正项级数的比值判别法的内容
正项级数比值判别法

正项级数比值判别法
正项级数比值判别法是数学中常用的一种级数收敛性判别法。
它是通过比较相邻两项的比值来判断级数的收敛性。
具体来说,如果相邻两项的比值小于1,则级数收敛;如果相邻两项的比值大于1,则级数发散;如果相邻两项的比值等于1,则无法判断级数的收敛性。
这个判别法的原理可以通过数学公式来表示。
假设有一个正项级数a1, a2, a3, …,则它的相邻两项的比值为:
lim(n→∞) an+1/an
如果这个极限存在且小于1,则级数收敛;如果这个极限存在且大于1,则级数发散;如果这个极限不存在或等于1,则无法判断级数的收敛性。
这个判别法的应用非常广泛,可以用来判断各种类型的级数的收敛性。
例如,可以用它来判断调和级数的收敛性。
调和级数是指形如
1/1 + 1/2 + 1/3 + …的级数。
根据正项级数比值判别法,调和级数的相邻两项的比值为:
lim(n→∞) (1/(n+1))/(1/n) = lim(n→∞) n/(n+1) = 1
因此,调和级数的收敛性无法判断。
实际上,调和级数是发散的,这可以通过其他方法来证明。
除了调和级数,正项级数比值判别法还可以用来判断几何级数、指
数级数、幂级数等各种类型的级数的收敛性。
在实际应用中,我们通常会结合其他的级数收敛性判别法来判断级数的收敛性,以确保判断的准确性。
正项级数比值判别法是一种非常有用的级数收敛性判别法,它可以用来判断各种类型的级数的收敛性。
在使用时,我们需要注意判断条件的准确性,以确保判断的正确性。
正项级数的比值审敛法

例一—-设,a则-an2〈+(奇T=如),"础 一 3 例•设an -
8
8
n
从而级数£ an = £ n=1 n=1 2
但 5 = 2 + (T)n+1
收敛.
1
一 a” 2(2 + (-1)n ) 〃‘ 且lim c2n =z,
lim
c2n+1
=
3,・.・
lim
-n±L
=
lim
ns 6 cn 不存
10n+1 n! 10
故级数£刍发散. n=110
1 .比值审敛法不必找参考级数,通过相邻两项比值的极限 来确定级数的敛散性.
2.当级数的一般性含有n!时,采用比值审敛法
一、比值审敛法(达朗贝尔判别法)
8
"
定理1 :设£an是正项级皿数,若极限lim-^ = p,则
8 n=1
E an
⑴p < 1时,£ an收敛;
n=1 8
(2) 1 < p V+8 时,£ an 发
散;
n=1
证明:⑴当Q vl时,取0 V £ V 1 - 〃,记r = p + £
< 1,
a
则于是H NaN,+当1 < nra>N ,Na时N+2,有< a-nr^aN<+1p< +r a£N,= 一r, , 8
ns
当p = +8时,取M > 1,则存在N,当 n > N时,
芒>M.同上,级数发散
比值审敛法的优点:不必找参考级数.
8
注1 P = 1时,£ an可能收敛,也可能发
级数收敛的判别方法

级数收敛的判别方法1. 比较判别法:若级数的通项与一个已知的收敛级数或发散级数之间存在比较关系,通过比较它们的大小可以判断级数的收敛性。
2. 极限判别法:对于正项级数,若其通项在n趋于无穷大时的极限存在且非零,那么级数收敛;若极限为零或不存在,则级数发散。
3. 比值判别法:对于正项级数,计算相邻两项的比值的极限,若极限小于1,则级数收敛;大于1,则级数发散;等于1,则判别不出结果,可能为发散也可能为收敛。
4. 高斯判别法:对于形如an = f(n)g(n)的级数,若函数f(n)和g(n)满足一定的条件,那么级数收敛。
5. 绝对收敛和条件收敛:若级数的绝对值级数收敛,则原级数也收敛,否则原级数发散。
条件收敛是指原级数在绝对收敛的前提下仍然收敛。
6. 积分判别法:对于正项级数,将通项进行积分,若积分级数收敛,则原级数收敛;若积分级数发散,则原级数发散。
7. Ratio Test:For a series with positive terms, if the ratio of consecutive terms has a limit less than 1, then the series converges. If the limit is greater than 1 or does not exist, the series diverges.8. Root Test:For a series with positive terms, if the nth root of the absolute value of