稀土发光材料的发光机理及其应用

合集下载

稀土材料发光

稀土材料发光

稀土材料发光稀土材料是一类特殊的材料,由于其特殊的电子结构和能级分布,使得它们在激发能量的作用下能够发出特殊的光谱。

这种发光现象被广泛应用于荧光材料、荧光显示器、LED照明、激光器等领域。

本文将介绍稀土材料发光的原理、应用和未来发展趋势。

稀土材料发光的原理主要是由于稀土元素的内层电子结构和外层价电子结构的特殊性质。

稀土元素的内层电子结构具有复杂的能级分布,而外层价电子结构又具有较宽的能带。

当外界能量作用于稀土材料时,稀土元素的内层电子能级发生跃迁,产生特定的光谱。

不同的稀土元素由于其内层电子结构的不同而发出不同波长的光谱,因此可以实现多彩的发光效果。

稀土材料发光在各个领域都有广泛的应用。

在荧光材料中,稀土材料可以被用于制备各种类型的荧光粉,用于荧光标记、生物成像、荧光探针等方面。

在荧光显示器和LED照明中,稀土材料可以被用于制备发光二极管,实现高效节能的照明效果。

在激光器中,稀土材料可以被用于制备激光介质,实现高功率、高效率的激光输出。

未来,随着科学技术的不断发展,稀土材料发光技术也将得到更广泛的应用和深入的研究。

一方面,人们将继续探索新的稀土材料,寻找更适合特定应用场景的发光材料。

另一方面,人们将不断改进稀土材料的制备工艺和性能,提高其发光效率和稳定性。

同时,人们还将探索新的应用领域,将稀土材料发光技术应用于更多的领域,如生物医学、信息显示、激光通信等。

总的来说,稀土材料发光技术具有广阔的应用前景和发展空间。

通过不断的研究和创新,稀土材料发光技术将为人类社会带来更多的科技成果和生活便利。

希望本文能够为读者对稀土材料发光技术有更深入的了解,也希望稀土材料发光技术能够为人类社会的发展做出更大的贡献。

稀土材料的发光特性研究及其在显示技术中的应用

稀土材料的发光特性研究及其在显示技术中的应用

稀土材料的发光特性研究及其在显示技术中的应用摘要显示技术的发展对于人们生活和工作的影响越来越大。

稀土材料作为一种重要的发光材料,具有独特的发光特性,因此受到了广泛的关注和研究。

本文主要介绍了稀土材料的发光特性研究的相关内容,包括稀土材料的基本概念、光致发光机制以及在显示技术中的应用。

1. 引言随着信息技术的发展,显示技术逐渐成为人们生活中必不可少的一部分。

而显示技术的发展离不开发光材料的研究和应用。

稀土材料作为一类特殊的发光材料,具有很多优异的特性,在显示技术中有着广泛的应用前景。

因此,深入研究稀土材料的发光特性对于进一步推动显示技术的发展意义重大。

2. 稀土材料的基本概念稀土元素是指周期表中的镧系元素,包括15个元素,分别是镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥。

这些元素具有相似的电子结构和化学性质,因此被统称为稀土元素。

稀土材料是指以稀土元素为主体的合金、氧化物、硅酸盐等材料。

稀土材料具有较为特殊的物理和化学特性,包括磁性、荧光、发光等。

其中,发光特性是稀土材料的重要特点之一。

3. 稀土材料的发光机制稀土材料的发光机制是通过外加能量的激发使得稀土离子发生跃迁,从而产生发光现象。

稀土材料的发光机制主要有激发跃迁、非辐射跃迁以及共振能量转移等。

3.1 激发跃迁激发跃迁是指稀土材料中的稀土离子在外界能量激发下从基态跃迁到激发态。

激发跃迁的能量可以是光能、电能或热能。

当稀土离子从激发态返回到基态时,会发出特定波长的光。

3.2 非辐射跃迁非辐射跃迁是指稀土材料中的稀土离子在激发态之间进行能量转移,而不发生光的辐射。

这个过程中通常会损失能量,导致发光强度的降低。

3.3 共振能量转移共振能量转移是指稀土材料中,两种不同的稀土离子之间发生能量转移的过程。

其中一个稀土离子吸收能量并发光,另一个稀土离子则通过共振能量转移得到能量。

4. 稀土材料在显示技术中的应用稀土材料具有广泛的在显示技术中的应用,主要体现在以下几个方面:4.1 发光二极管(LED) 发光二极管(LED)是一种将电能转化为光能的器件。

