(优选)糖酵解作用

合集下载

生物化学第22章糖酵解作用

生物化学第22章糖酵解作用

磷酸果糖激酶
果糖果糖-6-磷酸
果糖果糖-1,6-二磷酸
二磷酸转变为甘油醛(四)果糖-1,6-二磷酸转变为甘油醛 果糖 二磷酸转变为甘油醛 3-磷酸和二羟丙酮磷酸 磷酸和二羟丙酮磷酸
醛缩酶
果糖-1,6果糖-1,6-二磷酸
二羟丙酮磷酸
甘油醛甘油醛-3-磷酸
(五)二羟丙酮磷酸转变为甘油醛-3-磷酸 二羟丙酮磷酸转变为甘油醛 磷酸
葡萄糖 → 2乳酸 乳酸 2ADP + 2Pi → 2ATP + 2H2O 总能量变化为 ∆G10’=-196.7kJ/mol - ∆G20’= +61.1kJ/mol ∆G0’=∆G10’+ ∆G20’=-135.6kJ/mol -
其中由ATP捕获的能量的比例为 捕获的能量的比例为 其中由 61.1/196.7 ×100% = 31%
丙糖磷酸异构酶
二羟丙酮磷酸
甘油醛甘油醛-3-磷酸
五、酵解第二阶段的反应
磷酸氧化成1,3-二磷酸甘油酸 (一)甘油醛-3-磷酸氧化成 甘油醛 磷酸氧化成 二磷酸甘油酸
甘油醛甘油醛-3-磷酸 脱氢酶
甘油醛甘油醛-3-磷酸
1,3-二磷酸甘油酸
砷酸盐是磷酸的类似物, 砷酸盐是磷酸的类似物,可以代替磷酸结合 到甘油酸的1位 并很快水解, 到甘油酸的 位 , 并很快水解 , 使得不能形成 1,3-二磷酸甘油酸, 不能产生 二磷酸甘油酸, 二磷酸甘油酸 不能产生ATP, 导致解偶联 。 , 导致解偶联。
第22章 糖酵解作用
(Glycolysis)
一、糖酵解作用的研究历史 二、糖酵解过程概述 三、糖酵解和酒精发酵的全过程图解 四、糖酵解第一阶段的反应机制 五、糖酵解第二阶段——放能阶段的反应机制 糖酵解第二阶段 放能阶段的反应机制 六、由葡萄糖转变为两分子丙酮酸能量转变的估算 七、丙酮酸的去路 八、糖酵解作用的调节 九、其他六碳糖进入糖酵解途径

糖酵解作用Glycolysis

糖酵解作用Glycolysis

(2)第二阶段:3-磷酸甘油醛 2-磷酸甘油酸:3步反应
O COPO3H2 CHOH CH2OPO3H2 1,3- 二磷酸甘油酸 NADH + H+ NAD
+
O 磷酸甘油酸激酶 ADP Mg A TP COH CHOH CH2OPO3H2 3- 磷酸甘油酸 O COH CHOPO3H2
甘油醛-3-P-脱氢酶 磷酸甘油酸变位酶
生 油成 醛 2 (分 第子 一 3 阶 段磷 )酸 甘
-
丙 酮 (酸 第是 二酵 阶解 段的 )终 产 物
(1)第一阶段:葡萄糖 1, 6-二 磷酸果糖:3步反应
CH OPO H • H H
2 3 2
H2O3PO 磷酸己糖异构酶
CH2 O H OH
CH2OH OH OH H ADP Mg 己糖激酶 HO ATP CH2OH OH OH OH H
抑制
柠檬酸
激活
F-2,6-BP对 磷酸果糖激酶的调节作用
磷 酸 果 糖 激 酶 1 的 活 力
ADP
果糖1,6-二磷 酸
-
大肠杆菌 PFK四亚基 中的两个
(3)丙酮酸激酶的调节作用
磷酸化
果糖-1,6-二磷酸对丙 酮酸激酶有激活作用
Байду номын сангаас
去磷酸化
六、其它六碳糖进入EMP
(一)果糖 A. 在肌肉中,通过己糖激酶 hexokinase 转变为F-6-P进入EMP。 B. 肝脏中只有葡萄糖激酶,其只催化葡萄 糖磷酸化。在肝脏中由果糖激酶 Fructokinase 催化Fru生成F-1-P,再由F-1-P 醛缩酶aldolase 催化裂解为磷酸二羟丙酮 DHAP和甘油醛,甘 油 醛 激 酶 催 化 甘 油 醛 生 成 3-P- 甘 油 醛 ( 消 耗 1ATP)进入EMP。

