生物统计:方差分析
生物统计-方差分析

FB=
s /s
A
2
2 e
s /s
B
2
2 e
无重复观测值的二因素方差分析—多重比较
• 多重比较 对达到显著差异的因素的平均数进行多重比较 以SSR检验为例,
设因素A、B的水平数分别a、b,
LSR0.05=SSR0.05* s x 当检验因素A各水平平均数之间的差异显著性时,
s
x
= s
(Excel 文件)
二因素方差分析
无重复观测值的二因素方差分析—方差
• 平方和与自由度的分解 SST=SSA+SSB+SSe dfT=dfA+dfB+dfe
• 各项的方差
s SS / df
2 A A
A
s SS / df
2 B B
BБайду номын сангаас
s SS / df
2 e e
e
无重复观测值的二因素方差分析—F检验
x
= s
an
具有重复观测值的二因素方差分析—多重比较
当检验AxB各水平平均数之间的差异显著性时,
s
x
=
s
2 e
n
例6.5
• 为了研究某种昆虫滞育期长短与环境的关系,在给定的温 度和光照条件下进行实验室培养,每一处理记录4只昆虫的 滞育天数(数据见Excel文件)。试作方差分析,并进行多 重比较。 本例是一个固定模型的方差分析 (Excel 文件)
• F检验 (2)随机模型:A和B均为随机因素
s /s F = s /s
FA=
B
2
2 AB
A
2
2 AB 2 e
B 2
生物统计第三节单因素试验资料的方差分析

C T / N 460.5 / 25 8482.41
2
2
上一张 下一张 主 页
退 出
SST x C
2
ij
(21.5 2 19.5 2 17.0 2 16.0 2 ) 8482 . 41
8567 . 75 8482 . 41
Байду номын сангаас85.34
MSE
P
⑥ 列出方差分析表
df
3、确定P值、下结论
•从上表得F=14.32,查附表5(方差分析界值表,
单侧),自由度相同时,F界值越大,P值越小。
因F0.01,2,27= 5.49;故P<0.01,按α=0.05水准
拒绝H0,接受HA,可认为三个不同时期切痂对
ATP含量的影响有统计显著性差异。
方差分析的结果只能总的来说多组间是否
S,即
x
得各最小显著极差,所得结果列于表6-15。
上一张 下一张 主 页
退 出
表6-15 SSR值及LSR值
dfe
上一张 下一张 主 页
退 出
将表6-14中的差数与表6-15中相应的最小显
著极差比较并标记检验结果。
检验结果表明:5号品种母猪的平均窝产仔数
极显著高于2号品种母猪,显著高于4号和1号品
③ 计算总的变异及总的自由度
SST x C
2
ij
dfT kn 1 N 1
④ 计算组间变异及相应的自由度
SSB Ti 2 / ni C
df b k 1
⑤ 计算组内变异及相应的自由度
SSE SST SSB
df e dfT df b
N k
生物统计-8第八章单因素方差分析

01
确定因子和水平
确定要分析的因子(独立变量) 和因子水平(因子的不同类别或 条件)。
建立模型
02
03
模型假设
根据因子和水平,建立方差分析 模型。模型通常包括组间差异和 组内误差两部分。
确保满足方差分析的假设条件, 包括独立性、正态性和同方差性。
方差分析的统计检验
01
F检验
进行F检验,以评估组间差异是否 显著。F检验的结果将决定是否拒
生物统计-8第八章单因素方差分析
目录
• 引言 • 方差分析的原理 • 单因素方差分析的步骤 • 单因素方差分析的应用 • 单因素方差分析的局限性 • 单因素方差分析的软件实现
01
引言
目的和背景
目的
单因素方差分析是用来比较一个分类变量与一个连续变量的关系的统计分析方法。通过此分析,我们可以确定分 类变量对连续变量的影响是否显著。
VS
多元性
单因素方差分析适用于单一因素引起的变 异,如果存在多个因素引起的变异,单因 素方差分析可能无法准确反映实际情况。 此时需要考虑使用其他统计方法,如多元 方差分析或协方差分析等。
06
单因素方差分析的软件 实现
使用Excel进行单因素方差分析
打开Excel,输入数据。
点击“确定”,即可得到单因素方差分析 的结果。
输出结果,并进行解释和 解读。
谢谢观看
背景
在生物学、医学、农业等领域,经常需要研究一个分类变量对一个或多个连续变量的影响。例如,研究不同品种 的玉米对产量的影响,或者不同治疗方式对疾病治愈率的影响。
方差分析的定义
定义
方差分析(ANOVA)是一种统计技术,用于比较两个或更多组数据的平均值 是否存在显著差异。在单因素方差分析中,我们只有一个分类变量。
生物统计第8章两因素及多因素方差分析