浅析稀土发光材料的发光机理与应用

浅析稀土发光材料的发光机理与应用

pH值、亚硝酸盐累积与氨氮基质比例、有机物等诸多因素的协同影响。

李亚峰[16]以FA去除率、FNA去除率和TN去除率为评价指标,利用SPSS 软件进行回归分析,求出各自变量系数,得出回归方程,回归评分分析后,得出各因素影响优先顺序:溶解氧>水力停留时间>葡萄糖>pH>碳酸氢钠>温度,并得到了ANAMMOX工艺处理高氨氮废水的最佳工艺条件。

付昆明[17]在研究中认为短程硝化将会推动ANAMMOX工艺的工程化应用,从控制温度、游离氨、污泥龄、溶解氧、间歇曝气、游离亚硝酸、pH值的稳定性和可行性分析,认为中温条件、FA、DO污泥龄是最容易实现控制的条件。

3 结语目前ANAMMOX工艺大部分局限于中温高氨氮废水的处理,主要用于污泥消化液、垃圾渗滤液或食品加工消化物的处理,且对去除的氮负荷、氮源类型等都有较为苛刻的要求,因此ANAMMOX技术应用时,依然需要解决有机物、DO、亚硝酸盐等的抑制问题,以及工艺调整的复杂性问题才能有更好的发展前景。

参考文献:[1]刘悦,苏敏,刘佳.生物脱氮技术在水处理中的研究进展和专利分析[J].广东化工,2013, 3, 86-90.[2]宋成康,王亚宜.温度降低对厌氧氨氧化脱氮效能及污泥胞外聚合物的影响[J].中国环境科学,2016, 36(7): 2006-2013.[3]周同,于德爽.温度对海洋厌氧氨氧化菌脱氮效能的影响[J].环境科学,2017, 38(5): 2046-2050.[4]鲍林林,赵建国.常温低基质下pH值和有机物对厌氧氨氧化的影响[J].中国给水排水,2012, 28(13): 38-42.[5]孙佳晶,张蕾,张超等. 有机物作用的厌氧氨氧化菌代谢特性研究进展[J].化工进展,2012, 31(8): 1834-1837.[6]汪瑶琪,喻徐良.有机物对厌氧氨氧化菌活性影响研究进展[J]. 化学通报,2017, 80(2): 173-178.[7]陈永,张树德. 亚硝酸盐氮浓度对厌氧氨氧化反应的影响[J]. 中国给水排水,2006, 22(07): 74-76.[8]杨世东,陶文鑫. 海绵铁缓解污水厌氧氨氧化反应器中硝酸盐积累的效果. 农业工程学报,2018, 34(22): 185-188.[9]姜黎安,隋倩雯. 部分亚硝化-厌氧氨氧化工艺处理.低氨氮废水研究进展[J]. 环境工程,2019, 37(1): 61-65.[10]兰兰,赵剑强,丁晓倩.限氧连续曝气快速启动亚硝化-厌氧氨氧化工艺[J].水处理技术,2019, 45(5):85-90.[11]张杰,张泽文,李冬等.不同污泥龄厌氧氨氧化菌的脱氮效能及其动力学特性[J].哈尔滨工业大学学报,2017, 50(8): 1-7.[12]李海玲,李冬,张杰等.除磷亚硝化颗粒工艺启动及性能恢复[J].环境科学,2019, 40(3): 1368-1372.[13]张黎,胡筱敏,姜彬慧.低基质浓度下pH和DO对厌氧氨氧化反应效能的影响[J]. 环境工程,2015, 33(6): 59-62.[14]安芳娇,彭永臻,张永辉,等. 基质比对厌氧氨氧化脱氮性能的影响[J].环境科学学报,2018, 38(3): 1010-1015.[15]闾刚,徐乐中,沈耀良,等. 基质比对ABR厌氧氨氧化工艺脱氮性能的影响[J].环境科学,2017, 38(5): 2006-2011.[16]李亚峰,张文文,叶友林等. UASB厌氧氨氧化工艺多指标正交试验与数学模拟[J].工业水处理,2018, 38(4): 74-78.[17]付昆明,廖敏辉,任奕等.污水短程硝化影响因素的对比分析[J].中国给水排水,2019, 35(4): 25-31.浅析稀土发光材料的 发光机理与应用刘东阳(廊坊卫生职业学院,河北廊坊065000)摘要:稀土是中国重要的战略性资源,在工业领域中更是有着“工业维生素”的美誉,稀土具有不可再生的特点,由于其在化工、陶瓷、医疗等诸多领域中有着重要的应用价值,在人们的生产生活中发挥着至关重要的作用,这也使稀土发光材料的发光机理与应用成为一大重要的研究课题。

