生物化学教程全套讲义-第22章糖酵解
生物化学第22章糖酵解作用

磷酸果糖激酶
果糖果糖-6-磷酸
果糖果糖-1,6-二磷酸
二磷酸转变为甘油醛(四)果糖-1,6-二磷酸转变为甘油醛 果糖 二磷酸转变为甘油醛 3-磷酸和二羟丙酮磷酸 磷酸和二羟丙酮磷酸
醛缩酶
果糖-1,6果糖-1,6-二磷酸
二羟丙酮磷酸
甘油醛甘油醛-3-磷酸
(五)二羟丙酮磷酸转变为甘油醛-3-磷酸 二羟丙酮磷酸转变为甘油醛 磷酸
葡萄糖 → 2乳酸 乳酸 2ADP + 2Pi → 2ATP + 2H2O 总能量变化为 ∆G10’=-196.7kJ/mol - ∆G20’= +61.1kJ/mol ∆G0’=∆G10’+ ∆G20’=-135.6kJ/mol -
其中由ATP捕获的能量的比例为 捕获的能量的比例为 其中由 61.1/196.7 ×100% = 31%
丙糖磷酸异构酶
二羟丙酮磷酸
甘油醛甘油醛-3-磷酸
五、酵解第二阶段的反应
磷酸氧化成1,3-二磷酸甘油酸 (一)甘油醛-3-磷酸氧化成 甘油醛 磷酸氧化成 二磷酸甘油酸
甘油醛甘油醛-3-磷酸 脱氢酶
甘油醛甘油醛-3-磷酸
1,3-二磷酸甘油酸
砷酸盐是磷酸的类似物, 砷酸盐是磷酸的类似物,可以代替磷酸结合 到甘油酸的1位 并很快水解, 到甘油酸的 位 , 并很快水解 , 使得不能形成 1,3-二磷酸甘油酸, 不能产生 二磷酸甘油酸, 二磷酸甘油酸 不能产生ATP, 导致解偶联 。 , 导致解偶联。
第22章 糖酵解作用
(Glycolysis)
一、糖酵解作用的研究历史 二、糖酵解过程概述 三、糖酵解和酒精发酵的全过程图解 四、糖酵解第一阶段的反应机制 五、糖酵解第二阶段——放能阶段的反应机制 糖酵解第二阶段 放能阶段的反应机制 六、由葡萄糖转变为两分子丙酮酸能量转变的估算 七、丙酮酸的去路 八、糖酵解作用的调节 九、其他六碳糖进入糖酵解途径
糖酵解

• 已糖激酶是一种调节酶。它催化的反应 产物葡萄糖-6-磷酸和ADP是该酶的变构 抑制剂。无机磷酸可解除葡萄糖-6-磷酸 和ADP的抑制作用。
糖酵解第一阶段反应
葡萄糖的磷酸化 葡萄糖与已糖激酶结合时的构象变化
结合前
结合后
葡萄糖激酶
存在于动物肝细胞中,对D-葡萄糖 有专一性强,不被葡萄糖-6-磷酸所 抑制。肌肉已糖激酶对D-葡萄糖的 Km值为0.1mmol/L,肝葡萄糖激酶的 Km值约为10mmol/L。
第22章 糖的酵解
主要内容和要求:
在物质代谢和能量代谢的理解的基础 上,讨论糖的分解 ,本章重点掌握以葡萄 糖为代表的单糖在无氧条件下的分解途径
思考
目录
一 生物体内的主要糖类及生物功能
二பைடு நூலகம்糖的酵解作用
三 糖酵解的反应机制 四 糖酵解作用的调节
一 生物体内的主要糖类及生物功能
1、单糖的链状结构和环状结构 2、重要的单糖及衍生物 3、重要的寡糖 4、重要的多糖 5、糖类的生物学作用
磷酸
甘油
激酶
变
位
酶
H2O
Mg或Mn 烯醇化酶
甘油醛-3-磷酸氧化成1,3-二磷酸甘油酸
生成1分子 NADH+H+
形成1个高能磷 酸键
3-甘油醛磷酸 脱氢酶
GAP
1,3-BPG
NAD+是3-甘油醛磷酸脱氢酶的辅酶,该酶的活性部位
有一个-SH,重金属离3子+ 和烷化剂如碘乙酸能抑制该酶 活性。砷酸盐(AsO4)是无机磷酸的结构类似物,能 破坏1,3-二磷酸甘油酸的形成。
合成的前体 作为细胞识别的信息分子
单糖的分解代谢
一、生物体内单糖的主要分解代谢途径 二、糖酵解(EMP) 三、丙酮酸的去路:无氧降解和有氧降 解途径
第22章糖酵解

CO2
+ NADH + H
+ NAD
O丙酮酸脱羧酶 HC
+ TPP
O 乙醇脱氢酶
