﹣4i﹣8)=27(﹣11+2i)=﹣297+54i.25.(10分)在平行四边形ABCD中,BC的垂直平分线交AC于F,连线AE、BF.(1)如图1,若BF⊥AC,AE=3,AD=6,求AF的长;(2)如图2,若AE,BF交于点G,且∠ACD=∠BGE,求证:AF+2FG=FC.【分析】(1)过点E作EG⊥AC于点G,由平行四边形的性质BC=AD=6,由等腰直角三角形的性质可得GE=FC=3,由勾股定理可求AG的长,即可求AF的长;(2)通过证明△DAC∽△BGE,可得=,AC=2BG,即可得结论.【解答】解:(1)如图,过点E作EG⊥AC于点G,∵四边形ABCD是平行四边形∴BC=AD=6,∵BC的垂直平分线交AC于F,∴BF=CF,且∠BFC=90°,BC=6∴BF=CF=6,EF=BE=EC=3,∵EF=CE,EG⊥AC∴GE=FC=3在Rt△AEG中,AG==6,。

2021年甘肃省平凉市数学中考真题含答案解析及答案(word解析版)

2021年甘肃省平凉市数学中考真题含答案解析及答案(word解析版)

甘肃省白银市2021年中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内1.(3分)(2012•绍兴)3的相反数是( ) A.3B.﹣3C.D.﹣考点:相反数.分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答:解:根据相反数的概念及意义可知:3的相反数是﹣3.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号。

一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•白银)下列运算中,结果正确的是( ) A.4a﹣a=3a B.a10÷a2=a5C.a2+a3=a5D.a3•a4=a12考点:同底数幂的除法。

合并同类项。

幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项、同底数幂的除法法则:底数不变,指数相减,同底数幂的乘法法则:底数不变,指数相加,可判断各选项.解答:解:A、4a﹣a=3a,故本选项正确。

B、a10÷a2=a10﹣2=a8≠a5,故本选项错误。

C、a2+a3≠a5,故本选项错误。

D、根据a3•a4=a7,故a3•a4=a12本选项错误。

故选A.点评:此题考查了同类项的合并,同底数幂的乘除法则,属于基础题,解答本题的关键是掌握每部分的运算法则,难度一般.3.(3分)(2011•桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ) A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.解答:解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误。

B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误。

2021中考数学模拟试题附答案

2021中考数学模拟试题附答案

2021中考数学模拟试题附答案2021年中考数学信息试卷一、选择题(每题3分,共24分)1.绝对值是表示一个数距离0的距离,因此|-6|=6,选A。

2.32x*x=32x^2,(x^2)^3=x^6,x/x=1,选D。

3.一个几何体的主视图和左视图都是正方形,俯视图是一个圆,只有长方体符合这个条件,选A。

4.根据圆的性质,∠BOC=1/2(∠BAC+∠ABC)=1/2(90°+50°)=70°,选C。

5.众数是出现次数最多的数,中位数是将一组数据按大小排列后,处于中间位置的数。

3、4、5、5、6、7中,5出现了两次,是众数,也是中位数,选B。

6.圆锥的侧面积为8π,母线长为4,根据圆锥的公式,侧面积=πrl,其中r是底面半径,l是母线长。

代入数据得8π=πr×4,解得r=2,选A。

7.折叠后重叠部分的形状是等腰直角三角形,底边长为1,高为1,面积为1/2,选B。

8.八个边长为1的正方形组成一个边长为4的正方形,该直线将这个正方形分成两个面积相等的部分,因此该直线过中心点,解析式为y=x,选B。

二、填空题(每题3分,共30分)9.25的平方根是5.10.一个大于1且小于2的无理数可以是√2或1+√2.11.太阳的半径约是6.97×10^5千米。

12.函数y=1/(x+1)中,自变量x的取值范围是x≠-1.13.分解因式:a-ab=a(1-b)。

14.平均增长率是每次增长的比率的平均值,设第一次涨价为x,第二次为y,则(1+x)(1+y)=1.44,解得xy=0.2,平均增长率为√(1+xy)-1=0.1.15.将a2+2a-3分解因式得(a+3)(a-1)=0,因此a=-3或a=1,代入2016-2a2-4a得答案为2016-2(-3)^2-4(-3)=2012.16.线段EF的长为2√5.17.内接正四边形和正六边形的边长都是2,因此阴影部分是由两个等腰直角三角形组成的,面积为2×(1/2)×2×2=4,选D。

2021年中考数学模拟试卷附答案解析 (16)

2021年中考数学模拟试卷附答案解析 (16)