稀土发光材料

稀土发光材料

稀土发光材料简介及应用前景摘要:稀土发光材料是信息显示、照明、光源、光电器件不可缺少的原料。

目前我国传统显像管CRT,节能灯用稀土荧光粉的产量居全球首位。

我国拥有巨大的照明工业和照明市场,LED技术的快速进步和新的运用,不仅代表照明革命性的变化,而且代表原材料装备信息、汽车等相关行业的发展,改善了人民生活环境与质量。

本文主要论述了稀土发光材料的兴起发展、发光原理、优异性能、制备工艺、产品应用以及发展动向、发展趋势。

关键字:稀土;发光;发光材料;纳米;制备方法一、稀土发光材料的兴起与发展发光现象是指物体内部以某种方式吸收能量后转化为光辐射的过程,或者物质在各种类型激发作用下能发光的现象,其可以分为如白炽灯、火焰等的物质受热产生热辐射而发光,“夜明珠”、LED等的受外界激发吸收能力而跃迁至激发态再返回基态时,以光形式释放能量发光以及固体化合物受到光子、带电粒子、电场或电离辐射点激发,发生的能量吸收、存储、传递和转换而进行的固体发光[2]。

发光材料发光属于第二种发光方式,辐射的光能取决于电子跃迁前后电子所在能级的能量差,两个能级之间的能量差越大,发射的波长越短,稀土离子具有4f能级,吸收能量的能力强,转换效率高而且具有发射可见光能力强而且稳定等优点,受到人们的青睐。

上世纪六十年代是稀土离子发光及其发光材料基础研究和应用发展的划时代转折点。

国外学者进行二价稀土离子的4f-4f能级跃迁、4f-5d能态及电荷转移态的基础研究,发现上转换现象,完成二价稀土离子位于5000cm-1以下的4f电子组态能级的能量位置基础工作,所有二价稀土离子的发光和激光均起源十这些能级,这些能级间的跃迁产生从紫外至近红外荧光光谱。

稀土离子的光学光谱学、晶体场理论及能量传递机理等研究口益深入和完善,新的现象和新概念不断被揭示和提出,新材料不断被研制。

1964年,在国际上由十稀土分离技术的突破,导致高效YVO4:Eu和Y203:Eu红色荧光粉的发明,紧接着,1968年又发明另一种高效的Y2O2S:Eu3+红色荧光粉。