CH2OH CH3
乙醇
CH3
八、糖酵解作用的调节
限速反应/关键反应 在物质代谢整个反应链中,某一步反应速度决定 整个反应链的速度,这一步反应称~ 催化该反应的酶称限速酶/关键酶
CH2O
CH2O
6-磷酸果糖
F-6-P
1,6-二磷酸果糖
F-1,6-BP
磷酸果糖激酶—1 (1)ATP抑制
ATP既是底物又是变构抑制剂 怎么实现? 结合部位不同
(2) AMP去除ATP抑制作用
实际上, AMP/ATP 比值调节酶活性
(3) [H+]过高抑制酶活性
避免酸中毒
葡萄糖 1, 6-二磷酸果糖
磷酸果糖激酶 ADP
ATP CH2OH H O H OH H OH OH H OH 葡萄糖
H2O3PO CH2 O H OH
CH2OPO3H2 OH OH H
果糖
1,6- 二磷酸果糖
(四)F-1,6-BP裂解
Cleavage of Fructose-1,6-Bisphosphate
1
4
2
3
5 6
ketone
糖原(淀粉) ①活化 Δ G= -7.5kcal/mol 磷酸化酶 (不可逆) 磷酸 磷酸葡萄糖变位酶 ②异构 Δ G= -0.6kcal/mol (可逆) ③二次活化 Δ G= -5.0kcal/mol (不可逆) 1-磷酸葡萄糖
1
④裂解 Δ G= -0.3kcal/mol 磷酸二羟丙酮 (可逆)
Enzyme is named for the reverse reaction
生物化学糖酵解讲义

及其生理意义
丙酮酸氧化 三羧酸循环 氧化磷酸化
磷酸戊糖途径 糖酵解
糖酵解(EMP)
定位
如何定位一个生化反应?
糖酵解过程中所需的酶类都存在于MIT外的细胞质内,由 此可以确定糖酵解过程是在细胞质中进行。
糖酵解(EMP)
反应历程
糖酵解始于糖的活化(磷酸化),终于丙酮酸的形成。同时 放能,将糖分子中的部分化学能转变到ATP中。 EMP各步反应的基本轮廓(P109,图4-3)
戊糖磷酸途径(PPP或HMP)
生理意义
1.为物质的合成提供还原剂。参与脂肪和固醇的生物合成等。 2.为物质合成提供原料。如Ru5P和R5P是合成核苷酸的原料。E4P和 EMP中的PEP可合成莽草酸,经莽草酸途径可合成芳香族氨基酸,还可 合成与植物生长、抗病性有关的生长素、木质素、绿原酸、咖啡酸等。 同时提高了植物的抗病能力。 3.该途径分子重组阶段形成的丙糖、丁糖、戊糖、己糖和庚糖的磷酸酯 及酶类与卡尔文循环的中间产物和酶相同,因而戊糖磷酸途径和光合作 用可以联系起来。
糖酵解(EMP)
(1)葡萄糖的活化与异构化。 (2)己糖裂解为磷酸丙糖。 (3)甘油醛—3—磷酸的脱氢氧化 (4)贮能
糖酵解(EMP)
生理意义: (1)生成少量ATP,同时生成了还原力NADH,NADH可在线 粒体中被氧化生成ATP。 (2)转变为丙酮酸过程中产生一些中间产物,可参与其他代 谢。 (3)生成的丙酮酸可进一步氧化产生Fra bibliotekTP。
戊糖磷酸途径(PPP或HMP)
4. .PPP在许多植物中普遍存在,特别是在植物感病、受伤、干旱时,该 途径可占全部呼吸的50%以上。由于该途径和EMP-TCAC途径的酶系统 不同,因此当EMP-TCAC途径受阻时,PPP则可替代正常的有氧呼吸。 在糖的有氧降解中,EMP-TCAC途径与PPP所占的比例,随植物的种类、 器官、年龄和环境而发生变化,这也体现了植物呼吸代谢的多样性。 5. 根据报道,呼吸途径与植物的器官脱落有密切关系。在器官脱落方面 的研究中,人们早就知道,吲哚乙酸能推迟器官脱落,乙烯则是促脱落 剂。而HMP途径与吲哚乙酸的形成有关,因为它的中间产物可以进一步 转化形成色氨酸,而色氨酸是合成吲哚乙酸的前体。我们可以推论,植 物体中,当HMP途径占优势时,可能会推迟器官的脱落。
