光的衍射计算及答案

合集下载

第二章 光的衍射 习题及答案

第二章 光的衍射  习题及答案

第二章 光的衍射1. 单色平面光照射到一小圆孔上,将其波面分成半波带。

求第к个带的半径。

若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。

解:2022r r k k +=ρ 而20λkr r k +=20λk r r k =- 20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+ 略去22λk 项,则 λρ0kr k=将cm 104500cm,100,1-80⨯===λr k 带入上式,得 cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。

解:(1)根据上题结论ρρ0kr k =将cm 105cm,400-50⨯==λr 代入,得cm1414.01054005k k k =⨯⨯=-ρ当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。

(2)P 点最亮时,小孔的直径为cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。

解:根据题意 m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。

光的衍射习题(附答案)1

光的衍射习题(附答案)1

光的衍射(附答案)一.填空题1.波长λ=500nm(1nm=109m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d=12mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589nm)中央明纹宽度为4.0mm,则λ2≈442nm(1nm=109m)的蓝紫色光的中央明纹宽度为3.0mm.3.8mm,则4.时,衍射光谱中第±4,±8,…5.6.f7.8.9.λ210.X11.λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sinθ1=1λ1a sinθ2=2λ2=θ2,sinθ1=sinθ2由题意可知θ1代入上式可得λ1=2λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1,2,…)sinθ1=2k1λ2/aa sinθ2=k2λ2(k2=1,2,…)sinθ2=2k2λ2/a=2k1,则θ1=θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.若k212.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500nm,会聚透镜的焦距f=1.00m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1=λ13.9m).已(1)(2)所以x1=fλ1/ax2=fλ2/a则两个第一级明纹之间距为Δx=x2?x1=fΔλ/a=0.27cm1(2)由光栅衍射主极大的公式d sinφ1=kλ1=1λ1d sinφ2=kλ2=1λ2且有sinφ=tanφ=x/f=x2?x1=fΔλ/a=1.8cm所以Δx114.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ=480nm(1nm=109m)的平行光垂直照射双缝,在双缝后放一焦距f=2.0m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹15.(1)(2)λ'=510.3nm(2)a+b=3λ/sinφ=2041.4nmφ'=arcsin(2×400/2041.4)nm(λ=400nm)2φ''=arcsin(2×760/2041.4)nm(λ=760nm)2''?φ2'=25°白光第二级光谱的张角Δφ=φ216.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1=440nm,λ2=660nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ=kλ11d sinφ2=kλ2===当两谱线重合时有φ1=φ2即====两谱线第二次重合即是=,k1=6,k2=4由光栅公式可知d sin60°=6λ1∴d==3.05×103mm17.将一束波长λ=589nm(1nm=109m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射(1)(2)18.30°,且第三级是缺级.(1)光栅常数(a+b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a+b)和a之后,求在衍射角–<φ<范围内可能观察到的全部主极大的级次.解:(1)由光栅衍射的主极大公式得a+b==2.4×104cm(2)若第三级不缺级,则由光栅公式得(a+b)sinφ'=3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'=λa==8.0×103cm(3)(a+b)sinφ=kλ(主极大)a sinφ=k'λ(单缝衍射极小)(k'=1,2,3,…)因此k=3,6,9,…缺级;又∵k max==4,∴实际呈现出的是k=0,±1,±2级明纹(k=±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ=480nm(1nm=109m),试问:(1)人眼最小分辨角是多大?(2)在教室的黑板上,画的等号两横线相距2mm,坐在距黑板10m处的同学能否看清?(要有计算过程)20.θ的两条谱λ2当k'=2时,a=d=×2.4μm=1.6μm21.某单色X射线以30°角掠射晶体表面时,在反射方向出现第一级极大;而另一单色X射线,波长为0.097nm,它在与晶体表面掠射角为60°时,出现第三级极大.试求第一束X射线的波长.解:设晶面间距为d,第一束X射线波长为λ1,掠射角θ1=30°,级次k1=1;另一束射线波长为λ2=0.097nm,掠射角θ2=60°,级次k2=3.根据布拉格公式:第一束2d sinθ1=k1λ1第二束2d sinθ2=k2λ2两式相除得λ==0.168nm.1。