2021年中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.的平方根是()A.6B.±6C.D.2.如图,几何体的左视图是()A.B.C.D.3.将0.0000103用科学记数法表示为()A.1.03×10﹣6B.1.03×10﹣5C.10.3×10﹣6D.103×10﹣4 4.民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.5.下列计算正确的是()A.(x﹣y)2=x2﹣y2B.2x2+x2=3x2C.(﹣2x2)3=8x6D.x3÷x=x36.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°7.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是()A.8,9B.8,8C.8,10D.9,88.已知[x]表示不小于x的最小整数,若(x)表示不大于x的最大整数,当x≥1时,[x]﹣(x)的值可能有()①0 ②1 ③2 ④﹣1A.1个B.2个C.3个D.4个9.在商场里,为方便一部分残疾人出入,商场特意设计了一种特殊通道“无障碍通道”,如图,线段BC表示无障碍通道,线段AD表示普通扶梯,其中“无障碍通道”BC的坡度(或坡比)为i=1:2,BC=12米,CD=6米,∠D=30°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.A.10B.10﹣12C.12D.10+12 10.抛物线y=x2﹣9与x轴交于A、B两点,点P在函数y=的图象上,若△P AB为直角三角形,则满足条件的点P的个数为()A.2个B.3个C.4个D.6个11.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置时,若AB=2,AD=4,则阴影部分的面积为()A.π﹣B.π﹣2C.π﹣4D.π﹣212.平面直角坐标系中,函数y=(x>0)的图象G经过点A(4,1),与直线y=x+b 的图象交于点B,与y轴交于点C.其中横、纵坐标都是整数的点叫做整点.记图象G 在点A、B之间的部分与线段OA、OC、BC围成的区域(不含边界)为W.若W内恰有4个整点,结合函数图象,b的取值范围是()A.﹣≤b<1或<b≤B.﹣≤b<1或<b≤C.﹣≤b<﹣1或﹣<b≤D.﹣≤b<﹣1或<b≤二.填空题(共6小题,满分24分,每小题4分)13.把多项式a4﹣a2分解因式的结果是.14.如图,若正五边形和正六边形有一边重合,则∠BAC=.15.方程的解是.16.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B 地的距离为千米.17.如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△HED的面积是1﹣;③∠AFG=135°;④BC+FG=.其中正确的结论是.(填入正确的序号)18.如图,正方形ABCD的边长为8,E为BC的四等分点(靠近点B的位置),F为B边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.三.解答题(共9小题,满分78分)19.(6分)计算:﹣3tan30°+(π﹣4)0﹣()﹣120.(6分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是:N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,求a ﹣b+c﹣d的值;(4)已知不等式组M:有解,且N:1<x≤3是不等式组的“子集”,则满足条件的有序整数对(m,n)共有多少个?21.(6分)如图,在菱形ABCD中,E、F分别为边AD和CD上的点,且AE=CF.连接AF、CE交于点G.求证:∠DGE=∠DGF.22.(8分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.(1)甲、乙二人每小时各做零件多少个?(2)甲做几小时与乙做4小时所做机械零件数相等?23.(8分)如图,AB是⊙O的直径,点C、D在半圆上,=,过D作DE⊥BC于E.(1)求证:DE是⊙O的切线;(2)若DE=2CE=4,求⊙O的半径.24.(10分)有4张不透明的卡片,除正面上的图案不同外,其他均相同,将这4张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为;(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用列表的方法,求两次所抽取的卡片恰好都是中心对称图形的概率.25.(10分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA、AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.①连接AC,求△ABC的面积;②在图上连接OC交AB于点D,求的值.26.(12分)如图1,△ABC中,∠BAC=60°,D、E分别为AC、AB边上两点,且CD=AB,AD=AE,将线段CD绕点C逆时针旋转α角至CG.(1)如图2,当α=120°时,连EG取EG中点P,连AP,CP,求证:AP垂直CP;(2)如图3,当α=240°时,连AG,取AG中点P,连EP,CP,试判断EP与CP的关系,并证明;(3)在图1中,连BD,取BD中点Q,连AQ,则=.27.(12分)如图1,抛物线C1:y=ax2+bx﹣2与直线l:y=﹣x﹣交于x轴上的一点A,和另一点B(3,n)(1)求抛物线C1的解析式;(2)点P是抛物线C1上的一个动点(点P在A,B两点之间,但不包括A,B两点)PM⊥AB于点M,PN∥y轴交AB于点N,求MN的最大值;(3)如图2,将抛物线C1绕顶点旋转180°后,再作适当平移得到抛物线C2,已知抛物线C2的顶点E在第一象限的抛物线C1上,且抛持线C2与抛物线C1交于点D,过点D作DF∥x轴交抛物线C2于点F,过点E作EG∥x轴交抛物线C1于点G,是否存在这样的抛物线C2,使得四边形DFEG为菱形?若存在,请求E点的横坐标;若不存在,请说明理由.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.的平方根是()A.6B.±6C.D.【分析】先计算出的值,再求其平方根.【解答】解:∵=6,∴6的平方根为,故选:D.2.如图,几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形,比较即可.【解答】解:如图,几何体的左视图是.故选:C.3.将0.0000103用科学记数法表示为()A.1.03×10﹣6B.1.03×10﹣5C.10.3×10﹣6D.103×10﹣4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.0000103用科学记数法表示为1.03×10﹣5.故选:B.4.民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C.既不是轴对称,也不是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.5.