22 糖酵解作用2010-9

甘油醛-3-磷酸
无机磷酸
甘油醛-3-磷酸脱氢酶
~
1,3-二磷酸甘油酸
甘油醛-底3物-磷氧酸化时的,醛分基子氧化为羧基; 氧氧化化内成键与过能高(进能可磷程行化以酸产了学不化生重键是偶的新,磷联能分这酸布一键进量,高)行在形 能断;分子底 产内物 物重水 的新平 高是分磷 能指配酸 磷直化 酸,接:基形由团成一断个高裂代能并谢转磷中移酸间酯键; 甘油裂醛生成-3A-T磷P过酸程脱。氢酶催化,到由ADNPA分D子+和上无生成机A磷TP的酸过参程加。实现的。
甘油酸-2-磷酸
烯醇化酶
~9反应图 磷酸烯醇式丙酮酸
此反应为酵解途径中第二次底物水平磷酸化,但是, 此时只生成高能磷酸酯键,ATP还没有生成。
10、 磷酸烯醇式丙酮酸转变为丙酮酸 并产生一个ATP分子
这是由葡萄糖形成丙酮酸的最后一步反应。催化此反应的 酶称பைடு நூலகம்丙酮酸激酶(Pyruvate kinase, PK)
葡萄糖的磷酸化
葡萄糖
己糖1激反酶 应图
葡萄糖-6-磷酸
2、葡萄糖-6-磷酸( G-6-P )异构化 形成果糖-6-磷酸(F-6-P)
催化这一反应的酶称为由磷酸葡萄糖异构
酶(phosphoglucose isomerase)又称磷酸己
糖异构,G-6-P经烯醇式异构转变为果糖-6-磷酸
(F-6-P)反应可逆。
2、葡萄糖-6-磷酸( G-6-P )异构化 形成果糖-6-磷酸(F-6-P)
2反应图
磷酸葡萄糖异构酶
葡萄糖-6-磷酸
果糖-6-磷酸
3、F-6-P磷酸化,生成 果糖-1,6-二磷酸(FDP)
这一步是糖酵解或酒精发酵过程中的第二个磷酸化反 应。也是糖酵解过程使用的第二个ATP分子的反应,果糖 –6 – 磷酸被ATP进一步磷酸化形成果糖 –1,6 – 二磷酸。 该反应不可逆。
生物化学下-第22章 糖酵解作用

第22章 糖酵解作用(Glycolysis)
糖酵解?
Ø 长期不跑步的人,快速跑步之后肌肉感到疼痛, 为什么?
Ø 酒、醋、酱油、酸奶都是如何生产的?
第22章 糖酵解作用(Glycolysis)
一、糖酵解作用的研究历史
Ø 1875年,法国科学家巴斯德(L. Pasteur)发现葡萄糖在无氧条件 下被酵母菌(微生物)分解生成乙醇的现象。
Ø 血糖主要在神经、激素的调节下维持恒定: 降低血糖的激素—— 胰岛素 升高血糖的激素—— 胰高血糖素、肾上腺素、糖皮质激素、生长激素
第22章 糖酵解作用(Glycolysis)
一、糖酵解作用的研究历史 二、糖酵解过程概述 三、糖酵解和酒精发酵的全过程图解 四、糖酵解第一阶段的反应机制 五、糖酵解第二阶段——放能阶段 六、由葡萄糖转变为两分子丙酮酸能量转变的估算 七、丙酮酸的去路 八、糖酵解作用的调节 九、其他六碳糖进入糖酵解途径
几丁质代谢酶:
p 几丁质合酶 p 几丁质内切酶 p 几丁质外切酶 p 几丁质去乙酰化酶
糖代谢—— 多糖(Polysaccharide)
多糖—— (4)几丁质 (chitin)
壳聚糖(chitosan):别名: 壳多糖、脱乙酰甲壳素、几丁聚糖等 化学名称:聚葡萄糖胺、β(1→4)-2-氨基-β-D-葡萄糖 是由几丁质脱乙酰基的产物。
肝糖原
分解
脂肪等非糖物质 转化
合成
血糖
转化
肝糖原,肌糖原 其他单糖,糖衍生物
其他单糖
转化
转化
转化
空腹血糖:3.9 ~ 6.2 mmol/L (0.8~1.2 g/L) 8.96 ~ 10.08 mmol/L(1.6 ~ 1.8 g/L)时可由尿排出
生物化学 第22章 糖酵解

糖酵解途径实验依据
