概率统计第一章

合集下载

概率统计学第一章

概率统计学第一章

开 关 a,b,c闭
合 ,D表
示 灯 亮
则可
=(Π v歹 丿z「 D≡ ABt/c; D ∶ (B取 6、设 Ⅱ () 1在 什 么 条 件 下 P/) ,B是 两事件且 P(爿 )=0.6,P(B)=0.7,问 大值,最 大值是 多少? (2)在 什 么条件下 P(刀B)取 到最小值,最 小值是 多少? ^9、 ^PCA丿 ‘ 沟 涕 欠伍 . c∧ D’ l冫 【 ∧Cβ . 卩
万 9`CB/n^丿
=3 =:J ` 9D/
=空 '击 十亠一r
° /口 。
学院
班 姓

学 号
^′自 溺 袋平″ ″从 甲 社 u乙 筅牢屮 谄 泅ˉ
"AA罕
19、设有甲、乙两袋,甲 袋装有 ″只白球,〃 只红球;乙 袋中装有 Ⅳ只白球,M只 红球 , 一 今从 甲袋中任取一 只球放入 乙袋中,再 从 乙袋中任意取 只球 ,问 取到 白球的概率是 ^11” 自耐 ∴
、 。 午
`(B/泅

'm:丨 疒
上旦 %1锆 宁
I
(B/∠ =置 ⒓ 凵口 =÷
;''H乙
/B,-^型
'A c·
’ BA ’丿 ( / ’
锱 罕
亠 △ ⒉ /' 亻孚
卜A√叮 男 峁 搓 呈 三等 芾 辂 双功 目 击
一枪 ,求 目标被 击 中的概率.
:广
⒐%乙
6+l ltfl/t+l=豸 ′
击 中辘
生产的可能性最 大 ?
焰 At="f饣 -Ht r岁

P(^l厂 素
"frT1
、 `(^· 厂 斋 `Fc^3`=浩 口、’' ′ =而 丿

《概率论与数理统计》第01章习题解答

《概率论与数理统计》第01章习题解答

第一章 随机事件及其概率第1章1、解:(1){}2,3,4,5,6,7S = (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。

解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率(1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。

概率统计第一章每一节习题

概率统计第一章每一节习题

概率统计第一章每一节习题第一章 随机事件与概率习题一 随机事件一、填空题1. E :将一枚均匀的硬币抛三次,观察结果,则正面出现次数的样本空间=Ω .2.某商场出售电器设备,以事件A 表示“出售74 Cm 海信电视机”,以事件B 表示“出售74 Cm 长虹电视机”,则只出售一种品牌的电视机可以表示为 ;至少出售一种品牌的电视机可以表示为 ;两种品牌的电视机都出售可以表示为 .3.设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示下列随机事件:A 发生而B ,C 都不发生为 ;A ,B ,C 不多于一个发生 .4.设事件n A A A A ,,,,321 若 ; ,则称n A A A A ,,,,321 为完备事件组.5.对立事件A 与A 在每一次试验中 发生.二、设{1,2,,10}Ω= ,{2,3,4}A =,{3,4,5}B =,{5,6,7}.C =写出下列算式表示的集合: 1. AB 2.A B C ++3._____________A B C ++三、写出下式的另外一种形式表达式 1.=++n A A 1 2.=++n A A 1习题二随机事件的概率一、填空题1.概率是事件的自然属性,有事件就一定有 .2.古典概型的两个条件是,.3.今有10张电影票,其中只有2张座号在第一排,现采取抽签方式发放给10名同学,则.A.先抽者有更大可能抽到第一排座票B.后抽者更可能获得第一排座票C.各人抽签结果与抽签顺序无关D.抽签结果受以抽签顺序的严重制约二、8件产品中有5件是一级品,3件是二级品,现从中任取2件,求下列情况下取得的2件产品中只有一件是一级品的概率:( 1 ) 2件产品是无放回的逐次抽取;( 2 ) 2件产品是有放回的逐次抽取.三、有n位同学(n 365),求他们至少有两个人的生日在同一天的概率(一年按365天计算).四、从1,2,…,10这十个数中等可能地任取一个,然后还原,先后取出7个数,试求下列各事件的概率:(1)7个数全不相同;(2)不含9和2;(3)8出现三次.习题三 概率的运算法则一、填空1.设事件,,B A =+)(B A P ,当A ,B 互斥时=+)(B A P .2.设事件,,B A =-)(B A P , )(A P )(AB P .3.设事件C B A ,, =++)(C B A P .4.设事件组n A A A A ,,,,321 ,)(21n A A A P = .5.=)|(A B P .6.=+)|(21B A A P . (条件概率的加法公式)二、袋中装有红、黄、白色球各一个,每次任取一个,有放回地抽取三次,求取到的三个球中没有红球或没有黄球的概率.三、某工厂生产的产品中,36%为一等品,54%为二等品,10%为三等品,任取一件产品,已知它不是三等品,求它是一等品的概率.四、10个签中有4个是难签,3人参加抽签(无放回),甲先、乙次、丙最后.求甲抽到难签、甲乙都抽到难签、甲没有抽到难签而乙抽到难签及甲乙丙都抽到难签的概率。