下列计算正确的是()A.(x﹣y)2=x2﹣y2B.2x2+x2=3x2C.(﹣2x2)3=8x6D.x3÷x=x3【分析】分别根据完全平方公式,合并同类项法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.(x﹣y)2=x2﹣2xy+y2,故本选项不合题意;B.2x2+x2=3x2,正确;C.(﹣2x2)3=﹣8x6,故本选项不合题意;D.x3÷x=x2,故本选项不合题意.故选:B.6.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:B.7.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是()A.8,9B.8,8C.8,10D.9,8【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的那个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图知8环的人数最多,所以众数为8环,由于共有11个数据,所以中位数为第6个数据,即中位数为8环,故选:B.8.已知[x]表示不小于x的最小整数,若(x)表示不大于x的最大整数,当x≥1时,[x]﹣(x)的值可能有()①0 ②1 ③2 ④﹣1A.1个B.2个C.3个D.4个【分析】分两种情况考虑,当x为大于1的整数时,当x为大于1的小数时,用给出的新定义分析即可得到答案.【解答】解:∵x≥1,当x为大于1的整数时,[x]﹣(x)=x﹣x=0,当x为大于1的小数时,则[x]﹣(x)=1;则[x]﹣(x)的值可能有两个,故选:B.9.在商场里,为方便一部分残疾人出入,商场特意设计了一种特殊通道“无障碍通道”,如图,线段BC表示无障碍通道,线段AD表示普通扶梯,其中“无障碍通道”BC的坡度(或坡比)为i=1:2,BC=12米,CD=6米,∠D=30°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.A.10B.10﹣12C.12D.10+12【分析】根据勾股定理,可得CE,BE的长,根据正切函数,可得AE的长,再根据线段的和差,可得答案.【解答】解:如图,延长AB交DC的延长线于点E,,由BC的坡度(或坡比)为i=1:2,得BE:CE=1:2.设BE=x,CE=2x.在Rt△BCE中,由勾股定理,得BE2+CE2=BC2,即x2+(2x)2=(12)2,解得x=12(米),∴BE=12(米),CE=24(米),DE=DC+CE=6+24=30(米),由tan30°=,得,解得AE=10.由线段的和差,得AB=AE﹣BE=(10﹣12)(米),故选:B.10.抛物线y=x2﹣9与x轴交于A、B两点,点P在函数y=的图象上,若△P AB为直角三角形,则满足条件的点P的个数为()A.2个B.3个C.4个D.6个【分析】设点P的坐标为(x,y),分∠APB=90°、∠P AB=90°和∠PBA=90°三种情况考虑:当∠APB=90°时,以AB为直径作圆,由圆与双曲线4个交点可知此时点P 有4个;当∠P AB=90°时,可找出x=﹣3,进而可得出点P的坐标;当∠PBA=90°时,可找出x=3,进而可得出点P的坐标.综上即可得出结论.【解答】解:设点P的坐标为(x,y),当∠APB=90°时,以AB为直径作圆,如图所示,∵圆与双曲线4个交点,∴点P有4个;当∠P AB=90°时,x=﹣3,y==﹣,∴点P的坐标(﹣3,﹣);当∠PBA=90°时,x=3,y=,∴点P的坐标为(3,).综上所述:满足条件的点P有6个.故选:D.11.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置时,若AB=2,AD=4,则阴影部分的面积为()A.π﹣B.π﹣2C.π﹣4D.π﹣2【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE的面积,即可求出答案.【解答】解:连接CE,∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,Rt△EDC中,∵CE=CB=4,CD=2,∴ED==2,∠CED=30°,∴∠ECD=60°,S阴影=﹣=﹣2.故选:D.12.平面直角坐标系中,函数y=(x>0)的图象G经过点A(4,1),与直线y=x+b 的图象交于点B,与y轴交于点C.其中横、纵坐标都是整数的点叫做整点.记图象G在点A、B之间的部分与线段OA、OC、BC围成的区域(不含边界)为W.若W内恰有4个整点,结合函数图象,b的取值范围是()A.﹣≤b<1或<b≤B.﹣≤b<1或<b≤C.﹣≤b<﹣1或﹣<b≤D.﹣≤b<﹣1或<b≤【分析】由于直线BC:y=x+b与OA平行,分两种情况:直线l在OA的下方和上方,画图根据区域W内恰有4个整点,确定b的取值范围.【解答】解:如图1,直线l在OA的下方时,当直线l:y=x+b过(0,﹣1)时,b=﹣1,且经过(4,0)点,区域W内有三点整点,当直线l:y=x+b过(1,﹣1)时,b=﹣,且经过(5,0),区域W内有三点整点,∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图2,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=x+b过(1,2)时,b=,当直线l:y=x+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.把多项式a4﹣a2分解因式的结果是a2(a+1)(a﹣1).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=a2(a2﹣1)=a2(a+1)(a﹣1),故答案为:a2(a+1)(a﹣1)14.如图,若正五边形和正六边形有一边重合,则∠BAC=132°.【分析】根据正多边形的内角,角的和差,可得答案.【解答】解:正五边形的内角为=108°,正六边形的内角为=120°,∠BAC=360°﹣108°﹣120°=132°,故答案为:132°.15.方程的解是3.【分析】观察可得最简公分母是(x﹣4),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣4),得2﹣(x﹣1)=0,解得x=3.检验:把x=3代入(x﹣4)=﹣1≠0.∴原方程的解为:x=3.16.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B 地的距离为千米.【分析】根据题意和函数图象可以分别求得甲乙的速度,从而可以得到当甲第二次与乙相遇时,乙离B地的距离.【解答】解:设甲的速度为akm/h,乙的速度为bkm/h,,解得,,设第二次甲追上乙的时间为m小时,100m﹣25(m﹣1)=600,解得,m=,∴当甲第二次与乙相遇时,乙离B地的距离为:25×()=千米,故答案为:.17.如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△HED的面积是1﹣;③∠AFG=135°;④BC+FG=.其中正确的结论是①②③.