目录
• 引言 • 两因素方差分析 • 多因素方差分析 • 案例研究 • 总结与展望
01 引言
主题简介
两因素及多因素方差分析
在生物统计中,两因素及多因素方差分析是用来比较不同组之间的 平均值是否存在显著差异的统计方法。
适用场景
适用于研究两个或多个因子对响应变量的影响,例如药物剂量和治 疗效果、不同品种和产量等。
详细描述
例如,比较不同饲料类型和不同饲养环境下 猪的增重效果。将猪随机分为不同的组,每 组给予一种饲料并处于一种饲养环境,然后 比较各组的平均增重。
多因素方差分析案例
总结词
多因素方差分析用于比较多个分类变量对数值型变量的影响。
详细描述
例如,比较不同饲料类型、不同饲养环境以及不同品种的猪的增重效果。将猪随机分为 不同的组,每组给予一种饲料、处于一种饲养环境并属于一个品种,然后比较各组的平
基本思想
通过比较各组间的方差与误差方差,判断不同组间是否存在显著差 异。
课程目标和意义
掌握两因素及多因素方差分析的基本原理和步骤
通过学习,学生应能够理解两因素及多因素方差分析的基本概念、原理和实施步骤,为进一步应用和拓展打下基础。
培养解决实际问题的能力
学习两因素及多因素方差分析的目的是为了解决实际问题,如探究不同处理对实验结果的影响、比较不同组间的差异 等。通过学习和实践,学生应能够运用该方法解决实际问题。
03
研究方差分析在不同领域的应用,如医学、生物学、经济学和社会科 学等。
04
开发更高效的算法和软件,以方便用户进行方差分析和相关统计计算。
THANKS FOR WATCHING
感谢您的观看
均增重。
生物统计学-单因素方差分析知识分享

均方差,均方(mean square,MS)
变异程度除与离均差平方和的大小有关外,还与其自由度有关,由于各部 分自由度不相等,因此各部分离均差平方和不能直接比较,须将各部分离 均差平方和除以相应自由度,其比值称为均方差,简称均方。
MS总
SS总 v总
MS组间
S S组间 v组间
MS组内
SS组内 v组内
总变异(Total variation, SS总):全部测量值Yij与总均数Y
间的差异 组间变异( between group variation, SS组间):各组的均
数 Yi 与总均数 Y 间的差异
组内变异(within group variation,SS组内):每组的每个测量Yij与该组均数 Yi 的差异
生物统计学-单因素方差分析
一. 方差分析基础
单因素方差分析的典型数据
重复次数 Y1
Y2
Y3
…
Yi
… Ya (level)
1
y11
y21
y31
yi1
y.1
2
y12
y22
y32
yi2
y.2
3
y13
y23
y33
yi3
y.3
.
.
j
y1j
y2j
y3j
.
yij
y.j
.
n
y1n
y2n
y3n
yin
y.n
平均数 Y1.
Y2.
Y3.
…
Yi.
…
Y..
因素也称为处理(treatment) 因素(factor),每一处理因素至少有两个水 平(level)(也称“处理组”, a个处理组),各重复n次。
生物统计第7章 单因素方差分析