概率统计教案1

概率统计教案1

第一章随机事件与概率一、教材说明本章内容包括:样本空间、随机事件及其运算,概率的定义及其确定方法(频率方法、古典方法、几何方法及主观方法),概率的性质、条件概率的定义及三大公式,以及随机事件独立性的概念及相关概率计算。

随机事件、概率的定义和性质是基础,概率的计算是基本内容,条件概率及事件独立性是深化。

1.教学目的与教学要求本章的教学目的是:(1)使学生了解样本空间的概念,理解随机事件的概念,熟练掌握事件之间的关系和运算;(2)使学生掌握条件概率的三大公式并用这些公式进行相关概率计算;(3)使学生理解条件概率及独立性的概念并进行相关概率计算。

本章的教学要求是:(1)理解样本空间、随机事件、古典概率、几何概率、频率概率、主观概率、条件概率及事件独立性的概念;(2)熟练掌握事件之间的关系和运算,利用概率的性质及条件概率三大公式等求一般概率、条件概率以及独立情形下概率的问题;(3)掌握有关概率、条件概率及独立情形下的概率不等式的证明及相关结论的推导。

2.本章的重点与难点本章的重点、难点是概率、条件概率的概念及加法公式、乘法公式,全概率公式、贝叶斯公式及事件独立性的概念。

二、教学内容本章共分随机事件及其运算、概率的定义及其确定方法、概率的性质、条件概率、独立性等5节来讲述本章的基本内容。

1.1 随机事件及其运算本节包括随机现象、样本空间、随机事件、随机变量、事件间的关系、事件运算、事件域等内容,简要介绍上述内容的概念及事件间的基本运算。

一、随机现象1.定义在一定条件下,并不总是出现相同结果的现象称为随机现象。

例(1)抛一枚硬币,有可能正面朝上,也有可能反面朝上;(2)掷一颗骰子,出现的点数;(3)一天内进入某超市的顾客数;(4)某种型号电视机的寿命;(5)测量某物理量(长度、直径等)的误差。

随机现象到处可见。

2.特点:结果不止一个;哪一个结果出现事先不知道。

3.随机试验:在相同条件下可以重复的随机现象。

二、样本空间1.样本空间是随机现象的一切可能结果组成的集合,记为其中,ω表示基本结果,称为样本点。

概率统计 第一章 概率论的基础知识

概率统计   第一章 概率论的基础知识

7 (1) P( A B) P( A) P( B) P( AB) 10 3 (2) P( A B) 1 P( A B) 10 2 (3) P( A B) P( A) P( AB) 5
条件概率
已知事件A发生的条件下,事件B发生 的概率称为A条件下B的条件概率,记 作P(B|A)
27! 3! 9! 9! 9! 50 P( A) N (S ) 203
7 10 10 3 C 27 C 20 C10 18 P( B) N (S ) 203
4、 随机取数问题
例4:从1,2,3,4,5诸数中,任取3个排成自左向右的次序, 求: (1)
A1 “所得三位数是偶数”的概率? (2) A2 “所得三位数不小于200”的概率?

任何事件均对应着样本空间的某个子集.
称事件A发生当且仅当试验的结果是子集A中的元素
例1
定义
E4: 掷一颗骰子,考察可能出现的点数。 S4={1,2,3,4,5,6}; A=“掷出偶数点” B=“掷出大于4的点 ” ={2,4,6} ={5,6} C=“掷出奇数点”={1,3,5}
样本空间的子集称为随机事件。

n n1 nm 2 ! nm 1 !n n1 nm 1 !
n! n1!....nm !
种取法.
1、抽球问题
例1:设盒中有3个白球,2个红球,现从盒中 任抽2个球,求取到一红一白的概率。
解:设事件A为取到一红一白
N (S ) C