(填入正确的序号)【分析】依据四边形AEGF为平行四边形,以及AE=GE,即可得到平行四边形AEGF 是菱形;依据AE=﹣1,即可得到△HED的面积=DH×AE=(﹣1+1)(﹣1)=1﹣;依据四边形AEGF是菱形,可得∠AFG=∠GEA=2×67.5°=135°;根据四边形AEGF是菱形,可得FG=AE=﹣1,进而得到BC+FG=1+﹣1=.【解答】解:∵正方形ABCD的边长为1,∴∠BCD=∠BAD=90°,∠CBD=45°,BD=,AD=CD=1.由旋转的性质可知:∠HGD=BCD=90°,∠H=∠CBD=45°,BD=HD,GD=CD,∴HA=BG=﹣1,∠H=∠EBG=45°,∠HAE=∠BGE=90°,∴△HAE和△BGE均为直角边为﹣1的等腰直角三角形,∴AE=GE.在Rt△AED和Rt△GED中,,∴Rt△AED≌Rt△GED(HL),∴∠AED=∠GED=(180°﹣∠BEG)=67.5°,AE=GE,∴∠AFE=180°﹣∠EAF﹣∠AEF=180°﹣45°﹣67.5°=67.5°=∠AEF,∴AE=AF.∵AE=GE,AF⊥BD,EG⊥BD,∴AF=GE且AF∥GE,∴四边形AEGF为平行四边形,∵AE=GE,∴平行四边形AEGF是菱形,故①正确;∵HA=﹣1,∠H=45°,∴AE=﹣1,∴△HED的面积=DH×AE=(﹣1+1)(﹣1)=1﹣,故②正确;∵四边形AEGF是菱形,∴∠AFG=∠GEA=2×67.5°=135°,故③正确;∵四边形AEGF是菱形,∴FG=AE=﹣1,∴BC+FG=1+﹣1=,故④不正确.故答案为:①②③.18.如图,正方形ABCD的边长为8,E为BC的四等分点(靠近点B的位置),F为B边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为5.【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【解答】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=2+3=5,故答案为:5.三.解答题(共9小题,满分78分)19.(6分)计算:﹣3tan30°+(π﹣4)0﹣()﹣1【分析】直接利用二次根式的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣3×+1﹣2=2﹣+1﹣2=﹣1.20.(6分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是:N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组A是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是a ≥2;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,求a ﹣b+c﹣d的值;(4)已知不等式组M:有解,且N:1<x≤3是不等式组的“子集”,则满足条件的有序整数对(m,n)共有多少个?【分析】(1)求出不等式组A与B的解集,利用题中的新定义判断即可(2)根据“子集”的定义确定出a的范围即可;(3)根据“子集”的定义确定出各自的值,代入原式计算即可求出值;(4)根据“子集”的定义确定出所求即可.【解答】解:(1)A:的解集为3<x<6,B:的解集为x>1,M:的解集为x>2,则不等式组A是不等式组M的子集;(2)∵关于x的不等式组是不等式组的“子集”,∴a≥2;(3)∵a,b,c,d为互不相等的整数,其中a<b,c<d,A:a≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,∴a=3,b=4,c=2,d=5,则a﹣b+c﹣d=3﹣4+2﹣5=﹣4;(4)不等式组M整理得:,由不等式组有解得到<,即≤x<,∵N:1<x≤3是不等式组的“子集”,∴≤1,>3,即m≤2,n>9,∴满足条件的有序整数对(m,n)无数个.21.(6分)如图,在菱形ABCD中,E、F分别为边AD和CD上的点,且AE=CF.连接AF、CE交于点G.求证:∠DGE=∠DGF.【分析】根据菱形的性质和全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD是菱形,∴DA=DC=AB=BC,∵AE=CF,∴DE=DF,∵∠ADG=∠CDG,DG=DG,∴△DEG≌△DFG(SAS),∴∠DGE=∠DGF.22.(8分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.(1)甲、乙二人每小时各做零件多少个?(2)甲做几小时与乙做4小时所做机械零件数相等?【分析】(1)设甲每小时做x个零件,则乙每小时做(x+8)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做150个所用的时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据甲所需的时间=乙每小时加工零件的个数×4÷甲每小时加工零件的个数,即可求出结论.【解答】解:(1)设甲每小时做x个零件,则乙每小时做(x+8)个零件,依题意,得:=,解得:x=32,经检验,x=32是原方程的解,且符合题意,∴x+8=40.答:甲每小时做32个零件,乙每小时做40个零件.(2)40×4÷32=5(小时).答:甲做5小时与乙做4小时所做机械零件数相等.23.(8分)如图,AB是⊙O的直径,点C、D在半圆上,=,过D作DE⊥BC于E.(1)求证:DE是⊙O的切线;(2)若DE=2CE=4,求⊙O的半径.【分析】(1)由圆周角定理和垂径定理得出OD⊥AC,得出DE⊥OD,即可得出结论;(2)作OF⊥BC于F,推出四边形OFED是矩形,根据矩形的性质得到OF=ED=4,OD=EF,设⊙O的半径为R,则BF=CF=R﹣2,根据勾股定理列方程即可得到答案.【解答】(1)证明:连接OD、AC,如图所示:∵AB是⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DE⊥BC,∴DE∥AC,∵=,∴OD⊥AC,∴DE⊥OD,D在⊙O上,∴DE是⊙O的切线;(2)解:作OF⊥BC于F,如图2所示:则BF=CF,四边形OFED是矩形,∴OF=DE=4,OD=EF,∵DE=2CE=4,∴CE=2,设⊙O的半径为R,则BF=CF=R﹣2,在Rt△BOF中,BF2+OF2=OB2,∴(R﹣2)2+42=R2,解得R=5,即⊙O的半径为5.24.(10分)有4张不透明的卡片,除正面上的图案不同外,其他均相同,将这4张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为;(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用列表的方法,求两次所抽取的卡片恰好都是中心对称图形的概率.【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为=,故答案为:;(2)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是中心对称图形的有2种结果,则两次所抽取的卡片恰好都是中心对称图形的概率为=.25.