each term has a limit less than 1, then the series converges. If the limit is greater than 1 or does not exist, the series diverges.9. Alternating Series Test:For an alternating series with decreasing terms, if the absolute value of the terms tends to zero as n approaches infinity, then the series converges.10. Power Series Convergence Test:For a power series of the form ∑(an(x-c)^n), if there exists a number R such that the series converges for |x-c| < R and diverges for |x-c| > R, then the series converges for the interval (c-R, c+R) and diverges elsewhere.。
推广的比值判别法

推广的比值判别法【实用版】目录一、引言二、比值判别法的基本概念和原理三、正项级数比值判别法的推广四、极限形式的推广五、总结正文一、引言在数学分析中,级数收敛性的判别是一个重要的研究领域。
其中,比值判别法是一种常用的判别方法。
本文将对正项级数比值判别法进行推广,以解决一些特殊情况下的收敛性问题。
二、比值判别法的基本概念和原理比值判别法是一种判断正项级数收敛性的方法,其基本思想是比较级数的各项与它们的倒数之比。
如果这些比值有界,那么级数收敛;如果这些比值无界,那么级数发散。
具体地,对于正项级数{un},如果存在一个正数 M,使得对于任意的 n,有|un|/|un+1| ≤ M,那么级数{un}收敛。
否则,如果对于任意的正数 M,总存在一个 n,使得|un|/|un+1| > M,那么级数{un}发散。
三、正项级数比值判别法的推广在实际应用中,有时需要对正项级数比值判别法进行推广,以解决更一般的收敛性问题。
本文将介绍一种改进的比值判别法,即正项级数比值判别法的推广。
这种方法主要针对比值判别法的极限形式 lim(n→∞) (un+1/un) 进行推广。
四、极限形式的推广在比值判别法的极限形式中,当 n 趋近于无穷时,有 lim(n→∞) (un+1/un) = 1。
这时,如果级数{un}收敛,那么它的极限值为 1。
然而,在某些特殊情况下,这个极限形式可能不成立。
为了解决这个问题,我们需要对极限形式进行推广。
具体地,我们考虑如下形式的极限:lim(n→∞) (un+1/un) = L,其中 L≠1。
在这种情况下,我们仍然可以利用比值判别法来判断级数的收敛性。
如果存在一个正数 M,使得对于任意的 n,有|un|/|un+1| ≤ M,那么级数{un}收敛。
否则,如果对于任意的正数 M,总存在一个 n,使得|un|/|un+1| > M,那么级数{un}发散。
五、总结本文对正项级数比值判别法进行了推广,主要针对比值判别法的极限形式进行了改进。
正项级数的判敛方法

nn
n nn
∵ lim n
1 sin n
2
2 n 1 ,且 2 发散,∴原级数发散。
n1 n
n
1 n2 ln
(2)∵ lim 3 n 1 n lim
3n
ln(1 2 )
n 2,
n
1
n 3 n 1
1
而 n1
4
n3
1 收敛, 4
n3
n
∴原级数收敛。
ln n
(3) n1 n
(4) ln n 3 n n1 2
若 un与 vn 同阶,则 un 与 vn 同敛散。
n1
n1
若 un是比 vn 高阶的无穷小,则 vn 收敛 un 收敛;
n1
n1
若 un是比 vn 低阶的无穷小,则 vn 发散 un 发散。
n1
n1
定理2.3 (比值判别法 达朗贝尔判别法)
设 an
n1
为正项级数,且 an
0(
n
解(3)∵ lim un1 lim 3n 2 3 1 ,∴原级数收敛。
u n n
n 4n 1 4
(4)∵ lim n n
un
lim n
n
( an )n n1
lim
n
an n1
a,
∴当 a 1 时,级数收敛;当a 1 时,级数发散;
当 a 1时,根值判别法失效。
但∵
lim
n
un
lim( n )n n n 1