2 5
N ( A) C C
一般地,设A、B是S中的两个事件,则
P( AB) P( B | A) P( A)
称为事件A发生的条件下事件B发生的条件概率

概率统计第一章答案

概率统计第一章答案

概率论与数理统计作业班级 姓名 学号 任课教师第一章 概率论的基本概念教学要求:一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算.二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式.三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法.重点:事件的表示与事件的独立性;概率的性质与计算.难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理解与应用;独立性的应用.练习一 随机试验、样本空间、随机事件1.写出下列随机事件的样本空间(1)同时掷两颗骰子,记录两颗骰子点数之和;(2)生产产品直到有5件正品为止,记录生产产品的总件数;(3)在单位圆内任意取一点,记录它的坐标.解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12}; (2){=Ω5;6;7;…};(3)(){}1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件:(1)A 发生,B 与C 不发生,记为 C B A ;(2)C B A ,,至少有一个发生,记为C B A ;(3) C B A ,,中只有一个发生,记为C B A C B A C B A ;(4)C B A ,,中不多于两个发生,记为ABC .3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑球},,2,1=i 叙述下列事件的内涵:(1)21A A ={}次都取得黑球次、第第21.(2)21A A ={}次取得黑球次或地第21.(3)21A A ={}次都取得白球次、第第21 .(4)21A A ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21.4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件.解:321A A A B =练习二 频率与概率、等可能概型(古典概率)1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 163)(=AC P , 求事件A 、B 、C 都不发生的概率.解:由于 ,AB ABC ⊂ 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=169163414141=-++= 所以()().16716911=-=-=C B A P C B A P 2.设,)(,)(,)(r B A P q B P p A P === 求B A P ().解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ⊂则()()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=所以()()()().q r r q p p AB P A P B A P -=-+-=-=3.已知在8只晶体管中有2只次品,在其中任取三次,取后不放回,求下列事件的概率:(1)三只都是正品;(2)两只是正品,一只是次品.解:(1)设=A {任取三次三只都是正品},则基本事件总数5638==C n ,A 包含基本事件数2036==C m ,于是 ()1455620==A P . (2)设=B {任取三次两只是正品,一只是次品},则基本事件总数5638==C n ,B 包含基本事件数,301226==C C m 于是().28155630==B P 4.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码,(1)求最小号码为6的概率;(2)求最大号码为6的概率.解:(1)设=A {最小号码为6},则基本事件总数,120310==C n A 包含基本事件数,624==C m 于是().2011206==A P (2)设=B {最大号码为6},则基本事件总数,120310==C n B 包含基本事件数,1025==C m 于是().12112010==B P 5.一盒中有2个黑球1个白球,现从中依次取球,每次取一个,设i A ={第i 次取到白球},3,2,1=i . 求)(i A P , 3,2,1=i .解: ()311=A P ; ()=2A P 312312=⨯⨯, ()311231123=⨯⨯⨯⨯=A P . 6.掷两颗均匀的骰子,问点数之和等于7与等于8的概率哪个大?解:样本空间基本事件总数,3666=⨯=n 设=1A {点数之和等于7},=2A {点数之和等于8},则=1A {()()()()()()3,4;4,3;2,5;5,2;1,6;6,1},1A 包含基本事件数等于6 ;=2A {()()()()()3,5;5,3;4,4;2,6;6,2},2A 包含基本事件数等于5 ;于是 ()613661==A P ; ()3652=A P .所以()()21A P A P > . 7.一批产品共100件,对其抽样检查,整批产品不合格的条件是:在被检查的4件产品中至少有1件是废品.如果在该批产品有5﹪是废品,问该批产品被拒收的概率.解:设=A {被检查的4件产品至少有1件废品},则()812.05100495==C C A P ;所以 ()()188.01=-=A P A P .8.将3个球随机放入4个杯子中,求杯子中球数的最大值为2的概率.解:基本事件总数34444=⨯⨯=n ,设=A {杯子中球数最大值为2},则A 包含的基本事件数36131423==C C C m (3个球任取两个,然后4个杯子任取1个放入,再对1个球在3个杯子中任取一个放入),于是()3436=A P . 练习三 条件概率1.甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名.求在碰到甲班同学时,正好碰到1名女同学的概率.解:设=A {碰到甲班同学},=B {碰到乙班同学},则();7030=A P (),7015=AB P 于是 ()()()5.0301570307015====A P AB P A B P . 2.箱子里有10个白球,5个黄球,10个黑球.从中随机地抽取1个.已知它不是黑球,求它是黄球的概率.解:设=A {任取一个不是黑球},=B {任取一个是黄球},则(),532515==A P ();51255==B P 又A B ⊂ ,则()()B P AB P = ,于是()()()315351===A P AB P A B P3.某人有5把钥匙,其中2把能打开房门.从中随机地取1把试开房门,求第3次才打开房门的概率.解:设=i A {第i 次能打开门} ,;3,2,1=i 则 =321A A A {第3次才打开门},于是由乘法公式有53454.假设某地区位于甲、乙二河流的汇合处,当任一河流泛滥时,该地区就遭受水灾.设某时期内甲河流泛滥的概率为0.1,乙河流泛滥的概率为0.2.当甲河流泛滥时,乙河流泛滥的概率为0.3.求(1)该时期内这个地区遭受水灾的概率;(2)当乙河泛滥时甲河流泛滥的概率.