(10分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA、AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.①连接AC,求△ABC的面积;②在图上连接OC交AB于点D,求的值.【分析】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)①由三角形面积公式可求解;②由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.【解答】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH===6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12;(2)①∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH⊥OB,∴AH∥BC,∴点A到BC的距离=BH=2,∴S△ABC=×3×2=3;②∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴=.26.(12分)如图1,△ABC中,∠BAC=60°,D、E分别为AC、AB边上两点,且CD=AB,AD=AE,将线段CD绕点C逆时针旋转α角至CG.(1)如图2,当α=120°时,连EG取EG中点P,连AP,CP,求证:AP垂直CP;(2)如图3,当α=240°时,连AG,取AG中点P,连EP,CP,试判断EP与CP的关系,并证明;(3)在图1中,连BD,取BD中点Q,连AQ,则=.【分析】(1)先判断出△CPG≌△C′PE,得出CP=C′P,进而得出C'E=CD,即可得出结论;(2)先判断出△P AE≌△PGE′(ASA),得出AE=GE',再判断出△ADE是等边三角形,得出∠ADE=60°,AE=DE,再判断出∠CDE=∠CGE'进而判断出△CDE≌△CGE′,即可得出结论;(3)先判断出四边形ADHB是平行四边形,得出∠BHD=∠BAC=60°,再判断出△ADH ≌BHC,得出BC=AH,即可得出结论.【解答】解:(1)如图1,延长CP,AB交于点C′,由旋转知,∠ACG=120°,∵∠BAC=60°,∴∠BAC+∠ACG=180°,∴CG∥AB,∴∠PCG=∠C',∠PEC'=∠G,∵点P是EG的中点,∴△CPG≌△C′PE(SAS),∴CP=C′P,CG═C′E,由旋转知,CG=CD,∴C'E=CD,∵AE=AD,∴AC=AC′,∵CP=C'P,∴AP⊥PC;(2)如图2,过点G作GE′∥AB交EP的延长线于E′,∴∠P AE=∠PGE',∠AEP=∠E',∵点P是AG的中点,∴AP=GP,∴△P AE≌△PGE′(ASA),∴AE=GE',连接CE,CE′,DE,∵AD=AE,∠BAC=60°,∴△ADE是等边三角形,∴∠ADE=60°,AE=DE,∴DE=GE',∵∠ADE=60°,∴∠CDE=120°,∵∠CGE'=∠CGA+∠AGE'=180°﹣∠ACG﹣∠CAG+∠BAC+∠CAG=180°﹣∠ACG+∠BAC=180°﹣120°+60°=120°,∴∠CDE=∠CGE'∴△CDE≌△CGE′(SAS),∴CE=CE′,且∠ECE′=120°,又PE=P E′,∴CP⊥PE,∠PCE=∠ECE'=60°,在Rt△CPE中,PE=PC;(3)如图3,延长AQ至H,使AQ=QH,连接BH,DH,∵点Q是BD的中点,∴BQ=DQ,∴四边形ADHB为平行四边形,∴DH∥AB,AD=BH,AB=DH,∵AB=CD,∴DH=CD,∵DH∥AB,∴∠HDC=∠BAC=60°,∴△CDH是等边三角形,∴DH=CH,∠DHC=60°,∵四边形ADHB是平行四边形,∴∠BHD=∠BAC=60°,∴∠BHC=∠BHD+∠DHC=120°,∵∠ADH=180°﹣∠CDH=120°,∴∠ADH=∠BHC,∴△ADH≌BHC(SAS),∴AH=BC,则==,故答案为:.27.(12分)如图1,抛物线C1:y=ax2+bx﹣2与直线l:y=﹣x﹣交于x轴上的一点A,和另一点B(3,n)(1)求抛物线C1的解析式;(2)点P是抛物线C1上的一个动点(点P在A,B两点之间,但不包括A,B两点)PM⊥AB于点M,PN∥y轴交AB于点N,求MN的最大值;(3)如图2,将抛物线C1绕顶点旋转180°后,再作适当平移得到抛物线C2,已知抛物线C2的顶点E在第一象限的抛物线C1上,且抛持线C2与抛物线C1交于点D,过点D作DF∥x轴交抛物线C2于点F,过点E作EG∥x轴交抛物线C1于点G,是否存在这样的抛物线C2,使得四边形DFEG为菱形?若存在,请求E点的横坐标;若不存在,请说明理由.【分析】(1)求直线l与x轴交点A坐标、B坐标,用待定系数法求抛物线C1的解析式.(2)延长PN交x轴于点H,设点P横坐标为m,由PN∥y轴可得点N、H横坐标也为m,即能用m表示PN、NH、AH的长.由∠AHN=∠PMN=90°及对顶角∠ANH=∠PNM 可得∠NAH=∠NPM.发现在Rt△PMN中,MN与PN比值即为sin∠NPM,故先在Rt △ANH中求sin∠NAH的值,再代入MN=PN•sin∠NPM,即得到MN与m的函数关系式,配方即求得MN最大值.(3)设点E(e,e2﹣e﹣2),所以可设抛物线C2顶点式为y=﹣(x﹣e)2+e2﹣e﹣2.令两抛物线解析式y=0列得关于x的方程,解得两抛物线的另一交点D即为抛物线C1的顶点,故DG=DE=EF,且求得DF平行且等于GE,即四边形DFEG首先一定是平行四边形.由▱DFEG为菱形可得DF=DG,故此时△DEF为等边三角形.利用特殊三角函数值作为等量关系列方程,即求得e的值.【解答】解:(1)直线l:y=﹣x﹣交x轴于点A∴﹣x﹣=0,解得:x=﹣1∴A(﹣1,0)∵点B(3,n)在直线l上∴n=﹣×3﹣=﹣2∴B(3,﹣2)∵抛物线C1:y=ax2+bx﹣2经过点A、B∴解得:∴抛物线C1的解析式为y=x2﹣x﹣2(2)如图1,延长PN交x轴于点H∴∠AHN=90°设P(m,m2﹣m﹣2)(﹣1<m<3)∵PN∥y轴∴x N=x H=x P=m∴N(m,﹣m﹣),AH=m+1,∴NH=﹣(﹣m﹣)=m+,PN=﹣m﹣﹣(m2﹣m﹣2)=﹣m2+m+∵Rt△AHN中,tan∠NAH=∴sin∠NAH==∵PM⊥AB于点M∴∠AHN=∠PMN=90°∵∠ANH=∠PNM∴∠NAH=∠NPM∴Rt△PMN中,sin∠NPM=∴MN=PN=(﹣m2+m+)=﹣(m﹣1)2+∴MN的最大值为(3)存在满足条件的抛物线C2,使得四边形DFEG为菱形如图2,连接DE,过点E作EQ⊥DF于点Q∵y=x2﹣x﹣2=(x﹣)2﹣∴抛物线C1顶点为(,﹣)设E(e,e2﹣e﹣2)(e>4)∴抛物线C2顶点式为y=﹣(x﹣e)2+e2﹣e﹣2当﹣(x﹣e)2+e2﹣e﹣2=x2﹣x﹣2解得:x1=e,x2=∴两抛物线另一交点D(,﹣)为抛物线C1顶点∵EG∥x轴,DF∥x轴∴EG=DF=2DQ=2(e﹣)=2e﹣3,EQ=e2﹣e﹣2+=e2﹣e+∴四边形DFEG是平行四边形若▱DFEG为菱形,则DG=DF∵由抛物线对称性可得:DG=DE=EF∴DE=EF=DF∴△DEF是等边三角形∴=tan∠EDQ=∴e2﹣e+=(e﹣)解得:e1=(舍去),e2=2+∴E点的横坐标为(2)时,四边形DFEG为菱形.。

