电流互感器参数校验与误差分析

合集下载

电流互感器现场检定

电流互感器现场检定
• 试验室中一般把互感器校验仪、二次电压(电流)负荷箱、电压 (电流)调节设备、电脑等组成一个整体构成互感器校验台
开关 按键
电流 负荷箱
电压 负荷箱
电脑
互感器 校验仪
互感器校验台
调压器
标准电压、电流互感器
电源开关 按键
测量接线端子 显示屏 电源输入端
通信口 微型打印机
互感器校验仪
电流、电压负荷箱

电流互感器
除外
3、工频耐压试验
1)一次对二次及对地加试验电压按出厂试验的85%进行,从接近于零的电压平稳上升; 2)试验二次对地间加压2kV停留1min; 3)然后平稳下降到接近零电压试验时无异音、无异味、无击穿和表面放电,绝缘保持良好。
4、绕组极性检查:
使用电流互感器校验仪检查绕组的极性。按比较法线路接线,升起电流至额定值的5%以下测试,用 校验仪的极性指示功能或误差测试功能,确定互感器的极性。
分类:测量用: 一般用途 0.1、0.2、0.5、1、3、5
特殊用途 0.1S、0.2S
保护用: P级(5P20、10P20)
TP级(TPX、TPY、TPZ)
误差限值(条件:额定频率、额定功率因数、额定负荷25%~100%之间)
11
12
互感器检验装置
• 互感器检验装置包括标准互感器、互感器校验仪、二次电压(电 流)负荷箱、供电电压互感器(升压器、升流器)、电压(电流) 调节设备,以及互感器的一次、二次接线等。
7
7
电流互感器的误差是由铁心所消耗的励磁磁动势 引起的。也就是说一次电流I1消耗一小部分励磁电流I0使 铁心有磁性,在二次产生感应电势,这样才有了二次电 流I2。
电流互感器误差(用复数误差表示):

电气工程中的电流互感器规范要求与准确度校验

电气工程中的电流互感器规范要求与准确度校验

电气工程中的电流互感器规范要求与准确度校验电流互感器(Current Transformer,CT)是电气工程中一种常用的测量仪器,用于测量高电流系统中的电流,将其转换为适合测量的电流值。

在实际应用中,电流互感器需符合一定的规范要求,并经过准确度校验,以确保其测量结果的可靠性和精度。

一、电流互感器的规范要求1. 结构设计要求电流互感器的结构设计应符合以下要求:首先,应能有效地隔离高电压的穿越;其次,外壳和绝缘部件应具有足够的机械强度和耐电压能力,以保证设备的安全运行;最后,应具备耐高温和抗干扰的能力。

2. 电气参数要求电流互感器的电气参数要求主要包括额定电流、额定频率、准确度等。

额定电流是指互感器能正常工作的最大电流值,需根据实际应用中的电流范围进行选择;额定频率通常为50Hz或60Hz,根据所在地区的电力系统频率确定;准确度是衡量互感器测量结果与实际值偏差的重要指标,常用的准确度等级有0.1级、0.2级、0.5级等。