x
2x x
∴ f ( x) ln x 在 (e2 , ) 内单调减少, x
例 7 说明,虽然定理 3 对于 1 的情形,不能判定级
数的敛散性,但若能确定在 lim un1 1 的过程中, un1
04第四讲 正项级数的概念,比较判别法

数学分析第十二章数项级数正项级数的概念,比较判别法第四讲数学分析第十二章数项级数正项级数收敛性的一般判别原则若数项级数各项的符号都相同,则称为同号级数. 对于同号级数,只须研究各项都是由正数组成的级数(称正项级数).由级数与其部分和数列的关系,得:数学分析第十二章数项级数定理12.5>=0(1,2,),i u i 由于证所以{S n }是递增数列. 单调数列收敛的充要条件是该数列有界(单调有界定理).仅靠定义和定理12.5来判断正项级数的收敛性是不容易的,敛性判别法则.n u ∑正项级数收敛的充要条件是:{}n S 有界, <.n S M 即存在某正数M ,对一切正整数n 有而这就证明了定理的结论.部分和数列因此要建立基于级数一般项本身特性的收数学分析第十二章数项级数定理12.6(比较原则)n n u v ∑∑设和是两个正项级数,如果存在某正数N ,对一切n > N 都有,(1)n n u v ≤则(i),;n n v u 若级数收敛则级数也收敛∑∑(ii),.n n u v 若级数发散则级数也发散∑∑证因为改变级数的有限项并不影响原有级数的敛因此不妨设不等式(1)对一切正整数都成立.'''∑∑nn n n S S u v 现在分别以和记级数与的部分和.散性,数学分析第十二章数项级数由(1)式可得,对一切正整数n ,都有.(2)nn S S '''≤,lim ,n nn v S →∞''∑若收敛即存在则由(2)式对一切n 有lim nn n S S →∞'''≤,n u ∑{}n S '即正项级数的部分和数列有由定理12.5级数n u ∑收敛, (ii)为(i)的逆否命题,自然成立.≤(1)n nu v 界,这就证明了(i).数学分析第十二章数项级数例1 -+∑21.1n n 考察的收敛性解≥2,n 由于当时有因为正项级数21(1)n n n ∞=-∑收敛(§1例2),原则, 级数211n n -+∑也收敛.22111n n n n≤-+-()1.1n n =-故由比较数学分析第十二章数项级数22,,0,0.nnn n u v u v >>∑∑收敛且例2 若级数2210(),2n n n n u v u v <≤+证因为根据比较原则, 得到正项级数n nu v∑收敛.在实际使用上,比较原则的极限形式通常更方便.n n u v 则级数收敛.∑∑∑22,nnu v而级数均收敛,。
正项级数的比值判别法
1.正项级数的比值判别法是什么?
答:后项比前项、大于1发散、小于1收敛。
正项级数,是一种数学用语。
在级数理论中,正项级数是非常重要的一种,对一般级数的研究有时可以通过对正项级数的研究来获得结果,就像非负函数广义积分和一般广义积分的关系一样。
所谓正项级数是这样一类级数:级数的每一项都是非负的。
正项级数收敛性的判别方法主要包括:利用部分和数列判别法、比较原则、比式判别法、根式判别法、积分判别法以及拉贝判别法等。
若数项级数各项的符号都相同,则称它为同号级数。
对于同号级数,只需研究各项都是由正数组成的级数,称它为正项级数。
如果级数的各项都是负数,则它乘以-1后就得到一个正项级数,它们具有相同的敛散性。
正项级数敛散性的判别(5)
n
1
n
又
1 是调和级数, 它是发散的,
n1 n
故
原级数
n1
1 n2 a2
发散.
21
5. 比值判别法
利用级数本身 来进行判别.
设 un 为正项级数,
n1
极限 lim un1
n un
存在,
则
(1) < 1时, 级数收敛;
(2) > 1 ( 包括 = ) 时, 级数发散;
(3) = 1 时, 不能由此断定级数的敛散性.
16
4.比较判别法的极限形式
设和为两个正项级数, 且 vn 0 (n 1, 2,;
或从某一项 N0 开始).
若
lim un n vn
,
则
(1) 0 时, un 与 vn 具有相同的敛散性.
n1
n1
(2) 0 时, vn 收敛 un 收敛.
n1
n1
(3) 时, vn 发散 un 发散.
n1
故级数 un 收敛 .
n1
9
证 (2)
n
n
记 Sn uk , Gn vk ,
k 1
k 1
0 un vn (n = 1, 2, …)
0 Sn Gn
若 un 发散, 则部分和Sn 无界, 从而 vn
n1
n1
的部分和Gn 也无界, 故级数 vn 发散 .