稀土发光材料

稀土发光材料

稀土发光材料稀土发光材料是一类具有特殊发光性能的材料,其发光机理主要是由于材料中的稀土离子在受激激发后发生跃迁而产生的。

稀土元素是指化学元素周期表中镧系元素和锕系元素,它们具有特殊的电子结构和能级分布,因此在材料中具有独特的光学性能,被广泛应用于发光材料领域。

稀土发光材料具有多种发光方式,包括荧光、磷光、发光等。

其中,荧光是指材料在受到紫外光等激发光源的照射后,产生可见光的现象。

而磷光是指材料在受到激发后,经过一段时间后才发出光线。

发光则是指材料在受到激发后能立即发出光线。

这些不同的发光方式使稀土发光材料在不同领域有着广泛的应用。

稀土发光材料在照明领域有着重要的应用。

由于其高效的发光性能和长寿命,稀土发光材料被广泛应用于LED照明、荧光灯、荧光屏等领域。

其中,LED照明是目前最为常见的应用之一,稀土发光材料在LED中起着至关重要的作用,能够提高LED的发光效率和色彩表现。

除了照明领域,稀土发光材料还在显示领域有着重要的应用。

例如,在液晶显示器中,稀土发光材料被用作背光源,能够提供均匀的背光效果,并且具有较高的亮度和色彩饱和度。

此外,稀土发光材料还被应用于激光显示、荧光屏等领域,为显示技术的发展提供了重要支持。

在生物医学领域,稀土发光材料也有着重要的应用。

由于其发光性能稳定、光谱范围宽,稀土发光材料被应用于生物标记、生物成像等领域。

利用稀土发光材料标记生物分子,能够实现对生物体内部结构和功能的高灵敏检测,为生物医学研究提供了重要的工具。

总的来说,稀土发光材料具有独特的发光性能和广泛的应用前景,其在照明、显示、生物医学等领域有着重要的作用。

随着科技的不断进步,稀土发光材料的研究和应用将会得到进一步的推动,为人类社会的发展和进步做出更大的贡献。

稀土元素在发光材料中的应用及其发光性能研究

稀土元素在发光材料中的应用及其发光性能研究

稀土元素在发光材料中的应用及其发光性能研究1.引言发光材料是一类在外界激发下能够发出可见光的材料,其在照明、显示、激光、生物医学等领域具有广泛的应用。

稀土元素作为一类特殊的元素,在发光材料中扮演着重要的角色。

本文将探讨稀土元素在发光材料中的应用及其发光性能研究。

2.稀土元素在发光材料中的应用稀土元素具有较高的原子序数和复杂的能级结构,使其在发光材料中具有独特的发光性能。

稀土元素常被用于制备荧光粉、磷光体、荧光玻璃等发光材料。

以镝、钬、铒、钆等为代表的稀土元素在不同的发光材料中展现出不同的发光行为,例如镝离子表现出红色荧光、钬离子表现出蓝色荧光等。

通过调控稀土元素的掺杂浓度、晶体结构等因素,可以实现针对性地调节发光颜色和发光强度,满足不同应用领域的需求。

3.稀土元素发光性能研究稀土元素发光性能的研究是深入了解其在发光材料中的作用机制和性能表现的关键。

研究表明,稀土元素的发光性能受多种因素影响,包括晶体结构、掺杂浓度、激发光源等。

例如,通过增加稀土元素的掺杂浓度,可以提高发光材料的发光效率和色纯度;通过选择合适的晶体结构,可以改善发光材料的光学性能;通过设计合适的激发光源,可以实现更高强度的发光效果。