大学物理(吴百诗)习题答案14光的衍射

大学物理(吴百诗)习题答案14光的衍射

大学物理练习册—光的衍射—光的衍射14-1 解:a f x l 20=D ,nm 625mm 10625.0100.220.15.22330=´=´´´=´D =-f a x l 14-2 解:2)12(sin 11l q +=k a ,2)12(sin 22l q +=k a ,A 42861326000)122(12)12(1221=+´´+´=++=k k l l 14-3 解:l j q k a a =-sin sin 时为暗条纹,j l q sin sin +=a k ,)sin (sin 1j l q +=-ak 14-4 解:(1)2)12(sin l q +=k a ,mm 12102.4400)12(4.16.0212sin 23+´=´+´´»+=-k k k a q l 3=k ,A 60001=l ;或;或4=k ,A 46672=l(2)3=k 或 4=k(3)半波带数为)12(+k ,即7或9。

(4)l l q k k a ==22sin ,mm 101.24004.16.0sin 3k k k a -´=´==q l 3=k ,A 70001=l ;4=k ,A 52502=l ;5=k ,A 42002=l 14-5 解:d R l q q q 22.1sin 11=»=,LD »1q ,m 109.81055022.11052.122.1393´=´´´´==\--l Dd L 14-6 解:(1)双缝干涉第k 级明纹满足级明纹满足 l q k d =sin第k 级明纹在屏上的位置级明纹在屏上的位置d k f f f x k l q q =»=sin tan m 104.2101.01048001050331021----+´=´´´´==-=D \d f x x x k k l (2)m 104.21002.01048001050222tan 223102110----´=´´´´´==»=D a f f f x l q q (3)l q k d =sin ,l q k a ¢=sin ,k k k a d k ¢=¢=¢=502.01.0,1=¢k 时,5=k 缺级。

光的衍射习题(附答案)

光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f 为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为mm.3.平行单色光垂直入射在缝宽为a = mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f= m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = m,则可知该入射的红光波长λ=或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于μm.8.钠黄光双线的两个波长分别是nm和nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f= m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈ f sinθ1≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈ f sinθ2≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈ f (2 λ / a λ / a)= f λ / a=××107/×104) m=.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 109 m).已知单缝宽度a = ×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= ×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32f Δλ/a = cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = cm14.一双缝缝距d = mm,两缝宽度都是a = mm,用波长为λ = 480 nm(1 nm =109 m)的平行光垂直照射双缝,在双缝后放一焦距f= m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ = kλ第k级亮条纹位置:x1= f tanθ1≈ f sinθ1≈ k f λ / d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ / d k λ / d= f λ / d = ×103 m = mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mm Δx0/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

8第十七章 光的衍射作业答案

8第十七章 光的衍射作业答案

一、选择题 [ B ]1、(基础训练1)在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ 的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A ) 2 个 (B ) 4 个 (C ) 6 个 (D ) 8 个 【答】已知a =4 λ,θ=30°,1sin 4422a λθλ∴=⨯=⨯,半波带数目N = 4. [ C ]2、(基础训练5)一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m的会聚透镜。

已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm ,则入射光波长约为(A )100 nm (B )400 nm (C )500 nm (D )600 nm 【答】中央明条纹宽度为2, 5002x ax fnm afλλ∆⋅∆≈∴== [ B ]3、(基础训练6)一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A )a +b =2 a (B )a +b =3 a (C )a +b =4 a (A )a +b =6 a【答】光栅缺级:()sin sin 'a b k a k θλθλ+=⎧⎨=⎩,缺级的主极大的级次为',2,3,...a b a b a b a bk k a a a a++++==,k 应为整数,依题意,k=3,6,9缺级,所以a+b=3a 符合。

[ D ]4、(基础训练10)孔径相同的微波望远镜和光学望远镜相比较,前者分辨本领较小的原因是 (A ) 星体发出的微波能量比可见光能量小 (B ) 微波更易被大气所吸收 (C ) 大气对微波的折射率较小 (D ) 微波波长比可见光波长大 【答】分辨本领为11.22RdR θλ==,孔径d 相同时,R 与波长λ成反比关系。