氟化钠对酵母生长也有抑制作用
将1,6-二磷酸果糖或磷酸丙糖、酵母抽提 液以及氟化钠一起保温有磷酸甘油酸积累 (3-和2-磷酸甘油酸的平衡混合物)
由此推断1,6-二磷酸果糖分解为三碳糖 和3-磷酸甘油酸是3-磷酸甘油醛的氧化产 物,2-磷酸甘油酸又是前者变位后的产物, 氟化钠对2-磷酸甘油酸进一步反应的酶有 抑制作用
1.淀粉在口腔和小肠内转变为葡萄糖 2.双糖的水解-----膜消化 3.纤维素的水解 4.淀粉和糖原的磷酸解:1-p-G
•糖类的吸收
1. 主动转运 2. 被动转运
主动转运
小肠中葡萄糖 的吸收示意图
返回
被动转运
载体蛋白运 转的方向总 是从糖浓度 高处向低处, 因此不需耗 能
返回
糖酵解途径发现历史
为不可逆反应
糖酵解代谢总结:
一.三步不可逆反应
己糖激酶,6-p-果糖激酶,丙酮酸激酶所催化为
限速步骤;但磷酸甘油酸激酶为可逆反应。
二.一步氧化反应生成2NADH+H+,由3-p-甘 油醛
脱氢酶催化
三.反应过程中能量的消耗和生成
1.G------6-P-G
-1ATP
2.6-P-F-------1,6-2P-F
如果加入无机磷酸盐,可以恢复发酵速度, 但不久又会再次缓慢,同时加入的磷酸盐 浓度逐渐下降。
上述现象说明在发酵过程中需要磷酸,可 能磷酸与葡萄糖代谢中间产物生成了糖磷 酸酯。完整细胞可通过ATP水解提供磷酸。
糖酵解途径实验依据
从体外发酵中分离到果糖-1,6二磷酸糖 碘乙酸对酵母生长有抑制作用 将葡萄糖、酵母抽提液及碘乙酸一起保温, 可以造成果糖-1,6二磷酸糖积累。 果糖-1,6二磷酸糖加入发酵液中一样被酵 解。
22 糖酵解-王镜岩生物化学(全)

调控位点 己糖激酶
激活剂 ATP
抑制剂 G-6-P,ADP ATP, 柠檬酸, pH下降 ATP,Ala, 乙酰-CoA
6-磷酸葡萄糖 果糖6-磷酸
a
葡萄糖
磷酸果糖激 ADP , 酶(限速酶) AMP, 果糖-2,6二磷酸 丙酮酸激酶 果糖-1,6二磷酸, 磷酸烯醇 丙酮酸
b
1,6-二磷酸果糖 3-磷酸甘油醛磷酸二羟丙酮
细胞壁
叶绿体
中心体
吞噬 分泌物
溶酶体 细胞膜
糖的酵解途径
糖的酵解途径(glycolysis)是指葡萄糖在
糖原(或淀粉)
第 一 阶 段 第 二 阶 段
EMP的化学历程
1-磷酸葡萄糖
葡萄糖
葡萄糖的磷酸化
6-磷酸葡萄糖 6-磷酸果糖 1,6-二磷酸果糖
磷酸己糖的裂解
3-磷酸甘油醛磷酸二羟丙酮 21,3-二磷酸甘油酸
+ATP
CH20 P
1,3-二磷酸甘油酸
3-磷酸甘油酸
△G0/=-18.83kJ/mol
说明:第一次产生ATP,发生底物水平磷酸化。 (ATP的形成,直接由一个代谢中间产物上的磷酸基 团转移到ADP分子上。)
O
O
8、
C-OH HC-OH
磷酸甘油酸变位酶
C-OH HC-O P
CH20
P
CH20H
3-磷酸甘油酸
丙酮酸脱羧酶
TPP
H+ C -
4
其它单糖进入酵解的途径
D-果糖;D-半乳糖;;D-甘露糖
5
糖酵解的调控(83页)
糖酵解代谢途径的调节主要是通过各种 变构剂对三个关键酶进行变构调节。分 别为己糖激酶(葡萄糖激酶)、磷酸果 糖激酶、丙酮酸激酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二章糖酵解
第一节糖酵解作用的研究历史
一.糖酵解作用的研究历史
1897年Buchner兄弟发现糖转化为乙醇不需要活细胞。
1905年,Harden A和Yang W J发现糖分解过程中生成磷酸酯,随后发现这一过程有辅酶参与。
30年代,Embden和Meyerhof对糖的无氧分解进行深入研究,基本搞清了无氧分解的途径,故这一途