糖酵解作用(共67张PPT)

糖酵解作用(共67张PPT)
糖酵解。糖经过消化后在小肠上部被吸收,进入血液循环,最终在组织细胞中进行代谢。糖酵解途径是葡萄糖转化为ATP和NADPH+H+的过程,为机体提供能量和还原力。在此过程中,多种酶发挥着关键作用,如蔗糖酶、麦芽糖酶和乳糖酶等参与双糖的水解,α-淀粉酶、β-淀粉酶和R-酶等则参与淀粉的水解,共同将多糖降解为单糖供机体利用。此外,淀粉的磷酸解也是糖代谢的重要环节,通过磷酸化酶的作用将淀粉非还原末端的葡萄糖残基转移给磷酸,生成葡萄糖-1-磷酸,进一步参与糖代谢的其他途径。糖酵解及其途径的研究对于理解机体能量供应和物质代谢具有重要意义。

生化第二章糖酵解作用PPT课件

生化第二章糖酵解作用PPT课件
生化第二章糖酵解作用
优选生化第二章糖酵解作用
第一节 糖的消化和吸收
一、消化系统的基本组成
消化系统由消化管和消化腺组成。 消化管包括口腔、咽、食管、胃、小肠 (十二指肠、空肠和回肠)、大肠(盲肠、 结肠和直肠)。 消化腺包括口腔腺、肝、胰和消化管壁腺 消化系统的主要功能是消化吸收食物,并 将食物残渣以粪便的形式排出体外。
D-葡萄糖是多数生物的主要代谢燃料,在代谢中占有中 心地位。葡萄糖含有较高的能量,氧化生成H2O和CO2 放出自由能2840kj/mol;转变成淀粉或糖元贮存又可 维持相对低的摩尔渗透压浓度,而需要能量时又可分 解成葡萄糖氧化供能。
葡萄糖不仅仅是一个能量分子,还是一个常见的前体 分子,可为生物合成反应提供中间物,如大肠杆菌可 利用葡萄糖和其碳架合成所有的氨基酸、核苷酸、辅 酶、脂肪酸和生长所需的各种代谢中间物。葡萄糖有 成千上万种转化,高等动植物中主要有三种:变成糖 元或淀粉贮存、酵解为三碳化合物(丙酮酸)或通过 HMP(磷酸戊糖途径)变为戊糖。
2、整个酵解途径的反应1、3、10为严 格不可逆反应,为EMP途径的三个限 速步骤。相关酶为限速酶。
The Glycolytic Pathway







EMP的能量消耗与生成
NADH+H+的命运
无氧条件下: 通过乙醇发酵受氢,解决重氧化 通过乳酸发酵受氢,解决重氧化
有氧条件下: 通过呼吸链递氢,最终生成H2O,
第44步反应步反应果糖16二磷酸甘油醛3p磷酸二羟丙酮第55步反应步反应甘油醛3p磷酸二羟丙酮磷酸丙糖异构酶第66步反应步反应3p甘油醛13二磷酸甘油酸磷酸甘油醛脱氢酶第77步反应步反应13二磷酸甘油酸3p甘油酸磷酸甘油酸激酶mgadpatp底物水平磷酸化第88步反应步反应3p甘油酸2p甘油酸磷酸甘油酸变位酶第99步反应步反应2p甘油酸磷酸烯醇式丙酮酸烯醇化酶第1010步反应步反应磷酸烯醇式丙酮酸烯醇式丙酮酸丙酮酸丙酮酸激酶mgadpatp底物水平磷酸化丙酮酸激酶pyruvatekinase别构调节酶需要mg催化的反应有atp生成是酵解途径的重要调节酶长链脂肪酸乙酰coaatp等均抑制酶活