3. 安全与环境要求电流互感器在工作时应具备一定的安全性和环境适应能力。

例如,应具备防护措施,以保护工作人员免受电击和其他伤害;同时,还应具备一定的防水、防尘和防腐蚀能力,以适应不同的工作环境。

二、电流互感器的准确度校验电流互感器的准确度校验是确保其测量结果准确可靠的重要环节。

准确度校验应按照相关的检定标准和方法进行。

1. 校验设备准备校验设备包括稳压电源、电流源、标准电阻、多用表等。

在进行准确度校验前,需对校验设备进行校准和检定,确保其测量准确度满足要求。

2. 校验流程(1)连接互感器和校验设备:将互感器的一侧接入电流源,另一侧接入标准电阻,通过多用表测量电流互感器的输出电流。

(2)施加额定电流:根据互感器的额定电流进行调整,保持稳定。

(3)测量输出电流:使用多用表测量电流互感器的输出电流值。

(4)计算偏差:将测得的输出电流值与实际电流值进行比较,计算测量偏差。

(5)判定准确度:根据准确度要求,判断电流互感器是否符合规定的准确度等级。

电流互感器误差计算

电流互感器误差计算

Kn I2 (
N 2n I1
N2
− 1)
K n I1 ε i (%) 1+ Kn 100 ( N 2 n − 1) × 100 × 100 == I1 N2
近似地认为: 1 +
© ABB Xiamen Switchgear Co., Ltd. - 14
ε i (%)
100
=1
© ABB Xiamen Switchgear Co., Ltd. - 11
电流互感器误差校验
巧用s级。
当互感器的一次电流小,而热稳定电流很高时。 如650mm柜宽互感器50/5A 0.5/5P10 15/15VA 40kA/1s,参数满足不了。如 果把一次电流提高到100A可以满足参数,对于5P10提高一次电流没问题 ,但0.5级用户可能不会接受,但可以把0.5改成0.5S级,因为0.5级最 小控制5%I1n=5%×50=2.5A,假如0.5S变成100/5A,其最小控制到 1%I1n=1%×100=1A。
© ABB Xiamen Switchgear Co., Ltd. - 17
短时热电流需要考虑电流互感器的尺寸,因此本实例计算不考虑,一 般按一次绕组电流密度160A/mm2考虑。 详见附件1
© ABB Xiamen Switchgear Co., Ltd. - 18
N 2n − N 2 Nb ε b (%) = × 100 = × 100 N2 N2
N b -补偿匝数,即被减去的二次匝数
电流互感器误差补偿方法
2. 分数匝补偿 二次绕组用两根和多根导线并绕 以实现分数匝补偿。 如图1-3为两根导线以实现分数匝 补偿,此时
Nb =
1 2
Nb 1 1 = × N 2n 2 N 2n

电流互感器的选择及校验

电流互感器的选择及校验

电流互感器的选择及校验(1) 电流互感器选择的具体技术条件如下:1) 一次回路电压:n g U U ≤ (3.6)式中:g U ——电流互感器安装处一次回路工作电压;n U ——电流互感器额定电压。

2) 一次回路电流:n g I I ≤⋅m ax (3.7)式中:m ax ⋅g I ——电流互感器安装处的一次回路最大工作电流;n I ——电流互感器原边额定电流。

当电流互感器使用地点环境温度不等于C 40±时,应对n I 进行修正。

修正的方法与断路器n I 的修正方法相同。

3) 准确级准等级是根据所供仪表和继电器的用途考虑。

互感器的准等级不得低于所供仪表的准确级;当所供仪表要求不同准确级时,应按其中要求准确级最高的仪表来确定电流互感器的准确级。

① 与仪表连接分流器、变送器、互感器、中间互感器不低于下要求:与仪表相配合分流器、变压器的准确级为0.5级,与仪表相配合的互感器与中间互感器的准确级为0.5。

仪表的准确级为1.5时,与仪表相配合分流器、变压器的准确级0.5,与仪表相配合的互感器与中间互感器的准确级0.5。

仪表的准确级为2.5时,与仪表相配合分流器、变压器的准确级0.5与仪表相配合的互感器与中间互感器的准确级1.0。

② 用于电能测量的互感器准确级:0.5级有功电度表应配用0.2级互感器;1.0级有功电度表应配用0.5级互感级,2.0级无功电度表也应配用0.5级互感器;2.0级有功电度表及3.0级无功电度表,可配用1.0级级互感器。

③ 一般保护用的电流互感器可选用3级,差动距离及高频保护用的电流互感器宜选用D 级,零序接地保护可釆用专用的电流互感器,保护用电流互感器一般按10%倍数曲线进行校验计算。

4) 动稳定校验:d n ch K I i 12≤ (3.8)式中:ch I ——短路电流冲击值;n I 1——电流互感器一次额定电流;d K ——电流互感器动稳定倍数。

5) 热稳定校验:212)(t n k K I t I Q ≤=∞ (3.9)式中:∞I ——最大短路电流;k t ——短路电流发热等值时间;n I 1——电流互感器一次额定电流。