解:设=A {某时期甲河泛滥},=B =A {某时期乙河泛滥},则(),1.0=A P ()2.0=B P , ()3.0=A B P于是()()()()()()15.02.03.01.0=⨯===B P A B P A P B P AB P B A P ()()()03.015.02.0=⨯==B A P B P AB P()()()()27.003.02.01.0=-+=-+=AB P B P A P B A P5. 甲、乙两车间加工同一种产品,已知甲、乙两车间出现废品的概率分别为3﹪、2﹪,加工的产品放在一起,且已知甲车间加工的产品是乙车间加工的产品的两倍.求任取一个产品是合格品的概率.解:设=A {任取一个为甲生产的产品},=B {任取一个产品为废品},则()()()()%2%,3,31,32====A B P A B P A P A P 由全概率公式有 ()()()()()752100231100332=⨯+⨯=+=A B P A P A B P A P B P 6.设甲袋中有3个红球及1个白球.乙袋中有4个红球及2个白球.从甲袋中任取一个球(不看颜色)放到乙袋中后,再从乙袋中任取一个球,求最后取得红球的概率.解:设=A {从甲袋中任取一个球为红球},=B {最后从乙袋中任取一个球为红球},则 ()()()();74,75,41,43====A B P A B P A P A P 由全概率公式287474 7.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机的一次性抽取4只察看,若无残次品,则买下该箱玻璃杯,否则退回,试求:(1)顾客买下该箱的概率;(2)在顾客买下的一箱中,确实没有残次品的概率.解:设=i A {售货员任取一箱玻璃杯有i 个残品},2,1,0=i ,=B {顾客买下该箱玻璃杯},则()()();1.0,1.0,8.0210===A P A P A P()()();632.0,8.0,1420418242041910≈====C C A B P C C A B P A B P (1)由全概率公式得()()()()()()()943.0632.01.08.01.018.0221100=⨯+⨯+⨯≈++=A B P A P A B P A P A B P A P B P(2)由贝叶斯公式得 ()()()().848.0943.018.0000≈⨯==B P A B P A P B A P 8.已知一批产品中有95﹪是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率.解:设=A {任取一个产品为合格品},=B {任取一个产品被判为合格品},则()()()();03.0,98.002.01,05.0,95.0==-===A B P A B P A P A P于是(1) 任意抽查一个产品,它被判为合格品的概率是 ()()()()()9325.003.005.098.095.0=⨯+⨯=+=A B P A P A B P A P B P(2)一个经检查被判为合格的产品确实是合格品的概率是 ()()()().9984.09325.098.095.0≈⨯==B P A B P A P B A P练习四 事件的独立性1.设甲、乙两人独立射击同一目标,他们击中目标的概率分别为0.9和0.8,求在一次射击中目标被击中的概率.解:设 =A {甲击中目标},=B {乙击中目标}, 则=B A {目标被击中},()()8.0,9.0==B P A P ,于是()()()()()()()().98.08.0098.09.0=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P2.三人独立地去破译一个密码,他们能译出的概率分别是41,31,51,问能将此密码译出的概率是多少?解:设=i A {第i 人破译密码} ,;3,2,1=i =B {破译密码}, 则 ()()(),41,31,51321===A P A P A P 321A A A B =, 于是()()()()()()().5343325411111321321321=⨯⨯-=-=-=-=-=A P A P A P A A A P A A A P B P B P3.电路由元件A 与两个并联的元件B 及C 串联而成,且它们工作是相互独立的.设元件A 、B 、C 损坏的概率分别是0.3,0.2,0.2,求电路发生间断的概率.解:设=D {电路正常},则()C A B A C B AD ==, 则 ()()()()()()()()()()().672.08.08.07.08.07.08.07.0=⨯⨯-⨯+⨯=-+=-+=C P B P A P C P A P B P A P C B A P C A P B A P D P 所以 ()()328.0672.011=-=-=D P D P4. 设每次射击时命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?解:设至少要进行n 次独立射击,则至少击中一次的概率不小于0.9可表为: ()(),9.0011≥=-=≥k P k P n n由于,2.0=p 则,8.0=q 于是()n n k P 8.0101-==-,所以有,1.08.0≥n 即32.103.0ln 2.0ln =≥n所以至少进行11次独立射击才能使至少击中一次的概率不小于0.9.综合练习题一、选择题1.设事件B A ,,有A B ⊂,则下列式子正确的是( A ).(A ));()(A P B A P = (B) );()(A P AB P =(C) );()|(B P A B P = (D) ).()()(A P B P A B P -=-2.设A 与B 为两个相互独立的事件,0)(>A P ,0)(>B P ,则一定有=)(B A P ( B).(A ))()(B P A P + (B ))()(1B P A P -(C ))()(1B P A P + (D ))(1AB P -.3.设B A ,为两事件,且B A ⊃,则下列结论成立的是( C ).(A )A 与B 互斥;(B ) A 与B 互斥;(C)A 与B 互斥;(D) A 与 B 互斥.4.设B A ,为任意两事件,且,0)(,>⊂B P B A 则下列选择必然成立的是( C ).(A))|()(B A P A P <; (B) )|()(B A P A P >;(C) )|()(B A P A P ≤; (D) )|()(B A P A P ≥.5.假设事件A 和B 满足1)(=A B P ,则下列正确的是( D ).(A )A 是必然事件; (B )();0=A B P ; (C )A B ⊂ ; (D )B A ⊂.6.对于任意二事件B A ,( B ).(A) 若AB ≠∅,则B A ,一定独立; (B) ,AB ≠∅则B A ,有可能独立;(C) AB =∅,则B A ,一定独立; (D) AB ≠∅,则B A ,一定不独立;7.若事件A 和B 满足)}(1)}{(1{)(B P A P B A P --= ,则正确的是( D ).(A )互不相容与B A ; (B ) 互不相容与B A ;(C ) B A ⊃; (D ) 互为独立与B A .8.设当事件A 与B 同时发生时,事件C 必发生,则( B ).(A )1)()()(-+≤B P A P C P ; (B )1)()()(-+≥B P A P C P ;(C ))()(AB P C P =; (D ))()(B A P C P =.9.