第22章 糖酵解作用

第22章 糖酵解作用

2、发酵 (fermentation):厌氧有机体(如酵母)把酵解产 、 :厌氧有机体(如酵母)
生的NADH中的 交给丙酮酸脱羧生成的乙醛,乙醛还原形成 中的H交给丙酮酸脱羧生成的乙醛 生的 中的 交给丙酮酸脱羧生成的乙醛, 乙醇。这个过程叫酒精发酵。若将H交给丙酮酸生成乳酸 交给丙酮酸生成乳酸, 乙醇。这个过程叫酒精发酵。若将 交给丙酮酸生成乳酸,则 是乳酸发酵。 是乳酸发酵。
一、酵解与发酵
1、酵解 、酵解(glycolysis) :是酶将葡萄糖降解成丙酮酸并伴随
着生成ATP的过程。 是好氧动物、植物和微生物细胞分解产 的过程。 是好氧动物、 着生成 的过程 生能量的共同代谢途径。 生能量的共同代谢途径。
O2充足 O2不足
丙酮酸进入线粒体, 丙酮酸进入线粒体,经三羧酸循环彻底氧化生成 CO2和H2O,NADH进入呼吸链氧化产生 进入呼吸链氧化产生ATP。 , 进入呼吸链氧化产生 。 NADH将丙酮酸还原成乳酸,在胞液中进行。 将丙酮酸还原成乳酸,在胞液中进行。 将丙酮酸还原成乳酸
肠粘膜上皮细胞 门静脉
GLUT:葡萄糖转运体 : (glucose transporter)
肝脏
GLUT
各种组织细胞
体循环
三、糖代谢是指葡萄糖在体内的复杂化学反应
葡萄糖吸收入血后 , 依赖一类葡萄 葡萄糖吸收入血后, 葡萄糖吸收入血后 糖 转 运 体 ( glucose transporter , GLUT)而进入细胞内代谢。 )而进入细胞内代谢。
Glu
ATP ADP
(二)第二阶段——放能阶段 第二阶段 放能阶段
6. 3-磷酸甘油醛氧化为 磷酸甘油醛氧化为 磷酸甘油醛氧化为1,3-二磷酸甘油酸 二磷酸甘油酸
G-6-P F-6-P

糖糖酵解作用【优质最全版】

糖糖酵解作用【优质最全版】

四、酵解过程ATP的合成
能量计算:无O2时,从葡萄糖开始,净增2分子ATP;从糖原开始净增 3 分子ATP,NADH用于还原丙酮酸生成乳酸;
有O2时, 2分子NADH进入呼吸链,净增2 ╳ 2.5+2=7分子ATP。 而脑组织和骨骼肌则净增2 ╳ 1.5 + 2 = 5分子ATP 因此,有O2时净增 6~8 分子ATP (请看80页)
1,3-二磷酸甘油酸 + ADP ====== 3-磷酸甘油酸 + ATP▲
8、 3-磷酸甘油酸转变成2-磷酸甘油酸★
磷酸甘油酸变位酶,Mg++
9、 2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸★
烯醇化酶,Mg++
10、 磷酸烯醇式丙酮酸将磷酰基转移给ADP形成ATP和丙酮酸
丙酮酸激酶,Mg++
磷酸烯醇式丙酮酸 + ADP
糖糖酵解作用
第二节 糖类的酵解(glycolysis)
糖酵解即糖的无氧分解,是糖类代谢的共同途径(胞液中进行)
一、酵解与发酵
1、酵解(glycolysis) :是酶将葡萄糖降解成丙酮酸并伴随着生成ATP的
过程。 是好氧动物、植物和微生物细胞分解产生能量的共同代谢途径。
O2充足
丙酮酸进入线粒体,经三羧酸循环彻底氧化生成 CO2和H2O,NADH进入呼吸链氧化产生ATP。
五、丙酮酸的去路
1、变成乙酰COA:有氧条件下,丙酮酸进入线粒体变成乙酰COA, 参加TCA循环,最后氧化成CO2和H2O 2、生成乳酸:在供氧不足时,NADH还原丙酮酸,在乳酸脱氢酶的作 用下,形成乳酸。 3、生成乙醇:在酵母菌或其它微生物中,丙酮酸经脱羧酶催化,生 成乙醛,经乙醇脱氢酶催化,由NADH还原形成乙醇。英文链接