微波波长比可见光波长大,所以微波望远镜分辨本领较小。

大学物理答案第17章

大学物理答案第17章

第十七章 光的衍射17-1 波长为700nm 的红光正入射到一单缝上,缝后置一透镜,焦距为0.70m ,在透镜焦距处放一屏,若屏上呈现的中央明条纹的宽度为2mm ,问该缝的宽度是多少?假定用另一种光照射后,测得中央明条纹的宽度为1.5mm ,求该光的波长。

解:单缝衍射中央明条纹的宽度为afx λ2=∆m xf a 739109.4102107007.022---⨯=⨯⨯⨯⨯=∆=λfx a2∆=λ代入数据得 nm 5257.02105.1109.437=⨯⨯⨯=--λ17-2一单缝用波长为λ1和λ2的光照明,若λ1的第一级衍射极小与λ2的第二级衍射极小重合。

问(1)这两种波长的关系如何?(2)所形成的衍射图样中是否还有其它极小重合? 解:(1)单缝衍射极小条件为λθk a =sin依题意有 212λλ= (2)依题意有11sin λθk a = 22sin λθk a =因为212λλ=,所以得所形成的衍射图样中还有其它极小重合的条件为212k k =17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。

解:单缝衍射中央明条纹的宽度为af x λ2=∆代入数据得mm x 461.5101.0101.54610502392=⨯⨯⨯⨯=∆---17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。

解:单缝衍射极小的条件λθk a =sin依题意有m a μλ26.70872.0108.6325sin 9=⨯==-17-5 波长为20m 的海面波垂直进入宽50m 的港口。

在港内海面上衍射波的中央波束的角宽是多少?解:单缝衍射极小条件为λθk a =sin依题意有 0115.234.0sin52sin20sin 50===→=--θθ中央波束的角宽为0475.2322=⨯=θ17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。

工程光学习题参考答案第十二章-光的衍射

工程光学习题参考答案第十二章-光的衍射

第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。

解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为λθ∆=图12-50 习题3图解:设直径为a ,则有f d aλ=4.利用第三节的结果导出外径和内径分别为a 和b 的圆环(见图12-51)的夫琅和费衍射强度公式,并求出当2ab =时,(1)圆环衍射与半径为a 的圆孔衍射图样的中心强度之比;(2)圆环衍射图样第一个暗环的角半径。

∴P 当(12449416a ca ⎫-=⎪⎭ ∴()()09016aI I = (2)第一暗纹有()()22110a J ka b J kb ka kb θθθθ-= 查表可有 3.144ka θ=4. (1)一束直径为2mm 的氦氖激光(632.8nm λ=)自地面射向月球,已知地面和月球相距33.7610km ⨯,问在月球上得到的光斑有多大?(2)如果用望远镜用作为扩束器将该扩展成直径为4m 的光束,该用多大倍数的望远镜?将扩束后的光束再射向月球,在月球上的光斑为多大? 解:(1)圆孔衍射角半宽度为0.61aλθ=∴传到月球上时光斑直径为(2)若用望远镜扩束,则放大倍数为2000倍。