设B A 、是两个事件,则=-)(B A P ( C ).(A ))()(B P A P -; (B ))()()(AB P B P A P +-;(C) )()(AB P A P -; (D) )()()(AB P B P A P ++.10.设C B A ,,是三个随机事件,41)()()(===C P B P A P ,81)(=AB P ,0)()(==AC P BC P ,则C B A ,,三个随机事件中至少有一个发生的概率是( B ).(A )43; (B ) 85; (C ) 83; (D ) 81. 11.某学生做电路实验,成功的概率是0(p ﹤p ﹤1),则在3次重复实验中至少失败1次的概率是( B ).(A )3p ; (B )31p -; (C )3)1(p -; (D )3)1(p -)1()1(22p P p p -+-+.12.设A P B P A P (,7.0)(,8.0)(==|8.0)=B ,则下面结论正确的是( A ).(A )事件A 与B 互相独立; (B )事件A 与B 互不相容;(C );B A ⊂ (D )).()()(B P A P B A P +=13.下列事件中与A 互不相容的事件是( D )(A )ABC ; (B) C B C B A ; (C) )(C B A ; (D) ))()((B A B A B A .14.若事件A 、B 相互独立且互不相容,则{}=)(),(min B P A P ( C ).(A) )(A P ; (B ) )(B P ; (C ) 0; (D ) )()(B P A P -.15.,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 设则( A ).(A) )()|(A P B A P = ; (B) A B =; (C) Φ≠AB ; (D) )()()(B P A P AB P ≠.二、填空题1.已知B A ⊂,3.0)(,2.0)(==B P A P ,则)(B A P - 0 .2.设7.0)(=A P ,5.0)(=B P .则的最小值为)(AB P 0.2 .3.三次独立的试验中,成功的概率相同,已知至少成功一次的概率为2719,则每次试验成功的概率为 1/3 .4.已知()0.5,()0.8P A P B ==,且(|)0.8 P B A =,则=)(B A P 0.9 .5. 设5.0)(=A P ,4.0)(=B P ,6.0)|(=B A P ,则)|(B A A P = 20/29 .6.假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是B A ⊂.7.已知7.0)(=A P ,3.0)(=-B A P ,则=)(AB P 0.4 . 8.已知41)(=A P ,31)(=AB P ,21)(=B A P ,则=)(B A P 1/3 . 9.设两个相互独立的事件A 和B 都不发生的概率为91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则=)(A P 2/3 .10.设C B A ,,构成一个完备事件组,且()0.5,()0.7P A P B ==,则=)(C P 0.2 .11.设A 与B 为互不相容的事件,0)(>B P ,则=)(B A P 0 .12.设事件C B A ,,两两互斥,且,4.0)(,3.0)(,2.0)(===C P B P A P则=-])[(C B A P 0.5 .13.设事件A 与B 相互独立,已知1)()(-==a B P A P ,97)(=B A P ,则=a 5/3或4/3 .14.甲、乙两人独立的对同一目标射击一次,其命中率分别为6.0和5.0,现已知目标被命中,则它是甲射中的概率为 3/4 .15.假设随机事件A 与B 满足),()(B A P AB P =且p A P =)(,则=)(B P p -1.三、应用题1.甲、乙、丙3人同向一飞机射击,设击中飞机的概率分别为0.4,0.5,0.7.如果只有一人击中飞机,则飞机被击落的概率是0.2;如果有2人击中飞机,则飞机被击落的概率是0.6;如果3人都击中飞机,则飞机一定被击落.求飞机被击落的概率.解:设=i A {第i 人击中飞机},=i 甲,乙,丙;=i B {i 人击中飞机};3,2,1,0=i ,=C {飞机被击落};则()()();7.0;5.0;4.0321===A P A P A P()()()()36.03213213211=++=A A A P A A A P A A A P B P ,()()()()41.03213213212=++=A A A P A A A P A A A P B P ,()()14.03213==A A A P B P ;(),2.01=B C P (),6.02=B C P ();13=B C P所以()()()()()()()458.0332211=++=B C P B P B C P B P B C P B P C P2.甲、乙2人投篮命中率分别为0.7,0.8,每人投篮三次,求(1)两人进球数相等的概率;(2)甲比乙进球数多的概率. 解:设=i A {甲人三次投篮进i 个球},=i B {乙人三次投篮进i 个球},则()(),027.07.0130=-=A P ()(),189.07.017.02131=-⨯⨯=C A P()()(),411.07.017.02232=-⨯⨯=C A P ()();343.07.03333=⨯=C A P()(),008.08.0130=-=B P ()(),096.08.018.02131=-⨯⨯=C B P()()(),384.08.018.02232=-⨯⨯=C B P ()();512.08.033==B P(1)=C {两人进球相等}33221100B A B A B A B A =,()()()()()()()()()()()()();36332.03322110033221100=+++=+++=B P A P B P A P B P A P B P A P B A P B A P B A P B A P C P (2)=D { 甲比乙进球数多}331303120201B A B A B A B A B A B A =()()()()()()()()()()()()().21476.0231303120201=+++++=B P A P B P A P B P A P B P A P B P A P B P A P D P3.一射手命中10环的概率为0.7,命中9环的概率为0.3.该射手3发子弹得到不小于29环的概率.解:设=1A {命中10环},=2A {命中9环},则;,2121Ω=Φ=A A A A 于是=B {3发子弹得到不小于29环}={3发子弹均为10环} {有2发击中10环},所以()()()()()()784.03.07.03.07.023223033333=⨯⨯+⨯⨯=+=C C P P B P4.有2500人参加人寿保险,每年初每人向保险公司交付保险费12元.若在这一年内投保人死亡,则其家属可以向保险公司领取2000元.假设每人在这一年内死亡的概率都是0.002,求保险公司获利不少于10000元的概率.解:设参加保险的人中有x 人死亡,当,100002000122500≥-⨯x 即10≤x 时,保险公司获利不少于10000元。