2021年中考数学试题及解析:甘肃兰州-解析版

2021年中考数学试题及解析:甘肃兰州-解析版

甘肃省兰州市2021年中考数学试卷一、选择题(本题15小题,每小题4分,共60分)1、(2021•兰州)下列方程中是关于x的一元二次方程的是()A、B、ax2+bx+c=0 C、(x﹣1)(x+2)=1 D、3x2﹣2xy﹣5y2=0考点:一元二次方程的定义。

专题:方程思想。

分析:一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解答:解:A、由原方程,得x4+1=0,未知数的最高次数是4;故本选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故本选项错误;C、由原方程,得x2+x﹣3=0,符号一元二次方程的要求;故本选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故本选项错误.故选C.点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2、(2021•兰州)如图,某反比例函数的图象过点M(﹣2,1),则此反比例函数表达式为()A、y=B、y=﹣C、y=D、y=﹣考点:待定系数法求反比例函数解析式。

专题:待定系数法。

分析:利用待定系数法,设,然后将点M(﹣2,1)代入求出待定系数即可.解答:解:设反比例函数的解析式为(k≠0),由图象可知,函数经过点P(﹣2,1),∴1=,得k=﹣2,∴反比例函数解析式为y=﹣.故选B.点评:本题考查了待定系数法求反比例函数的解析式:图象上的点满足解析式,满足解析式的点在函数图象上.利用待定系数法是求解析式时常用的方法.3、(2021•兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A、20°B、30°C、40°D、50°考点:切线的性质;圆周角定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年甘肃省中考数学模拟四试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.绝对值为1的实数共有().A.0个B.1个C.2个D.4个2.若式子有意义,则实数m的取值范围是()2(1)m-A.m>﹣2 B.m>﹣2且m≠1C.m≥﹣2 D.m≥﹣2且m≠1 3.一元二次方程2x2-x+1=0的根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法判断4.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°5.下列四个几何体中,主视图为圆的是()A.B.C.D.6.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A .x >2B .x <2C .x≥2D .x≤27.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,tan ∠ABD=34,则线段AB 的长为( )A B .C .5 D .108.如图,在△ABC 中,AB=2,BC=4,∠ABC=30°,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .2﹣3π B .2﹣6π C .4﹣3π D .4﹣6π 9.如图,点A ,B 在双曲线y=3x (x >0)上,点C 在双曲线y=1x (x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC=BC ,则AB 等于( )A B . C .4 D .10.如图,矩形ABCD 的顶点A,B 在x 轴的正半轴上,反比例函数k y x=在第一象限内的图像经过点D ,交BC 于点E ,若AB=4,CE=2BE ,3tan 4AOD ∠=.则是的值为( )A .3B .C .6D .12二、填空题11.化简:2|=__________.12.把多项式x 3﹣25x 分解因式的结果是_____13.古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x 天可追上慢马,则由题意,可列方程为__.14.如图,四边形ABCD 是正方形,延长AB 到E ,使AE AC =,则BCE ∠=__________°.15.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 16.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为___________.17.a 是不为1的数,我们把11a-称为a 的差倒数,如:2的差倒数为1112=--;-1的差倒数为()11112=--;已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…以此类推,则2020a =__________.18.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA OC =,则下列结论:0abc <①;2404b ac a->②;10ac b ③-+=;.c OA OB a⋅=-④其中正确结论的序号是______.三、解答题19.计算:2sin30°﹣(π)01|+(12)﹣120.先化简,再求代数式(1﹣12a-)÷26924a aa-+-的值,其中a=4cos30°+3tan45°.21.如图,在四边形ABCD中,∠B=∠C= 90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE.(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:AE⊥DE.22.连接定西市陇西县至漳县的陇漳高速公路是G30连霍高速和G75兰海高速两大国家高速公路的连接点,预计于2021年6月通车,届时将形成陇西县的环城高速,充分发挥陇西城市节点的“阜码头”作用.在施工过程中,决定在A、B两地开凿隧道,从而将两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米.∠A=45°,∠B= 30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米? (结果精确到0.1千米)(参考数据≈1.41 1.73)23.如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.(1)甲蚂蚁选择“向左”爬行的概率为;(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.24.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.25.如图,反比例函数k y x=的图象经过点A (1-,4),直线y x b =-+(0b ≠)与双曲线k y x=在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C ,D 两点.(1)求k 的值;(2)当2b =-时,求△OCD 的面积;(3)连接OQ ,是否存在实数b ,使得ODQ OCD S S ∆∆=? 若存在,请求出b 的值;若不存在,请说明理由.26.如图,在▱ABCD 中,DC >AD ,四个角的平分线AE ,DE ,BF ,CF 的交点分别是E ,F ,过点E ,F 分别作DC 与AB 间的垂线MM'与NN',在DC 与AB 上的垂足分别是M ,N 与M′,N′,连接EF .(1)求证:四边形EFNM 是矩形;(2)已知:AE=4,DE=3,DC=9,求EF 的长.27.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.28.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.参考答案1.C【解析】分析:直接利用绝对值的性质得出答案.详解:绝对值为1的实数有:1,-1共2个.故选C.点睛:此题主要考查了实数的性质以及绝对值,正确把握绝对值的性质是解题关键.2.D【分析】根据二次根式有意义的条件即可求出答案.【详解】由题意可知:2010mm+≥⎧⎨-≠⎩,∴m≥﹣2且m≠1,故选D.【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件.3.C【分析】先计算△=b2-4ac的值,再根据计算结果判断方程根的情况即可.【详解】∵△=b 2 -4ac=1-8=-7<0,∴一元二次方程2x 2 -x+1=0没有实数根.故选C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.5.A【分析】首先依次判断每个几何体的主视图,然后即可得到答案.