此外,稀土元素的能级结构和跃迁规律也对发光性能起着决定性的作用,深入研究这些规律对于提升发光材料性能具有重要意义。

4.稀土元素的应用案例稀土元素在发光材料中的应用案例丰富多样,涉及照明、显示、激光等多个领域。

以镝为例,其在LED照明中的应用已经成为主流。

镝离子作为红色荧光发射剂,可以实现LED的白光变色效果,提高照明品质;钆和铒等稀土元素在激光器件中的应用也取得了显著的效果,为激光技术的发展提供了关键支持。

随着稀土元素在发光材料中的研究不断深入,其应用领域将进一步拓展,为科技发展和产业升级注入新动力。

5.结论稀土元素在发光材料中的应用及其发光性能研究具有重要意义,对于推动发光材料技术的发展具有深远影响。

稀土材料发光

稀土材料发光

稀土材料发光
稀土材料是一类特殊的材料,它们具有独特的物理和化学性质,其中一种显著
的特点就是发光。

稀土材料发光的现象一直以来都备受科学家们的关注,因为这种发光现象不仅在实际应用中具有重要意义,而且也对我们理解物质的性质和行为有着深远的影响。

稀土材料发光的原理主要是由于稀土元素的内层电子结构的特殊性。

稀土元素
的4f电子层处于较低的能级,因此在激发条件下,这些电子会跃迁到更高的能级,而在返回基态时就会释放出能量,产生发光现象。

这种发光现象可以用于制备各种发光材料,如荧光粉、发光二极管等,广泛应用于照明、显示、荧光标记等领域。

稀土材料发光的应用领域非常广泛,其中最为人熟知的就是在LED照明领域
的应用。

由于稀土材料发光具有高效、稳定、长寿命等优点,因此在LED照明中
得到了广泛的应用。

同时,稀土材料发光还被应用于显示屏、荧光标记、生物医学成像等领域,为这些领域的发展提供了重要的支持。

除了在实际应用中的重要性外,稀土材料发光还对我们理解物质的性质和行为
有着深远的影响。

通过研究稀土材料发光的机理,我们可以深入了解物质的能级结构、电子跃迁规律等,为我们认识和探索物质世界提供了重要的线索。

总的来说,稀土材料发光是一种重要的物质现象,它不仅在实际应用中具有重
要意义,而且对我们认识物质的性质和行为有着深远的影响。

随着科学技术的不断发展,相信稀土材料发光的研究和应用将会有更加广阔的发展前景。

稀土上转换发光应用

稀土上转换发光应用

稀土上转换发光应用稀土元素是指第三至第七十个原子序数的元素,这些元素在地壳中含量极少,但它们在现代科技和工业中却有着广泛的应用。

其中,稀土的上转换发光应用是非常重要和炙手可热的一个领域。

下文将从原理、应用、发展前景等方面来探讨稀土上转换发光的应用。

一、上转换发光原理稀土元素的电子结构决定其可以被分成两类:4f电子与外层电子的分离度不同,因而有内层跃迁和外层跃迁两种。

这两种跃迁引起的发光现象不同。

内层跃迁产生的是X射线、紫外线或者硬X射线辐射。

而外层跃迁则是稀土元素发光的基本原理。

稀土元素的最外层电子的量子态分布未完全填满,有一个或几个空的能级存在。

当这些外层电子被激发到高能级后,它们会逐个跃迁回到低能级,这个过程中会释放出可见光、近红外光和紫外光等。

稀土元素的外层跃迁分为两种,即内壳外电子跃迁和内电子外壳跃迁。

前者是指一个4f电子从内层能级跃迁到外层能级,后者是指一个内层电子与外层的4f电子之间进行电荷传递(也称“能量传递”或“电子传递”)过程中发射光子。

因为内层电子的能级更低,它们的外层能级的距离比较远,因此电子传递需要一个或几个中间介体来完成。

中间介体一般是钙钛矿(CaF2和SrF2)或氟化物晶体,如YF3、YbF3等。

稀土上转换发光具有许多优点,如它可以通过调整稀土离子的能级状态来发射不同波段的光,并且易于控制,不容易被破坏。

因此,它在生物医学、光电子学、传感器、光学储存等领域有着广泛的应用。

(一)生物医学应用稀土上转换发光可用于生物医学成像。

较低剂量的上转换荧光可以应用于骨骼成像展现低剂量的高质量成像表现。

稀土上转换发光荧光纳米粒子(UCNPs)的荧光可以通过肌肉组织和皮肤等组织的穿透点,以实现深度组织成像。

这些UCNPs可作为液态标记剂以及针对的成像前引导剂(PGD)。

另外,稀土上转换发光还可以用于分子分析和诊断。

例如,荧光共振能量转移(FRET)是利用稀土上转换发光器件的近红外能量来直接激发染色体分子的荧光共振能量传递(弗雷塔)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万方数据
万方数据
万方数据
万方数据
万方数据
稀土发光材料的发光机理及其应用
作者:谢国亚, 张友, XIE Guoya, ZHANG You