第一章概率统计基础知识

第一章概率统计基础知识
一定面积下平均点数 X一定面积下出现的点数
例题
抽取1个产品
每个产品平均缺陷2个 抽取的产品出现X个(与的大小有关)
例题
抽取100个产品
平均50个瑕疵点 抽取的100个产品有X个缺陷点
泊松分布运算
P( X x) E( X ) Var ( X )
二项分布概率公式
b(n,p) P(x)
E(X)=np Var(x)=np(1-p)
例题
过程不合格品率0.1,抽取6个产品,出现1 个不合格品的概率 平均出现几个不合格品 方差是多少
例题
X服从b(100,0.1),则X的均值和标准 差为
(二)泊松分布
一定面积下出现的点数
独立时间和互不相容事件
不相容事件:无共同样本点 独立事件:相互独立
例题
5个部件工作独立,正常工作的概率为90%, 系统正常工作的概率 系统不工作的概率
例题
从一批产品中抽取10个产品,抽到0个不合 格品的概率为40%,抽到1个不合格品的概 率为30%, 抽到2个以上的概率
放回取样
10个产品 2个不合格品 取4个产品 1个不合格品 所有取法:
10
4
1个不合格品的取法 概率
10 2 (10 2)
1
1
41
10 2 (10 2) P( A) 4 10
4 1
放回取样
10个产品 2个不合格品 取4个产品 2个不合格品 所有取法:

Var ( x)
1

2
例题
指数分布 =0.004 P(200X500) E(X) Var(x)