【详解】解:A、主视图是圆,B、主视图是三角形,C、主视图为矩形,D、主视图是正方形,故选:A.【点睛】本题考查了简单几何体的三视图,熟知这些简单几何体的三视图是解决此类问题的关键.6.B【分析】直接利用函数图象判断不等式kx+3>0的解集在x轴上方,进而得出结果.【详解】由一次函数图象可知关于x的不等式kx+3>0的解集是x<2故选B.【点睛】本题考查了一次函数的图象与性质和一元一次不等式及其解法,解题的关键是掌握一次函数与一元一次不等式之间的内在联系.7.C【解析】分析:根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.详解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD=34AOOB =,∴AO=3,在Rt△AOB中,由勾股定理得:,故选C.点睛:本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.8.A【分析】过A作AE⊥BC于E,依据AB=2,∠ABC=30°,即可得出AE=12AB=1,再根据公式即可得到,阴影部分的面积是12×4×1-2302360π⨯⨯=2-13π.【详解】如图,过A作AE⊥BC于E,∵AB=2,∠ABC=30°,∴AE=12AB=1,又∵BC=4,∴阴影部分的面积是12×4×1-2302360π⨯⨯=2-13π,故选A.【点睛】本题主要考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积,常用的方法:①直接用公式法;②和差法;③割补法.9.B【解析】【分析】依据点C在双曲线y=1x上,AC∥y轴,BC∥x轴,可设C(a,1a),则B(3a,1 a ),A(a,3a),依据AC=BC,即可得到3a﹣1a=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2【详解】点C在双曲线y=1x上,AC∥y轴,BC∥x轴,设C(a,1a),则B(3a,1a),A(a,3a),∵AC=BC,∴3a﹣1a=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,故选B.【点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.10.A【分析】由tan∠AOD=34ADOA=可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.【详解】∵tan∠AOD=34 ADOA=,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=13BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=kx经过点D、E,∴k=12a2=(4+4a)a,解得:a=12或a=0(舍),则k=12×14=3,故选A.【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.11.2【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】2<,∴原式2)=-2=-故答案为:2.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小是解题关键.12.x(x+5)(x﹣5).【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可.详解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案为x(x+5)(x-5).点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.13.240x=150x+12×150【分析】设良马x天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x的一元一次方程.【详解】解:设良马x天能够追上驽马.根据题意得:240x=150×(12+x)=150x+12×150.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据路程=速度×时间结合二者总路程相等,列出关于x的一元一次方程.14.22.5【分析】根据正方形的性质求出∠CAB=∠ACB=45°,再根据AC=AE求出∠ACE=67.5°,由此即可求出答案.【详解】∵四边形ABCD是正方形,∴∠DAB=∠DCB=90°,∵AC是对角线,∴∠CAB=∠ACB=45°,∵AC=AE,∴∠ACE=67.5°,∴∠BCE=∠ACE-∠ACB=22.5°,故答案为:22.5°.【点睛】此题考查正方形的性质,等腰三角形的性质,三角形的内角和性质,是一道较为基础的题型. 15.k <6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解, ∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.16.13【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:∵共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴能让两盏灯泡同时发光的概率为:26=13.故答案为:13.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.3【分析】根据题意先分别求出a2,a3,a4的值,进而得出变化规律,即可得出答案.【详解】解:∵a1=3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,∴a2=113-=-12,∴a3=111()2--=23,∴a4=1213-=3,…∵2020÷3=673…1,∴第2020个数与第1个数相等,∴a2020=3.故答案为:3.【点睛】此题主要考查了实数的运算以及差倒数的定义,正确得出数字变化规律是解题关键.18.①③④【解析】(1)∵抛物线开口向下,∴0a <,又∵对称轴在y 轴的右侧,∴ 0b >,∵抛物线与y 轴交于正半轴,∴0c > ,∴0abc <,即①正确;(2)∵抛物线与x 轴有两个交点,∴240b ac ->,又∵0a <, ∴2404b ac a-<,即②错误; (3)∵点C 的坐标为(0)c ,,且OA=OC ,∴点A 的坐标为(?0)c -,, 把点A 的坐标代入解析式得:20ac bc c -+=,∵0c >,∴10ac b -+=,即③正确;(4)设点A 、B 的坐标分别为12(?0)?(?0)x x ,、,,则OA=1x -,OB=2x , ∵抛物线与x 轴交于A 、B 两点,∴12x x ,是方程20ax bx c ++=的两根, ∴12c x x a⋅=, ∴OA·OB=12c x x a -⋅=-.即④正确; 综上所述,正确的结论是:①③④.19.【解析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.详解:原式=2×12点睛:此题主要考查了实数运算,正确化简各数是解题关键.20 【分析】根据分式的运算法则即可求出答案,【详解】当a=4cos30°+3tan45°时,所以(1﹣12a -)÷26924a a a -+-=232(2)•2(3)a a a a ---- =23a -=3. 【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 21.(1)见解析;(2)见解析【分析】(1)利用尺规作出∠ADC 的角平分线即可;(2)在DA 上截取DH =CD ,连接HE ,利用全等三角形的判定及性质证明∠DEC =∠DEH ,∠AEH =∠AEB 即可得证.【详解】解:(1)如图,线段DE ,AE 即为所求.(2)在DA 上截取DH =CD ,连接HE ,由(1)知∠HDE =∠CDE , 在HDE 与CDE 中,DH CD HDE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩, ∴HDE ≌CDE (SAS ),∴∠DHE =∠C =90°,∠DEH =∠DEC ,∴∠AHE =180°-∠DHE =90°,∵∠B =90°,∴∠AHE =∠B =90°,∵AD =AH +DH =AB +CD ,DH =CD ,∴AH =AB ,在Rt AEG 和Rt AEB 中,AH AB AE AE =⎧⎨=⎩, ∴Rt AEH ≌Rt AEB (HL ),∴∠AEH =∠AEB ,∵∠DEG +∠AEG +∠DEC +∠AEB =180°,∴2(∠DEG +∠AEG )=180°,∴∠DEG +∠AEG =90°,即∠AED =90°,∴AE ⊥DE .【点睛】本题考查作图-基本作图,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22.