n1
10
例2
判断级数
29
a 1,
1 n
当a
1时,
lim n
n
an 1 a2n
lim
n
n
a
1
1 a
2n
1 a
8.2正项级数
(1)当r 1时, 级数 un为收敛级数
n 1
(2)当r 1时, 级数 un为发散级数
n 1
(3)当r 1时, 级数 un可能收敛, 也可能发散
n 1
【微积分8-2-12】
2、证明: (1)当0 r
1时,
un1 un1 lim r , 对r r0 1, N , 使当n N时有 r0 ,即 n u un n
【微积分8-2-18】
n 1
3、应用举例:
an n 例8 判别级数 ( ) ( a 0)的敛散性 n 1 2n 1
na n a ) 解: lim un lim ( n n 2n 1 2
n n
a 当0 1即0 a 2时, 级数收敛 2
a 当 1即a 2时, 级数发散 2
n 1
un1 un1 1 1 当r 0时有, lim 0 , 故N , 使当n N时有 n u 2 un 2 n
同样可得级数 un为收敛级数
n 1
【微积分8-2-13】
un1 un1 (2)当r 1时, lim r 1,N , 使当n N时有 1 n u un n
n 1
1 n 1 1 n 解: 2 1 2 1 ln 2, 而级数 发散 n n 1 n
1 所以 (1 cos )收敛 n n 1
级数 ( n 2 1)为发散级数
n 1
【微积分8-2-11】
三、比值判别法
un1 r, 则有 1、定理: 设 un为正项级数, 且有 lim n u n 1 n
正项级数与负项级数统称为保号级数。
级数判别法
级数判别法基本定理:正项级数收敛的充要条件是:∑∞=1n n a的部分和数列}{n S 有界。
1、 比较判别法:设∑∞=1n n a 和∑∞=1n n b是两个正项级数,且存在0>N ,使当N n >时,有不等式n n b a ≤,则:○1:∑∞=1n n b收敛∑∞=⇒1n na 收敛。
○2:∑∑∞=∞=⇒101n n n n ba 发散发散。
2、 比较判别法极限形式:设∑∞=1n na 和∑∞=1n nb 是两个正项级数,且λ=+∞→n nn b a lim,则:○1:当+∞<<λ0时,∑∞=1n na 和∑∞=1n n b具有相同的敛散性。
○2:当0=λ时,∑∞=1n n b 收敛∑∞=⇒1n na 收敛。
○3:当+∞=λ时,∑∞=1n n b 发散∑∞=⇒1n na 发散。
3、 比较判别法II :设有两正项级数∑∑∞=∞=101n nn n b a 和,)0,0(≠≠n n b a 满足:nn n n b b a a 11++≤,则:○1:∑∞=1n n b收敛∑∞=⇒1n na 收敛。
○2:∑∞=1n na发散∑∞=⇒1n n b发散。
4、 比值判别法(达朗贝尔):设∑∞=1n n a为正项级数,则:1°若当n 充分大时有:11<≤+q a a n n ,则级数∑∞=1n n a 必收敛。
2°若当n 充分大时有:11≥+n n a a ,则级数∑∞=1n n a 必发散。
5、 达朗贝尔判别法的极限形式:设∑∞=1n n a为正项级数,且2111lim limλλ==+∞→+∞→n n n n n n a a,a a ,+∞≤2,1λ,则:1°:当11<λ时,级数∑∞=1n n a 收敛。
2°:当12>λ时,级数∑∞=1n n a 发散。
6、 根值判别法(Cauchy ):设∑∞=1n n a为正项级数,则:1°:若当n 充分大时,有1<≤q a nn ,则级数∑∞=1n na 必收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正项级数的比值判别法的内容
正项级数收敛性的判别方法:1、对于所有级数都适用的根本方法是柯西收敛准则。
因为它的本质是将级数转化成数列,从而这是一个最强的判别法,柯西收敛准则成立是级数收敛的充分必要条件。
2、对于正项级数,一个基本但不常用的方法是部分和有界,这同样是级数收敛的充分必要条件,这是正项级数中最强的判别法之一,局限性也是显然的,通常来说一个级数的和函数并不好求,用这种方法行不通,因此这个方法通常只有理论上的意义。
3、对于正项级数,比较判别法是一个相当有效的判别法,通过找一个新正项级数,比较通项,如果原级数的通项小,新级数收敛,则原级数收敛。
如果新级数发散,原级数通项大,则原级数发散,通常在判别过程中使用其极限形式。