概率论与数理统计第一章习题参考答案

概率论与数理统计第一章习题参考答案

概率论与数理统计第一章习题参考答案第一章随机事件及其概率1.解决方案:(1)s??2,3,4,5,67? (2) s??2,3,4,?? (3) s??h、 th,tth,??(4)s??hh,ht,t1,t2,t3,t4,t5,t6?2.解:?p(a)?14,p(b)?12,p(ab)?1814? 12? 18? 58? p(a?b)?p(a)?p(b)?p(ab)?p(ab)?p(b)?p(ab)=?p(ab)?1?p(ab)?1?1812??7818?38p[(a?b)(ab)]?p[(a?b)?(ab)]p(ab)p(ab)(abab)5818123.解决方案:使用a表示事件“获得的三位数不包含数字1”P(a)?C8C9C990011?8.9? 9900? 一千八百二十五4、解:用a表示事件“取到的三位数是奇数”,用b表示事件“取到的三位数大于330”(1)p(a)?c3c4c4ca121525111?3?4?45?5?41=0.482) p(b)?c2a5?c2c4c5a5121?2.5.4.1.2.45? 5.4=0.485、解:用a表示事件“4只中恰有2只白球,1只红球,1只黑球”,用b表示事件“4只中至少有2只红球”,用c表示事件“4只中没有只白球”(1)p(a)?c5c4c3c12132114=1204954=833(2) p(b)?1.c4c8?c8c412=202195?67165或p(b)?c4c8?c4c8?c4c41222314?67165一(3)p(c)?c7c4412?35495?7996.解决方案:使用a表示事件“在特定销售点获得的K提单”P(a)?cn(m?1)mnkn?K7、解:用a表示事件“3只球至少有1只配对”,用b表示事件“没有配对”(1)p(a)?(2)p(b)?3?13?2?12?1?13?2?1??2313或p(a)?1?2.1.13? 2.1.238、解p(a)?0.5,p(b)?0.3,p(ab)?0.1p(ab)p(b)p(ab)p(a)(1)p(ab)??0.10.30.10.5? 1315,p(ba)p(a?b)?p(a)?p(b)?p(ab)?0.5? 0.3? 0.1? 零点七p[a(a?b)]p(a?b)p(a?ab)p(a?b)p(ab)p(a?b)p(aa?b)p(ab)p(a?b)0.10.717?0.50.7?57 p(aba?b)?p[(ab)(a?b)]p(a?b)p(ab)p(ab)p(aab)?p[a(ab)]p(ab)??1(2)设定人工智能??第一次拿到白球?我1,2,3,4则p(a1a2a3a4)?p(a1)p(a2a1)p(a3a1a2)p(a4a1a2a3)?611?712?513?412?84020592?0.04089.解决方案:用a表示“两个球中至少有一个红球”,用B表示“两个都是红球”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在终极的分析下,一切知识都是历史
在抽象的意义下,一切科学都是数学
在理性的基础上,所有的判断都是统计学
-C. R. Rao
教材:概率论与数理统计(经管类),第三版
吴赣昌 主编,中国人民大学出版社
参考教材:
1、概率论与数理统计
2、统计学与计量经济学
浙江大学 盛骤 等主编, 高等教育出版社
多米尼克.萨尔瓦多 等, 复旦大学出版社
P( A) 0
P( AB) P( B | A) P( A)
P( AB) P( A | B) P( B) P( B) 0
P( AB) P( A | B) P( B)
作用:计算两个事件同时发生的概率
例3: 求两次取到均为黑球的概率
1、古典概型方法: 2、乘法公式方法:
P32 1 P C 2 P 15 10
推荐阅读书籍:见文档 “概率统计课程推荐书籍.doc” 关于教材配套光盘:作为习题集及解答使用
如何学好“概率统计”课程
课前预习
课堂跟进
课后回顾+练习
概率论与数理统计课程结构图
Probability
Statistics
第一章 随机事件及其概率
作业:
§1.1随机事件;
§1.2随机事件的概率;
1-1:8,9
概率的单调性
A1 A2 An A1 A2 An1 A2 A1 A1
P(A1A2…An) ≤ P(A1A2…An-1) ≤ … ≤ P(A1A2) ≤ P(A1)
性质6(加法公式):
P A B P A P B P AB
A S
事件A发生 的可能性的大小
概率 P A
概率的统计定义 只是概率的近似值
( A. H. 柯尔莫哥洛夫1903-1987 )
“数学界的莫扎特”
前苏联科学家
20世纪最有影响的数学家,是美国、英国、法国等多国院士 或皇家学会会员。
他建立了在测度论基础上的概率论公理体系,奠定了近代概 率论的基础, 同时他也是随机过程论的奠基人之一, 此外,他在信息论、测度论、拓扑学等领域都有重大贡献
A P A S
A
S S S
例6
x y 20
x y 20
课堂练习
【问题】: 任取两个真分数,求它们的乘积不大于1/4的概率
x, y 0,1
1 SG 1 P xy 41x dx 4 S 4 1 4
1