生物化学 糖酵解作用

生物化学 糖酵解作用
通过磷酸甘油酸激酶催化 底物水平磷酸化
=底物分子的高能键转移至ADP或GDP生成ATP或GTP的过程 =ATP生成的2种方式之一,另一种为线粒体内的氧化磷酸化
磷酸甘油酸激酶
1,3-二磷酸甘油酸
3-磷酸甘油酸
步骤6和7是一个能量偶联过程
➢ 3-磷酸甘油醛氧化为3-磷酸甘油酸 ➢ NAD+还原为NADH ➢ ADP磷酸化为ATP
0.1 mmol,专一性不强,可活化六碳糖
• 葡萄糖激酶主要存在于肝细胞,Km葡萄糖 = 5~10 mmol,专一性很强 • 一般情况下细胞内葡萄糖浓度=4 mmol,因此己糖激酶是一般情况下激活葡
萄糖的酶
• 当血糖浓度很高时,葡萄糖激酶在肝脏中活化葡萄糖,随后通过生成UDPG
而合成糖原
• 己糖激酶是变构酶,6-磷酸葡萄糖和ADP是它的变构抑制剂
糖酵解第二阶段
脱氢氧化 底物磷酸化
异构 脱水 底物磷酸化
3-磷酸 甘油醛
1,3-二磷酸 甘油酸 3-磷酸 甘油酸
2-磷酸 甘油酸
磷酸烯醇 式丙酮酸
丙酮酸
糖酵解第二阶段
丙酮酸的去路
底物促进,产物抑制
① 3种产物:ATP、NADH、丙酮酸 ② ATP的去路? ③ NADPH的去路? ④ 丙酮酸的去路?
糖酵解第一阶段
细胞外液 葡萄糖
葡萄糖通过磷酸化为G6P 而保持在细胞内,因为 G6P不能穿越细胞膜
细胞质 葡萄糖
葡萄糖6-磷酸
糖酵解第一阶段
2. 葡萄糖6-磷酸异构为果糖6-磷酸
通过磷酸己糖异构酶催化 酮糖与醛糖的转化 可逆反应
葡萄糖6-磷酸
磷酸己糖异构酶
果糖6-磷酸
很小的自由能变化,因此 该反应是可逆的

生物化学第22章糖酵解作用

生物化学第22章糖酵解作用

丙酮酸生成乳酸的反应
丙酮酸
乳酸脱氢酶
乳酸
酵解的总反应式
在无氧条件下,每分子葡萄糖代谢形成乳酸的总 反应方程式如下: C6H12O6 + 2ADP + 2Pi → 2C3H6O3 + 2ATP + 2H2O
(二)生成乙醇
1.丙酮酸脱羧形成乙醛
丙酮酸脱羧酶
丙酮酸
乙醛
(二)生成乙醇
2.乙醛还原成乙醇
合成糖原 磷酸戊糖途径
葡萄糖
己糖激酶
葡萄糖-6-磷酸(可能不积累)
磷酸葡萄糖异构酶
果糖-பைடு நூலகம்-磷酸(积累)
磷酸果糖激酶被抑制
果糖-1,6-二磷酸
Return
丙酮酸激酶对糖酵解 的调节作用
九、其他六碳糖进入糖酵解途径
四种六碳糖构型比较
D-葡萄糖
D-甘露糖
D-半乳糖
D-果糖
果糖进入糖酵解途径
(肌肉中)
己糖激酶
果糖
果糖-6-磷酸
果糖进入糖酵解途径
(肝脏中)

果糖激酶
果糖
果糖-1-磷酸
果糖进入糖酵解途径
(肝脏中)