电流互感器主要二次参数的选择和校验

电流互感器主要二次参数的选择和校验

电流互感器主要二次参数的选择和校验摘要针对电流互感器主要二次参数的选择和校验,给出了具体的计算公式和实例。

测量用电流互感器可根据公式计算出应选择的容量。

保护用电流互感器应在二次负荷及二次感应电动势两方面校验其参数是否满足要求,也可根据实际准确限值系数曲线经行验算。

关键词电流互感器;二次参数;容量;二次负荷;保护校验1测量用电流互感器容量的选择计算电流互感器二次负荷容量时,一般可忽略负荷阻抗之间的相位差,忽略连接导线的电抗而仅计及电阻,计算公式如下:Sb=I2bN·Z b (1)Z b=∑KjxmZm +KjxLRL +Rk (2)式中:Sb——电流互感器二次实际负荷,V A;Zb——电流互感器二次实际负荷,Ω;IbN——电流互感器二次额定电流,A ,一般为1A或5A;Kjxm——仪表电流线圈的接线系数,不完全星形接法时如存在V相串联线圈则为,其余均为1;Zm——仪表电流线圈的阻抗,Ω;KjxL——二次回路导线接线系数,分相接法为2,不完全星型接法为,星形接法为1;RL——二次回路导线单程电阻,Ω;Rk——二次回路接头接触电阻,Ω,一般取0.05 Ω~0.1 Ω。

选择实例:选择某220kV线路计量用电流互感器的容量。

IbN为5A,电子式电度表功耗为每相1V A,电缆采用截面为4mm2的铜芯线,6芯分相接入,电流互感器至电度表的连接电缆全长为200m。

从工程条件可知,Zm为0.04 Ω,Kjxm取1,KjxL取2,Rk此处取0.1 Ω,RL根据公式(3)可以得出,为0.9 Ω。

代入公式(1) (2) ,Sb即可算出为48.5 V A,电流互感器的额定容量SbN可选为50V A。

RL =ρL106/A(3)式中:ρ——铜导线的电阻率,此处ρ=1.8×10-8Ω·m ;L——二次回路导线单根长度,m ;A——二次回路导线截面,mm2;为保证测量用电流互感器的准确级,其一次工作电流宜在额定电流的2/3以上。

电流互感器检验项目和试验方法分析

电流互感器检验项目和试验方法分析

电流互感器检验项目和试验方法分析电流互感器是按照电磁感应原理,通常用闭合的铁心和绕组构成。

它是一种变压器,电力系统供测量仪器、仪表和继电保护等电器采样使用的必不可少的設备。

串接在测量仪表和保护回路中,电流互感器在工作时,始终是闭合的,当电网电压和电流高于一定量值时,电能表和其他测量仪表及继电保护装置必须经过互感器接入电网,才能实现正常测量和保护电力设备的安全。