第07章 光的衍射习题答案

第07章  光的衍射习题答案

习题7.1 已知单缝宽度0.6b mm =,使用的凸透镜焦距400f mm '=,在透镜的焦平面上用一块观察屏观察衍射图样.用一束单色平行光垂直照射单缝,测得屏上第4级明纹到中央明纹中心的距离为1.4mm .求:⑴该入射光的波长;⑵对应此明纹的半波带数?解:(1) 单缝衍射的明纹: ()s i n 212b k λθ=+单缝衍射图样的第4级明纹对应的衍射角为: ()()449sin 21241222k bbbλλλθθ≈=+=⨯+=单缝衍射图样的第4级明纹中心的位置为 4449tan 2y f f f bλθθ'''=≈=⨯ ⇒ 429by f λ='20.6 1.49400⨯⨯=⨯84.6710mm -=⨯467nm = (2)对于第4级明纹对应衍射角方向,缝两边光线的光程差为 499sin 22b b b λλθ∆==⨯=对应的半波带数 92922N λλλ∆===7.2 在单缝实验中,已知照射光波长632.8nm λ=,缝宽0.10b mm =,透镜的焦距50f cm '=.求:⑴中央明纹的宽度;⑵两旁各级明纹的宽度;⑶中央明纹中心到第3级暗纹中心的距离?解:(1)所以中央亮纹角宽度为02/b θλ∆=,宽度则为 6002632.810'500 6.3280.1l f mm θ-⨯⨯=∆=⨯= (2)各级亮纹 6632.810'5003.1640.1k l f m m b λ-⨯==⨯= (3)中央明纹中心到第三暗纹中心的距离为 33'9.492y f m m bλ== 7.3 一束单色平行光垂直照射在一单缝上,若其第3级明条纹位置正好与2600nm λ=的单色平行光的第2级明条纹的位置重合.求前一种单色光的波长?解:单缝衍射明纹估算式:()sin 21(1,2,3,)b k k θ=±+=⋅⋅⋅根据题意,第二级和第三级明纹分别为22sin 2212b λθ=⨯+()33sin 2312b λθ=⨯+()且在同一位置处,则 23sin sin θθ= 解得: 325560042577nm λλ==⨯=7.4 用590nm λ=的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:根据光栅方程sin ,d k θλ=当90θ=︒时可以得到最多明条纹,所以60.002590103j j -=⨯⨯⇒=所以可见7条明条纹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《光的衍射》计算题1. 在某个单缝衍射实验中,光源发出的光含有两秏波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合?解:(1) 由单缝衍射暗纹公式得111sin λθ=a 222sin λθ=a由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ= 3分(2) 211112sin λλθk k a == (k 1 = 1, 2, ……)a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……)a k /sin 222λθ=若k 2 = 2k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合. 2分2. 波长为600 nm (1 nm=10-9 m)的单色光垂直入射到宽度为a =0.10 mm 的单缝上,观察夫琅禾费衍射图样,透镜焦距f =1.0 m ,屏在透镜的焦平面处.求:(1) 中央衍射明条纹的宽度∆ x 0;(2) 第二级暗纹离透镜焦点的距离x 2 .解:(1) 对于第一级暗纹,有a sin ϕ 1≈λ因ϕ 1很小,故 tg ϕ 1≈sin ϕ 1 = λ / a故中央明纹宽度 ∆x 0 = 2f tg ϕ 1=2f λ / a = 1.2 cm 3分(2) 对于第二级暗纹,有 a sin ϕ 2≈2λx 2 = f tg ϕ 2≈f sin ϕ 2 =2f λ / a = 1.2 cm 2分3. 在用钠光(λ=589.3 nm)做光源进行的单缝夫琅禾费衍射实验中,单缝宽度a=0.5 mm ,透镜焦距f =700 mm .求透镜焦平面上中央明条纹的宽度.(1nm=10-9m)解: a sin ϕ = λ 2分a f f f x /sin tg 1λφφ=≈== 0.825 mm 2分∆x =2x 1=1.65 mm 1分4. 某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm .缝后放一个焦距f = 400 mm的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0mm ,求入射光的波长.解:设第三级暗纹在ϕ3方向上,则有a sin ϕ3 = 3λ此暗纹到中心的距离为 x 3 = f tg ϕ3 2分因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f λ / a .两侧第三级暗纹的距离是 2 x 3 = 6f λ / a = 8.0mm∴ λ = (2x 3) a / 6f 2分= 500 nm 1分5. 