作者单位:谢国亚,XIE Guoya(重庆邮电大学移通学院,重庆,401520), 张友,ZHANG You(重庆邮电大学数理学院,重庆,400065)
刊名:
压电与声光
英文刊名:Piezoelectrics & Acoustooptics
年,卷(期):2012,34(1)
被引用次数:2次
1.周贤菊;赵亮;罗斌过渡金属敏化稀土化合物近红外发光性能研究进展[期刊论文]-重庆邮电大学学报(自然科学版) 2007(06)
2.段昌奎;王广川稀土光谱参量的第一性原理研究[期刊论文]-重庆邮电大学学报(自然科学版) 2011(01)
3.周世杰;张喜燕;姜峰轻稀土掺杂对TbFeCo材料磁光性能的影响[期刊论文]-重庆工学院学报 2004(05)
4.CARNALL W T;GOODMAN G;RAJNAK K A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 1989(07)
5.LIU Guokui;BERNARD J Spectroscopic properties of rare earths in optical materials 2005
6.DUAN Changkui;TANNER P A What use are crystal field parameters? A chemist's viewpoint[外文期刊] 2010(19)
7.蒋大鹏;赵成久;侯凤勤白光发光二极管的制备技术及主要特性[期刊论文]-发光学报 2003(04)
8.黄京根节能灯用稀土三基色荧光粉 1990(05)
9.VERSTEGEN J M P J A survey of a group of phosphors,based on hexagonal aluminate and gallate host lattices 1974(12)
10.PAN Yuexiao;WU Mingmei;SU Qiang Tailored photoluminescence of YAG:Ce phosphor through various methods 2004(05)
11.KIM J S;JEON P E;CHOI J C Warm-whitelight emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor[外文期刊] 2004(15)
12.苏锵;梁宏斌;王静稀土发光材料的进展与新兴技术产业[期刊论文]-稀土信息 2010(09)
13.SIVAKUMAR S;BOYER J C;BOVERO E Upconversion of 980 nm light into white light from SolGel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles[外文期刊] 2009(16)
14.WANG Jiwei;TANNER P A Upconversion for white light generation by a single compound[外文期刊] 2010(03)
15.QUIRINO W G;LEGNANI C;CREMONA M White OLED using β-diketones rare earth binuclear complex as emitting layer[外文期刊] 2006(1/2)
16.BUNZLI J C G;PIGUET C Taking advantage of luminescent lanthanide ions 2005
17.WANG Leyu;LI Yadong Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals[外文期刊]
2007(04)
18.LINDA A;BRYAN V E;MICHAEL F Downcoversion for solar cell in YF3:Pr3+,Yb3+ 2010(05)
19.TENG Yu;ZHOU Jiajia;LIU Jianrong Efficient broadband near-infrared quantum cutting for solar cells 2010(09)
1.杨志平.梁晓双.赵引红.侯春彩.王灿.董宏岩橙红色荧光粉Ca3Y2(Si3O9)2:Eu3+的制备及发光性能[期刊论文]-硅酸盐学报
2013(12)
2.严回.孙晓刚.王栋.吕萍.郑长征C24H16N7O9Sm 的晶体合成、结构与性质研究[期刊论文]-江苏师范大学学报(自然科学版)
2013(3)
本文链接:/Periodical_ydysg201201028.aspx。

相关文档
最新文档