本文针对电流互感器检验项目和试验方法进行分析。

标签:电流互感器;检验项目;试验方法分析一、电流互感器的定义电流互感器又叫“仪用电流互感器”。

它有一种意义是实验室使用的多电流比精密电流互感器,通常用来扩大仪表的量程。

电流互感器跟变压器一样,都是根据电磁感应的基本原理进行工作,互感器改变的是电流而变压器改变的是电压值。

互感器连接的被测电流的绕组Nl为一次绕组(即初级绕组);连接测量仪表的NZ是二次绕组(即次级绕组)。

在发电,变电,输电,配电和用电的线路中电流大小悬殊上的差距,为方便测量,控制和保护必须得到一致的电流,还有路线上的电压通常很高,不能直接测量其数值。

电流的互感器起到的就是实现电流的变换和隔离的效果。

二、现场检验周期及检验项目(1)新投运或改造后的I,1,m,四类电能的高压测量装置要在30天内进行当场检验。

检验事项通常有:首先,电能计量器具的准确性。

其次,检查电能计量装置的运行状况,及时发现用电异常如:报装容量,变比大小,端子接触,窃电迹象等。

最后,检查二次负荷有无变化,二次回路接线是否正确等。

(2)I 类电能表要保证每三个月进行一次现场检验,1类电能表要每六个月进行,m类电能表则每年检验一次。

(3)互感器十年进行一次现场检验,当互感器的误差超过标准范围时,要找到原因,重新调整试验的思路和计划,尽快解决,时间要少于最近主设备每次的完成检验时间。

(4)运行中的35千伏及其以上的电压互感器中的二次电路的电压差值,要保证每隔两年进行一次检验。

!!电流互感器拐点电动势计算及校验方法

!!电流互感器拐点电动势计算及校验方法

电流互感器拐点电动势计算及校验方法1)使用CT参数1:300/1A 10P40 25VA 进行校核2)使用CT参数2:400/1A 10P40 20VA 进行校核根据上述计算结果,220kV古井站站用变及接地变的10kV CT 保护绕组采用以上2种参数均可满足要求附件: 电流互感器的核算方法本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。

一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值)1、计算二次极限电动势:E s1=K alf I sn(R ct+R bn)=15×5×(0.45+1.2)=123.75V参数说明:(1)E s1:CT额定二次极限电动势(稳态);(2)K alf:准确限制值系数;(3)I sn:额定二次电流;(4)R ct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值:5A产品:1~1500A/5 A产品0.5Ω1500~4000A/5 A产品 1.0Ω1A产品:1~1500A/1A产品6Ω1500~4000A/1 A产品15Ω当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。

(5)R bn:CT额定二次负载,计算公式如下:R bn=S bn/ I sn 2=30/25=1.2Ω;——R bn:CT额定二次负载;——S bn:额定二次负荷视在功率;——I sn:额定二次电流。

当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT额定二次负载2、校核额定二次极限电动势有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。

E s1=127.5V<E k(实测拐点电动势)=130V结论:CT满足其铭牌保证值要求。

二、计算最大短路电流下CT饱和裕度(用于核算在最大短路电流下CT裕度是否满足要求)1、计算最大短路电流时的二次感应电动势:E s=I scmax/K n(R ct+R b)=10000/600×5×(0.45+0.38)=69.16V参数说明:(1)K n:采用的变流比,当进行变比调整后,需用新变比进行重新校核;(2)I scmax:最大短路电流;(3)R ct:二次绕组电阻;(同上)当通过改变CT二次绕组接线方式调大CT变比时,应重新测量CT额定二次绕组电阻(4)R b:CT实际二次负荷电阻(此处取实测值0.38Ω),当有实测值时取实测值,无实测值时可用估算值计算,估算值的计算方法如下:公式:R b = R dl+ R zz——R dl:二次电缆阻抗;——R zz:二次装置阻抗。

电流互感器二次负荷校验

电流互感器二次负荷校验

电流互感器二次负荷校验摘要:现场验证电流测量回路是否合格,需要同时保证电流互感器是合格的并且与其连接的二次负荷回路与之匹配。

利用伏安特性试验对互感器变比误差进行现场试验,根据试验数据绘制准确限值系数与二次负荷的关系曲线,验证厂家提供的曲线是否正确,从而验证电流互感器是否合格;并实测或计算电流互感器二次回路总负载及故障时负载,验证是否满足与其连接的互感器的运行要求。

关键词:电流互感器误差伏安特性10%误差曲线二次实际负荷电力系统短路故障时,电流互感器一次绕组中通过的电流可以达到其额定电流的数十倍。

因此在对电流互感器额定负荷选择时,必须留出充足的裕度,尽量选用高额定负荷的电流互感器。

若互感器一次侧电流很大,励磁电流增加,铁心就会开始饱和并且导致一次、二次电流同时发生波形畸变[1]。

此时继电保护装置要求电流互感器仍然要满足一定的准确度。

目前大庆油田电力系统广泛采用的是干式电流互感器[2],其测量误差[3]受多种因素影响。

在实际检修工作中,工作人员如果只针对电流互感器本身进行校验但并未对与其连接的二次负荷回路是否匹配进行验证。

若互感器各参数合格,但其投入运行时所接的实际二次负荷[4]大于其工作时的规定限值,就会使测量电流误差变大,严重时可引起保护误动作。

1 电流互感器校验方法电流互感器的误差试验应由制造厂在出厂试验时完成或在试验室进行。

而工作中电流互感器现场试验属于检查性质,现场检查互感器是否合格的方法主要有伏安特性试验、极性试验、变比检查试验[5]。

此外,还应校验与其连接的二次回路总负载即二次负荷。

通过绘制10%误差曲线,验证厂家提供的曲线是否正确;并实测电流互感器二次负荷,实际的二次负荷应小于曲线上允许的二次负荷,要求电流互感器的复合误差满足GB1208-1997的规定。