用波长λ=632.8 nm(1nm=10−9m)的平行光垂直照射单缝,缝宽a =0.15 mm ,缝后用凸透镜把衍射光会聚在焦平面上,测得第二级与第三级暗条纹之间的距离为1.7 mm ,求此透镜的焦距.解:第二级与第三级暗纹之间的距离∆x = x 3 –x 2≈f λ / a . 2分∴ f ≈a ∆x / λ=400 mm 3分6. (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=400 nm ,λ2=760 nm (1nm=10-9 m).已知单缝宽度a =1.0×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =1.0×10-3 cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) 1分 ()222231221sin λλϕ=+=k a 1分 f x /tg 11=ϕ , f x /tg 22=ϕ由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ= 1分 a f x /2322λ= 1分 则两个第一级明纹之间距为a f x x x /2312λ∆=-=∆=0.27 cm 2分 (2) 由光栅衍射主极大的公式1111sin λλϕ==k d2221sin λλϕ==k d 2分且有 f x /tg sin =≈ϕϕ 所以d f x x x /12λ∆=-=∆=1.8 cm 2分7. 一束平行光垂直入射到某个光栅上,该光束有两种波长的光,λ1=440 nm ,λ2=660 nm (1 nm= 10-9 m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角ϕ=60°的方向上.求此光栅的光栅常数d .解:由光栅衍射主极大公式得111sin λϕk d =222sin λϕk d =212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 4分 当两谱线重合时有 ϕ1= ϕ2 1分即 69462321===k k ....... 1分 两谱线第二次重合即是4621=k k , k 1=6, k 2=4 2分 由光栅公式可知d sin60°=6λ160sin 61λ=d =3.05×10-3 mm 2分8. 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求:(1) 光栅常数a +b(2) 波长λ2解:(1) 由光栅衍射主极大公式得()1330sin λ=+b a cm 1036.330sin 341-⨯==+ λb a 3分 (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm 2分9. 用含有两种波长λ=600 nm 和='λ500 nm (1 nm=10-9 m)的复色光垂直入射到每毫米有200 条刻痕的光栅上,光栅后面置一焦距为f=50 cm 的凸透镜,在透镜焦平面处置一屏幕,求以上两种波长光的第一级谱线的间距∆x .解:对于第一级谱线,有:x 1 = f tg ϕ 1, sin ϕ 1= λ / d 1分∵ sin ϕ ≈tg ϕ ∴ x 1 = f tg ϕ 1≈f λ / d 2分λ和λ'两种波长光的第一级谱线之间的距离∆x = x 1 –x 1'= f (tg ϕ 1 – tg ϕ 1')= f (λ-λ') / d =1 cm 2分10. 以波长400 nm ─760 nm (1 nm =10-9 m)的白光垂直照射在光栅上,在它的衍射光谱中,第二级和第三级发生重叠,求第二级光谱被重叠的波长范围.解:令第三级光谱中λ=400 nm 的光与第二级光谱中波长为λ' 的光对应的衍射角都为θ, 则 d sin θ =3λ,d sin θ =2λ'λ'= (d sin θ / )2==λ23600nm 4分∴第二级光谱被重叠的波长范围是 600 nm----760 nm 1分11. 氦放电管发出的光垂直照射到某光栅上,测得波长λ1=0.668 μm 的谱线的衍射角为ϕ=20°.如果在同样ϕ角处出现波长λ2=0.447 μm 的更高级次的谱线,那么光栅常数最小是多少?解:由光栅公式得sin ϕ= k 1 λ 1 / (a +b ) = k 2 λ 2 / (a +b )k 1 λ 1 = k 2 λ 2将k 2 / k 1约化为整数比k 2 / k 1=3 / 2=6 / 4=12 / 8 ......k 2 / k 1 = λ 1/ λ 2=0.668 / 0.447 3分取最小的k 1和k 2 , k 1=2,k 2 =3, 3分则对应的光栅常数(a + b ) = k 1 λ 1 / sin ϕ =3.92 μm2分12. 用钠光(λ=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°.(1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2) 若以白光(400 nm -760 nm) 照射在该光栅上,求其第二级光谱的张角.