A A A B AB A B AB A B AB
事件A与事件B相等 事件A与事件B至少有一个发生 事件A与事件B同时发生 事件A发生而事件B不发生 事件A和事件B互不相容
事件的关系与运算的维恩图表示法
BA
A,B互不相容
A,B对立
注意区别互斥与对立两种关系
完备事件组
两两互不相容
内容分布:
★ 频率及其性质 ★ 概率的统计定义 ★ 概率的公理化定义
★ 概率的性质*
尽管随机事件具有随机性,但是在一次试验中发生的
可能性大小是客观存在的,并且是可以度量的. 概率:度量事件出现的可能性大小 如何求值?
历史发展:
频率→概率(频率的稳定值)
“抛硬币”试验:抛掷n次,观察出现正面次数.
P( A) 0
1、通过定义,在样本空间S中,先计算出P(AB)、P(A),再利用定 义计算P(B|A)= P(AB)/ P(A)。 2、在A已经发生的条件下,将S 缩减为A(即事件A所包含的基本 事件全体)中,直接计算B发生的概率。
条件概率性质
设事件A满足P(A)>0,则
1. 对于任一事件B,有1≥ P(B|A) ≥0 2. P(S|A) =1
A:每个杯子最多放1个球; B:每个杯子最多放2个球; C:每个杯子最多放3个球;
放球的所有可能结果:
基本事件总数
古典概型计算概率时应注意的问题:
计算样本空间和事件A所包含的基本事件数时,分清排列 与组合,不重复计数,也不要遗漏;
当直接计算遇到困难时,可以选择: 将复杂的事件分成若干个简单事件的和,再 利用概率的加法公式或有限可加性; 选择先计算其对立事件的概率,再利用性质3
解:
乘法公式的推广-P20 (4.4式) 对于任一n>1,如果
P A1 A2 An1 0
P A3 | A1 A2 P An 1 | A1 A2 An 2 P An | A1 A2 An 1
则有 P A A2 An P A P A2 | A1 1 1
乘法公式适用范围:
求若干事件的积事件的概率,如果这些事件之间存在“顺序” ,可以考虑“顺序”造成的概率影响,利用乘法公式求概率。
P Ai P( Ai ) i 1 i 1
三、概率的性质
分解思想
求概率的迂回战术
性质4:
S
A B
S
A
B
P( A B) P( A) P( AB)
B
特别地:
S
A
S
A
BA
B A P( A B) P( A) P( B) P( B) P( A)
1 1 ln 4 4 4
§1.4、条件概率
在实际问题中常常需要考虑在固定试验条件下,外加某些
条件时随机事件发生的概率。
条件概率
贝叶斯公式 注意对此种条件概率的理解
乘法公式
全概率公式
概率性质: 有限可加性
一、引例
连抛硬币2次,观察向上面出现的情况。
S={HH,HT,TH,TT},A={HH,HT,TH},B={HH,TT}
三、几何概型
古典概型必须假定试验结果是有限个,这 限制了它的使用范围。 推广:保留等可能性,允许试验结果为无 限个,这种试验模型为几何概型。
法国数学家
蒲丰提出:将随机事件与几何结合起来.
何为几何概型?
P A A
P S S 1
往区域S内随机抛掷一点
求已知事件A发生的条件下事件B发生的概率?
B
AB
A
S
1 P ( B | A) 3
事件AB中样本点的数目 事件A中样本点的数目
二、条件概率的定义
定义1: 设A,B两个事件,
P(A)>0,
将已知事件A发生条件下事件B发生的条件概率记为
P(B|A)
P( AB) P( B | A) P( A)
条件概率的两种计算方法
BA
A
B
S
B
A
B S
A S
加法公式的推广
1) P( A B C ) P( A) P( B ) P(C ) P( AB) P( AC ) P( BC ) P( ABC )
2)对任意n 个事件 A1 ,
A2 , ,
An , 有
n n P Ai P Ai PAi A j 1 i j n i 1 i 1
n=5 nH 1 2 3 4 5 6 7 2 3 1 5 1 2 4 fn(H) 0.4 0.6 0.2 1.0 0.2 0.4 0.8 nH 22 25 21 25 24 21 18 n=50 fn(H) 0.44 0.50 0.42 0.50 0.48 0.42 0.36 nH 251 249 256 253 251 246 244 n=500 fn(H) 0.502 0.498 0.512 0.506 0.502 0.492 0.488
三、样本空间 四、随机事件
S,
不可能事件 必然事件
两个特殊的事件:
S

通过事件的关系与运算来实现将复杂的事件分解成较简单 事件的“组合”。
记号
S,
事件间的关系与运算
概率论 样本空间, 必然事件 不可能事件 基本事件 事件 A的对立事件 事件A发生导致B发生
集合论 全集 空集 元素 子集 A的余集 A是B的子集 A与B的相等 A与B的和集 A与B的交集 A与B的差集 A与B没有相同的元素
8
9 10
2
3 3
0.4
0.6 0.6
24
27 31
0.48
0.54 0.62
258
262 247
0.516
0.524 0.494
一、频率及其性质
【定义1】在相同的条件下,进行了n 次试验, 在这n次试验 中,事件
A 发生的次数 nA 称为事件 A 发生的频数。
A出现的次数
比值nA /n 称为事件A 发生的频率,并记成fn(A) .
1 i j k n
PA A A 1
i j k
n 1
P A1 A2 An
课堂练习-习题1-2 ,4题
问题:
P A P B P C P AB P BC P AC P ABC
二、、概率的定义(公理化定义)
设 E,S ,对于 记为 P( A) ,
A S
赋予一个实数,
事件 A 的概率,
要求集合函数 P()满足 下列三个公理:
非负性 完备性 可列可加性
10
20
0 P( A) ;
P( S) 1;
30 若A1 , A2 ,是两两互不相容事件, 则 P( A1 A2 ) P( A1) P( A2)
P(B)与P(B |A)的区别在于两者发生的环境不同,它们是 两个不同的角度考虑的概率,在数值上一般也不同。
一般的,P(B|A) ≠P(B)
有关条件概率的三公式
•乘法定理(同时发生的事件的概率) •全概率公式(如何以全局的观点认识事件的发生)
相关文档
最新文档