果糖-1-磷酸醛缩酶
果糖-1-磷酸

甘油醛激酶
甘油醛 二羟丙酮磷酸
甘油醛
甘油醛-3-磷酸
甘油醛 甘油 甘油-3-磷酸

醇脱氢酶

甘油激酶

甘油磷酸脱氢酶


甘油



甘油-3-磷酸

在代谢途径中,催化基本上不可逆反应的酶 所处的部位是控制代谢反应的有力部位。在糖酵 解途径中,由己糖激酶、磷酸果糖激酶和丙酮酸 激酶催化的反应实际上都是不可逆反应,因此, 这三种酶都具有调节糖酵解途径的作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)麦芽糖的水解
麦芽糖酶
麦芽糖+H2O
2葡萄糖
(三)乳糖的水解
β-半乳糖苷酶
乳糖酶
乳糖+H2O
半乳糖 + 葡萄糖
(二)麦芽糖的水解
麦芽糖酶
麦芽糖+H2O
2葡萄糖
(三)乳糖的水解
β-半乳糖苷酶
乳糖酶
乳糖+H2O
半乳糖 + 葡萄糖
二、淀粉(糖原)的降解
1.淀粉的水解
α-淀粉酶 β-淀粉酶 R-酶(脱支酶) 麦芽糖酶
不能直接水解支链淀粉内部的α-1,6糖苷键。
4、麦芽糖酶
催化麦芽糖水解为葡萄糖,是淀粉水解的最后一步。 淀粉的彻底水解需要上述水解酶的共同作用,其最 终产物是葡萄糖
(二)淀粉的磷酸解
1、磷酸化酶
催化淀粉非还原末端的葡萄糖残基转移给P,生 成G-1-P,同时产生一个新的非还原末端,重复上述 过程。
直链淀粉 支链淀粉
+
NADPH+H+
葡萄糖
丙酮酸 无氧
乳酸
消化与吸收
糖异生途径
淀粉 乳酸、氨基酸、甘油
糖代谢包括分解代谢和合成代谢
双糖和多糖的酶促降解
一、双糖的水解
(一)蔗糖的水解
1.转化酶 蔗糖 + H2O
转化酶
蔗糖酶
葡萄糖 + 果糖
2.蔗糖合成酶
催化蔗糖与UDP反应生成果糖和尿苷二磷酸 葡萄糖
蔗糖+UDP
UDPG+果糖
一、糖酵解的概述
“三羧酸循环”
有氧情况
CO2 + H2O
“乙醛酸循环”
好氧
生物
“糖酵解” 丙酮酸
缺氧情况 “乳酸发酵”

胃,几乎不作用

小肠,胰-amylase,主要的
消化场所
• 麦芽糖、糊精、蔗糖、乳糖等(食物中所混 入)

麦芽糖酶,糊精酶,蔗糖酶,
乳糖酶等
• 葡萄糖、半乳糖、果糖

肠黏膜细胞肠壁毛细血管门静脉血液
组织、细胞
糖代谢的概况
糖原
糖原合成 肝糖原分解
ATP
核糖 磷酸戊糖途径
酵解途径
有氧 H2O及CO2
Na+
Na+
G
G
G
主动吸收:伴有Na+的转运。称为Na+依赖型葡萄糖转 运体,主要存在于小肠粘膜和肾小管上皮细胞。葡 萄糖的吸收是耗能的过程
糖吸收后的去向
糖类物质
口腔、小肠 消化
门静脉
单糖
单糖 在肝脏中 进行代谢
肝脏
肝静脉 血液循环
单糖 在肝外组织 进行代谢
糖的消化吸收

淀粉
口腔,-amylase,少量作用
2、β-淀粉酶
是淀粉外切酶,水解α-1,4糖苷键,从淀粉分 子外即非还原端开始,每间隔一个糖苷键进行水 解,每次水解出一个麦芽糖分子。
直链淀粉 支链淀粉
麦芽糖 麦芽糖+β-极限糊精
β-极限糊精是指β-淀粉酶作用到离分支点23个葡萄糖基为止的剩余部分。
两种淀粉酶降解的终产物主要是麦芽糖
两种淀粉酶性质的比较
α-淀粉酶
-淀粉酶
• 不耐酸,pH3时失 • 耐酸,pH3时仍