(1 nm= 10-9 m)解:(1) (a + b ) sin ϕ = 3λa +b =3λ / sin ϕ , ϕ=60° 2分a +b =2λ'/sin ϕ' ϕ'=30° 1分 3λ / sin ϕ =2λ'/sin ϕ' 1分λ'=510.3 nm 1分(2) (a + b ) =3λ / sin ϕ =2041.4 nm 2分2ϕ'=sin -1(2×400 / 2041.4) (λ=400nm) 1分 2ϕ''=sin -1(2×760 / 2041.4) (λ=760nm) 1分 白光第二级光谱的张角 ∆ϕ = 22ϕϕ'-''= 25° 1分13.某种单色光垂直入射到每厘米有8000条刻线的光栅上,如果第一级谱线的衍射角为30°那么入射光的波长是多少?能不能观察到第二级谱线?解:由光栅公式 (a +b )sin ϕ =k λk =1, φ =30°,sin ϕ1=1 / 2∴ λ=(a +b )sin ϕ1/ k =625 nm 3分实际观察不到第二级谱线 2分若k =2, 则 sin ϕ2=2λ / (a + b ) = 1, ϕ2=90°14. 用波长为589.3 nm (1 nm = 10-9 m)的钠黄光垂直入射在每毫米有500 条缝的光栅上,求第一级主极大的衍射角.解: d =1 / 500 mm ,λ=589.3 nm ,∴ sin θ =λ / d =0.295 θ =sin -10.295=17.1° 3分第一级衍射主极大: d sin θ = λ 2分15. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱.钠黄光包含两条谱线,其波长分别为589.6 nm 和589.0 nm .(1nm=10­9m)求在第二级光谱中这两条谱线互相分离的角度.解:光栅公式, d sin θ =k λ.现 d=1 / 500 mm =2×10-3 mm ,λ1=589.6 nm ,λ2=589.0 nm ,k=2.∴ sin θ1=k λ1 / d=0.5896, θ1=36.129° 2分sin θ2=k λ2 / d=0.5890, θ2=36.086° 2分δθ=θ1-θ2=0.043° 1分16.波长范围在450~650 nm 之间的复色平行光垂直照射在每厘米有5000条刻线的光栅上,屏幕放在透镜的焦面处,屏上第二级光谱各色光在屏上所占范围的宽度为35.1 cm .求透镜的焦距f . (1 nm=10-9 m)解:光栅常数 d = 1m / (5×105) = 2 ×10-5m . 2分 设 λ1 = 450nm , λ2 = 650nm,则据光栅方程,λ1和λ2的第2级谱线有d sin θ 1 =2λ1; dsin θ 2=2λ2据上式得: θ 1 =sin -12λ1/d =26.74°θ 2 = sin -12λ2 /d =40.54° 3分第2级光谱的宽度 x 2 - x 1 = f (tg θ 2-tg θ 1)∴ 透镜的焦距 f = (x 1 - x 2) / (tg θ 2 - tg θ 1) =100 cm . 3分17.设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察钠黄光(λ=589 nm )的光谱线.(1)当光线垂直入射到光栅上时,能看到的光谱线的最高级次k m 是多少?(2)当光线以30°的入射角(入射线与光栅平面的法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级次mk ' 是多少? (1nm=10-9m)解:光栅常数d=2×10-6m 1分(1) 垂直入射时,设能看到的光谱线的最高级次为k m ,则据光栅方程有d sin θ = k m λ∵ sin θ ≤1 ∴ k m λ / d ≤1 , ∴ k m ≤d / λ=3.39∵ k m 为整数,有 k m =3 4分(2) 斜入射时,设能看到的光谱线的最高级次为m k ',则据斜入射时的光栅方程有 ()λθm k d '='+sin 30sind k m /sin 21λθ'='+ ∵ sin θ'≤1 ∴ 5.1/≤'d k mλ ∴ λ/5.1d k m ≤'=5.09∵ m k '为整数,有 m k '=5 5分18. 一双缝,缝距d=0.40 mm,两缝宽度都是a=0.080 mm,用波长为λ=480 nm (1 nm = 10-9 m) 的平行光垂直照射双缝,在双缝后放一焦距f =2.0 m的透镜求:(1) 在透镜焦平面处的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉亮纹数目N和相应的级数.解:双缝干涉条纹:(1) 第k级亮纹条件:d sinθ =kλ第k级亮条纹位置:x k = f tgθ ≈f sinθ ≈kfλ / d相邻两亮纹的间距:∆x = x k+1-x k=(k+1)fλ / d-kfλ / d=fλ / d=2.4×10-3 m=2.4 mm 5分(2) 单缝衍射第一暗纹:a sinθ1 = λ单缝衍射中央亮纹半宽度:∆x0 = f tgθ1≈f sinθ1≈fλ / a=12 mm∆x0 / ∆x =5∴双缝干涉第±5极主级大缺级.3分∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 1分分别为k = 0,±1,±2,±3,±4级亮纹1分或根据d / a = 5指出双缝干涉缺第±5级主大,同样得该结论的3分.。

相关文档
最新文档