(1)开通隧道前,汽车从地到地大约要走136.4千米;(2)开通隧道后,汽车从A 地到B 地大约可以少走27.2千米.【分析】(1)开通隧道前,汽车从A 地到B 地要走的距离为AC +BC 的长,利用角的正弦值和余弦值即可算出.(2)开通隧道后,汽车从A 地到B 地要走的距离为AB 的长,汽车从A 地到B 地比原来少走的路程为AC +BC -AB 的长,利用角的余弦值和正切值即可算出.【详解】解:(1)如图,过点C 作CD ⊥AB ,垂足为D ,∵CD ⊥AB ,∴∠CDB =∠CDA =90°,∴在Rt BCD 中,sin B =CD BC , ∵∠B =30°,BC =80,∴sin30°=80CD =12, ∴CD =80×12=40, ∴在Rt ACD 中,sin A =CD AC , ∵∠A =45°,∴sin45°=40AC =2,∴AC =,∴AC +BC =80+≈80+40×1.41=136.4(千米).答:开通隧道前,汽车从地到地大约要走136.4千米.(2)∵在Rt BCD中,cos B=CD BC,∴cos30°=80BD∴BD=80×2=,∵在Rt ACD中,tan A=CD AD,∴tan45°=40 AD,∴AD=40tan45=401=40,∴AB=AD+BD=40+≈40+40×1.73=109.2(千米).∴汽车从A地到B地比原来少走的路程为:AC+BC-AB=136.4-109.2=27.2(千米).∴开通隧道后,汽车从A地到B地大约可以少走27.2千米.【点睛】本题主要考查了三角函数在解直角三角形中的应用,过点C作CD⊥AB,构造直角三角形是解决本题的关键.23.(1)12;(2)12.【解析】试题分析:(1)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,由爬行方向只能沿直线AB在“向左”或“向右”中随机选择,直接利用概率公式求解即可求得答案.(2)根据题意画出树状图或列表,然后由图表求得所有等可能的结果与两只蚂蚁开始爬行后会“触碰到”的情况,再利用概率公式即可求得答案.试题解析:解:(1)∵爬行方向只能沿直线AB在“向左”或“向右”中随机选择,∴甲蚂蚁选择“向左”爬行的概率为:12. (2)画树状图得:∵共有4种情况,由于甲蚂蚁爬行的速度比乙蚂蚁快,两只蚂蚁开始爬行后会“触碰到”的2种情况:甲向右乙向右,甲向右乙向左,∴两只蚂蚁开始爬行后会“触碰到”的概率为:2142=. 考点:1.列表法或树状图法;2.概率.24.(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.【分析】(1)由12岁的人数除以所占百分比可得样本容量;(2)先求出14、16岁的人数,再根据平均数、众数和中位数的定义求解可得; (3)用总人数乘以样本中15、16岁的人数所占比例可得.【详解】解:(1)样本容量为6÷12%=50; (2)14岁的人数为50×28%=14、16岁的人数为50﹣(6+10+14+18)=2, 则这组数据的平均数为12613101414151816250⨯+⨯+⨯+⨯+⨯=14(岁), 中位数为14+142=14(岁),众数为15岁; (3)估计该校年龄在15岁及以上的学生人数为1800×18+250=720人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(1)4k =-;(2)2;(3)b =【解析】试题分析:(1)把A (-1,4)代入双曲线的解析式即可;(2)由2b =-,可得到直线CD 的解析式为2y x =--,从而得出CO=DO=2,即可得到OCD S ∆的值;(3)过Q 作QE ⊥y 轴,垂足为E .然后分①b <0和②b >0两种情况讨论.当b <0时,由y x b =-+可知, OC=OD ,∠OCD=∠ODC=45°,所以∠EDQ=∠DQE=45°,得到DE=EQ ,由ODQ OCD S S ∆∆=,可得到CO=QE ,从而有Q (-b ,2b ),由点Q 在双曲线4y x =-的图象上,得到24b b -⋅=-,即可得到b 的值;②当b >0时,有ODQ OCD S S ∆∆>,综和这两种情况,得到b 的值.试题解析:(1)∵A (-1,4)在双曲线k y x=上,∴144k =-⨯=-; (2)∵2b =-,∴直线CD 的解析式为2y x =--,∴C (-2,0),D (0,-2),∴CO=2,DO=2,∴OCD S ∆=12CO·DO=2; (3)过Q 作QE ⊥y 轴,垂足为E .①当b <0时,由y x b =-+可知,C (b ,0),D (0,b ),∴OC=OD ,∴∠OCD=∠ODC=45°,∴∠EDQ=∠DQE=45°,∴DE=EQ ,∵ODQ OCD S S ∆∆=,∴12CO·DO=12DO·QE ,∴CO=QE ,∴Q (-b ,2b ),∵点Q 在双曲线4y x=-的图象上,∴24b b -⋅=-,∴22b =,∴b =∵b <0,∴b =;②当b >0时,此时ODQ OCD S S ∆∆>;综上所述,当b =ODQ OCD S S ∆∆=.考点:反比例函数与一次函数的交点问题.26.(1)证明见解析;(2)EF=4【分析】(1)要说明四边形EFNM是矩形,有ME⊥CD,FN⊥CD条件,还缺ME=FN,过点E、F 分别作AD、BC的垂线,垂足分别是G、H.利用角平分线上的点到角两边的距离相等可得结论;(2)利用平行四边形的性质,证明直角△DEA,并求出AD的长.利用全等证明△GEA≌△CNF,△DME≌△DGE从而得到DM=DG,AG=CN,再利用线段的和差关系,求出MN的长得结论.【详解】(1)如图,过点E、F分别作AD、BC的垂线,垂足分别是G、H,∵∠3=∠4,∠1=∠2,EG⊥AD,EM⊥CD,EM′⊥AB,∴EG=ME,EG=EM′,∴EG=ME=ME′=12 MM′,同理可证:FH=NF=N′F=12 NN′,∵CD∥AB,MM′⊥CD,NN′⊥CD,∴MM′=NN′,∴ME=NF=EG=FH,又∵MM′∥NN′,MM′⊥CD,∴四边形EFNM是矩形;(2)∵DC∥AB,∴∠CDA+∠DAB=180°,∵∠3=12∠CDA ,∠2=12∠DAB,∴∠3+∠2=90°,在Rt△DEA,∵AE=4,DE=3,∴,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB ,又∵∠2=12∠DAB ,∠5=12∠DCB , ∴∠2=∠5,由(1)知GE=NF ,在Rt △GEA 和Rt △CNF 中2590EGA FNC GE NF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△GEA ≌△CNF ,∴AG=CN ,在Rt △DME 和Rt △DGE 中,∵DE=DE ,ME=EG ,∴△DME ≌△DGE ,∴DG=DM ,∴DM+CN=DG+AG=AB=5,∴MN=CD ﹣DM ﹣CN=9﹣5=4,∵四边形EFNM 是矩形,∴EF=MN=4.【点睛】本题考查了平行四边形的性质、矩形的判定、角平分线的性质、勾股定理及三角形全等的判定,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的定理与性质是解题的关键.27.(1)见解析;(2)4.8cm ,MN =9.6cm .【分析】(1)先由切线长定理和平行线的性质可求出∠OBC +∠OCB =90°,进而可求∠BOC =90°,然后证明∠NMC=90°,即可证明MN 是⊙O 的切线;(2)连接OF,则OF⊥BC,根据勾股定理就可以求出BC的长,然后根据△BOC的面积就可以求出⊙O的半径,通过证明△NMC∽△BOC,即可求出MN的长.【详解】(1)证明:∵AB、BC、CD分别与⊙O切于点E、F、G,∴∠OBC=12∠ABC,∠OCB=12∠DCB,∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBC+∠OCB=12(∠ABC+∠DCB)=12×180°=90°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣90°=90°. ∵MN∥OB,∴∠NMC=∠BOC=90°,即MN⊥MC且MO是⊙O的半径,∴MN是⊙O的切线;(2)解:连接OF,则OF⊥BC,由(1)知,△BOC是直角三角形,∴BC=10,∵S△BOC=12•OB•OC=12•BC•OF,∴6×8=10×OF,∴OF=4.8cm,∴⊙O的半径为4.8cm,由(1)知,∠NCM=∠BCO,∠NMC=∠BOC=90°,∴△NMC∽△BOC,∴ MN CMOB CO=,即6MN=8 4.88+,∴MN=9.6(cm).【点睛】本题主要考查的是切线的判定与性质,切线长定理,三角形内角和定理,相似三角形的判定与性质,平行线的性质,勾股定理,三角形的面积等有关知识.熟练掌握各知识点是解答本题的关键.28.(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.。

相关文档
最新文档