径也称作Embden - Meyerhof途径。
二.糖酵解过程概述
三.糖酵解第一阶段的反应机制
1.葡萄糖的磷酸化
己糖激酶是调控酶,受葡萄糖-6-磷酸的抑制。
该酶催化的反应释放大量能量,为不可逆反应。
己糖激酶(哺乳动物为单体酶,酵母为二聚体)有4种同工酶,同工酶主要存在于脑和肾,葡萄糖-6-磷酸对该酶有抑制作用,少量的无机磷可解除葡萄糖-6-磷酸的抑制作用,同工酶Ⅱ主要存在于骨骼肌和心
肌,同工酶Ⅲ主要存在于肝脏和肾脏,同工酶Ⅳ(葡萄糖激酶)只存在于肝脏,其合成受胰岛素的诱导。
葡萄糖-6-磷酸的代谢途径:
2.葡萄糖-6-磷酸异构化形成果糖-6-磷酸人类的磷酸葡萄糖异构酶为二聚体:
3.果糖-6-磷酸形成果糖-1、6-二磷酸
磷酸果糖激酶亚基的结构(四个亚基):白色为ATP,红色为果糖-6-磷酸。
磷酸果糖激酶是关键的调控酶,有4个亚基、3种同工酶,同工酶A存在于骨骼肌和心肌,对磷酸肌酸、柠檬酸、无机磷酸的抑制作用最敏感;同工酶B存在于肝脏和红细胞,对2,3-二磷酸甘油酸(BPG)的抑制作用最敏感;同工酶C存在于脑中,对腺嘌呤核苷酸的作用最敏感。
磷酸果糖激酶催化的反应不可逆,A TP是别构抑制剂,F-2、6-BP是别构激活剂。
两次磷酸化使葡萄糖转化为反应活性很高的F-1、6-BP,有利于随后的分解反应。
4.果糖-1、6-二磷酸转变为甘油醛-3-磷酸和二羟丙酮磷酸
醛缩酶有多种同工酶,Ⅰ型醛缩酶存在于高等动植物,为四聚体,有3种同工酶,A主要存在于肌肉中,B主要存在于肝脏,C主要存在于脑组织,3种同工酶均由4中不同的亚基组成。
Ⅱ型醛缩酶存在于微生物,相对分子质量只有Ⅰ型醛缩酶的一半,含有二价金属离子。
果糖-1、6-二磷酸浓度较低时,容易转变为甘油醛-3-磷酸和二羟丙酮磷酸。
果糖-1、6-二磷酸转变为甘油醛-3-磷酸和二羟丙酮磷酸的反应机制:5.二羟丙酮磷酸转变为甘油醛-3-磷酸
丙糖磷酸异构酶为四聚体,图中所示为单体的结构,红色为二羟丙酮磷酸。
反应机制:
四.酵解第二阶段放能阶段的反应机制
1.甘油醛-3-磷酸氧化成1、3-二磷酸甘油酸
从兔的肌肉中分离的甘油醛-3-磷酸脱氢酶有4个相同的亚基:
砷酸化合物迅速分解,不能生成A TP:
2.1、3-二磷酸甘油酸转移高能磷酸基团形成ATP
3.3-磷酸甘油酸转变为2-磷酸甘油酸磷酸甘油酸变位酶为二聚体:
酵母的反应机制:
麦芽的反应机制:
4.2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸烯醇化酶为二聚体:
5.磷酸烯醇式丙酮酸转变为丙酮酸并产生一个ATP分子
丙酮酸激酶为四聚体,反应可以看作2步。
A mechanism for the pyruvate kinase reaction: (a) a water on the Mg2+ ion coordinated to ADP is replaced by the phosphoryl group of PEP; (b) Mg2+ dissociates from the α-P of ADP; (c) the phosphoryl group is transferred;and (d) the enolate of pyruvate is protonated.
第二节由葡萄糖转变为两分子丙酮酸
能量转变的估算
ATP的生成数:
丙酮酸的去路和NAD+的再生:
其他六碳糖进入糖酵解途径:
缺乏半乳糖-1-磷酸尿苷酰转移酶使晶状体半乳糖增高,引起白内障,严重时引起生长停滞,智力迟钝,甚至引起肝损伤导致死亡。
半乳糖的代谢途径:
反应的乒乓动力学机制:
甘油分解的途径:。