1.1 伏安特性试验大庆油田电力系统保护用电流互感器大多为D级或10P15级,级别标识在互感器铭牌上,10P15就表示:在二次负荷满足条件且准确限值系数M10的值为15时,互感器的变比误差应小于等于10%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流互感器参数校验与误差分析
电流互感器是电力系统中常用的一种仪器,其主要作用是将高电流转换为低电流,方便测量和保护设备的使用。

然而,随着使用时间的增长和环境条件的变化,电流互感器的参数可能会发生漂移,导致测量误差的增加。

因此,对电流互感器进行定期的参数校验和误差分析是非常重要的。

一、电流互感器参数校验
1. 校验原理
电流互感器的主要性能参数包括变比、一次二次侧短路阻抗和一次二次侧漏抗。

校验的目的是通过对这些参数进行测量和比较,判断电流互感器的准确性和稳定性。

2. 校验方法
常用的电流互感器校验方法包括比较法和计算法。

比较法是将待测电流互感器
与已知准确参数的标准电流互感器进行连接,通过测量二者的输出信号,推导出待测电流互感器的参数。

计算法则是基于电流互感器的结构和传感器材料特性的数学计算方法,通过对已知参数进行计算,得到待测电流互感器的参数。

一般而言,比较法的精度相对较高,但需要使用标准仪器设备;计算法则更加简便,但准确度相对较低。

3. 校验设备和仪器
在电流互感器的参数校验中,常用的设备和仪器有标准电流互感器、比较电桥、电源频率特性测量仪等。

标准电流互感器作为参照和比较的标准,必须具备稳定的性能和准确的参数。

比较电桥是用于测量待测电流互感器和标准电流互感器之间电压或电流差异的仪器,其灵敏度和精度决定了校验的准确性。

电源频率特性测量仪则用于验证电流互感器在不同频率下的性能。

二、误差分析
1. 误差来源
电流互感器的测量误差主要来自多个方面,包括电压降、温度变化、漏磁和负载变化等。

电压降是指一次侧电压和二次侧电压之间的差异,通常由电流互感器的内阻引起。

温度变化会影响电流互感器的线性度和零点漂移。

漏磁则是由于电流互感器的结构和工艺问题导致的,通常会引起漏电流的增加。

负载变化是指一次侧负载和二次侧负载之间的差异,会导致输出信号的波形畸变。

2. 误差评定
误差评定是根据校验结果和实际工作要求,对电流互感器的误差进行分析和判断。

误差评定的主要依据是国家标准和技术规范,其中规定了各个参数的误差范围和允许偏差。

如果电流互感器的校验结果超出了规定的误差范围,就需要对其进行修理或更换。

3. 误差修正
误差修正是对超出误差范围的电流互感器进行调整和校准。

具体的修正方法包括调整变比、加装补偿电路和控制工艺。

调整变比是通过改变一次侧和二次侧的匝数比例,使输出信号满足要求。

加装补偿电路则是通过改变电流互感器的结构和电路布局,消除误差产生的原因。

控制工艺则是在电流互感器的制造和使用过程中,加强质量控制和工艺监控,降低误差发生的概率。

总结:
电流互感器参数校验与误差分析是确保电力系统计量准确性和安全运行的重要环节。

通过对电流互感器的参数进行定期校验,可以及时发现和排除潜在的故障和问题,提高系统的可靠性和稳定性。

同时,对误差进行分析和修正,可以提高电流互感器的测量精度和准确性,确保计量过程的可靠性和准确性。

因此,电流互感器的参数校验与误差分析工作应得到足够的重视和关注。

相关文档
最新文档