保持活性
• 耐高温,70C时15• 不耐高温, 分钟仍保持动植物 • 主要存在植物体
和微生物中。

3、R-酶(脱支酶)
水解α-1,6糖苷键,将α及β-淀粉酶作用支链淀 粉最后留下的极限糊精的分支点水解,产生短的只含 α-1,4-糖苷键的糊精,使之可进一步被淀粉酶降解。
G-1-P G-1-P + 磷酸化酶极限糊精
磷酸化酶不能将支链淀粉完全降解,只能降解到 距分支点4个葡萄糖残基为止,留下一个大而有分 支的多糖链,称为磷酸化酶极限糊精。
淀粉(或糖原)降解
☉1. 到分枝前4个G 时,淀粉磷酸化酶 停止降解 ☉2.由转移酶切下 前3个G,转移到另 一个链上 ☉3.脱支酶水解α1,6糖苷键形成直 链淀粉。脱下的Z是 一个游离葡萄糖 ☉4.最后由磷酸化 酶降解形成G-1-P
(优选)糖酵解作用
体内糖的来源
• 内源性: 量少,不能满足机体对能量的需要
• 外源性: 主要来自植物 从动物性食物中摄入的糖量很少 婴儿:乳汁中的乳糖是主要来源
糖的生理功能
1. 氧化供能___主要功能
2. 体内合成其他物质提供碳源:氨基酸、 脂肪、胆固醇、核苷等。
3. 作为机体组织细胞的组成成分:糖蛋 白、蛋白聚糖、糖脂等。
α葡萄糖1,4糖苷键
+ 7H3PO4
α葡萄糖1,6糖苷键
糖原核心
磷酸化酶(别构酶)
ATP抑制-AMP激活
7 G-1-P +
糖原核心
1 G-1-P
转移酶 糖原核心
去分枝酶 + H3PO4
糖原核心
G-1-P
磷酸化酶+ H3PO4
去单糖降解
糖无氧分解(糖酵解)
机体的生存需要能量,机体内主要提供 能量的物质是ATP。
脱支酶 磷酸化酶 G—1—P
(三)糖原的降解
糖原降解主要有糖原磷酸化酶和糖原脱支酶催 化进行。
糖原 +Pi ( n残基)
糖原 + G-1-P (n-1残基)
磷酸葡萄糖变位酶
肝脏
G+Pi
(葡萄糖-6磷酸酶)
G-1-P
G-6-P 肌肉 进入糖酵解
糖原磷酸化酶:从非还原端催化1-4糖苷键 的磷酸解。
例 肝糖元的分解
ATP的形成主要通过两条途径: 一条是由葡萄糖彻底氧化为CO2和水,从 中释放出大量的自由能形成大量的ATP。 另外一条是在没有氧分子参加的条件下, 即无氧条件下,由葡萄糖降解为丙酮酸,并 在此过程中产生2分子ATP。
一、糖酵解的概述 二、糖酵解过程 三、糖酵解中产生的能量 四、糖酵解的意义 五、糖酵解的调控 六、丙酮酸的去路
磷酸化酶
2.淀粉的磷酸解 转移酶
脱支酶
(一)淀粉的水解
1、α-淀粉酶
是淀粉内切酶,作用于淀粉分子内部的任意 的α-1,4 糖苷键。
直链淀粉
葡萄糖+麦芽糖+麦芽三糖+低聚糖的混合物
支链淀粉
葡萄糖+麦芽糖+麦芽三糖+ α-极限糊精
极限糊精是指淀粉酶不能再分解的支链淀粉
残基。
α-极限糊精是指含α-1,6糖苷键由3个以上葡 萄糖基构成的极限糊精。
实验证明:以葡萄糖的吸收速度为 100计,各种单糖的吸收速度为: D-半乳糖(110) > D-葡萄糖(100) > D-果糖(43) > D-甘露糖(19) > L-木酮糖(15) > L-阿拉伯糖(9)
结论:各种单糖的吸收速度不同
(2)糖的吸收---主动吸收
K+
ATP ADP+Pi
K+ 钠泵
NNaa++
糖的消化
1、口腔消化
次要
唾液淀粉酶
淀粉
麦芽糖 + 麦芽三糖 +
少量含有4-9个葡萄糖基的寡糖
2、小肠内消化 主要
淀粉
胰淀粉酶
麦芽糖+麦芽寡糖(65%)
+异麦芽糖 +α-极限糊精(35%)
小肠粘膜刷状缘各种水解酶
各种单糖
糖的吸收
1.部位: 小肠上部
2.方式:单纯扩散 主动吸收 (1)糖的吸收---单纯扩散
相关文档
最新文档