7.2 固定效应模型
7.2.1 线性统计模型
在固定效应模型中,αi是处理平均数与总体 平均数的离差,是个常量,故:∑αi=0(i=1,
2,…n),要检验a个处理效应的相等性,就 要判断各αi是否都等于0。若各αi都等于0,则
各处理效应之间无差异。因此,零假设为:H0: α1=α2= … =αa =0 备择假设为:HA: αi≠0(至少有一个i)
2020/6/19
7.3.3 不等重复时平方和的计算
• 上述情况,无论是固定效应模型,还是随机效 应模型,各处理的观测次数都是相同的。若不 同处理观测次数不同,以上的方差分析方法仍 然适用,但在计算平方和时,公式要作改动。
• 检验程序及结果分析同上述讨论。
2020/6/19
7.4 多重比较(multiple comparison)
2020/6/19
7.1 方差分析的基本原理
7.1.1 方差分析的一般概念
方 差 分 析 ( analysis of variance , ANOV)是一类特定情况下的统计假设检验, 平均数差异显著性检验----成组数据 t检验的一 种引伸。t检验可以判断两组数据平均数间的差 异显著性,而方差分析则可以同时判断多组数 据平均数之间的差异显著性。当然,在多组数 据的平均数之间做比较时,可以在平均数的所 有对之间做t检验。但这样做会提高犯Ⅰ型错误 的概率,因而是不可取的。
2020/6/19
7.2.3 均方期望与统计量F
2020/6/19
7.2.4 平方和的简易计算方法
• 实际应用时,总的平 方和与处理平方和一 般按右式计算:
• 式中的被减数C通常被称 为校正项(correction) :
• 误差平方由右式算出 : • 用SAS软件更简便
生物统计学 第六章 方差分析

该法是最小显著差数(Least significant difference) 法的简称,是Fisher 1935年提出的,多用于检验某一对 或某几对在专业上有特殊探索价值的均数间的两两比 较,并且在多组均数的方差分析没有推翻无效假设H0 时也可以应用。该方法实质上就是t检验,检验水准无 需作任何修正,只是在标准误的计算上充分利用了样 本信息,为所有的均数统一估计出一个更为稳健的标 准误,因此它一般用于事先就已经明确所要实施对比 的具体组别的多重比较。
xij i ij
它是方差分析的基础。
6.2 方差分析的原理
方差分析的基本原理是认为不同处理组的均数间 的差别基本来源有两个: (1) 随机误差,如测量误差造成的差异或个体间的差 异,称为组内差异,用变量在各组的均值与该组内变 量值之偏差平方和的总和表示,记作 SS e ,组内自由度 df e 。 (2) 实验条件,即不同的处理造成的差异,称为组间 差异。用变量在各组的均值与总均值之偏差平方和表 示,记作 SSt ,组间自由度 df t 。 总偏差平方和 SST SSt SSe 。
6.1 方差分析的相关术语
研究马氏珠母贝三亚、印度品系在不同地区的生 长差异,选择同一批繁殖的两品系马氏珠母贝的稚贝, 分别在海南黎安港、广东流沙港、广西防城港三个海 区进行养殖,每个地区每个品系养殖1000个,1年后 测定马氏珠母贝壳高与总重,比较生长差异。 这里壳高与总重称为试验指标,在试验中常会测定 日增重、产仔数、产奶量、产蛋率、瘦肉率、某些生 理生化和体型指标(如血糖含量、体高、体重)等,这些 都是试验指标,就是我们需要测量的数据。
6.4 均值间的两两比较
对完全随机设计多组平均水平进行比较时,当资料满 足正态性和方差齐性,就可以尝试方差分析,若得到 P>α的结果,不拒绝零假设,认为各组样本来自均数相 等的总体,即不同的处理产生的效应居于同一水平, 分析到此结束; 若方差分析结果P≤α,则拒绝零假设, 接受备择假设,认为各处理组的总体均数不等或不全 相等,即各个处理组中至少有两组的总体均数居于不 同水平。这是一个概括性的结论,研究者往往希望进 一步了解具体是哪两组的总体均数居于不同水平,哪 两组的总体均数相等,这就需要进一步作两两比较来 考察各个组别之间的差别。
【生物统计】第六章 方差分析

722 922 562 1162 SSt C 7056 504 n 4
Ti 2
dft k 1 4 1 3
SSe SST SSt 602 504 98
dfe dfT dft k (n 1) 4 (4 1) 12
yij y
C
试 验 误 差
yi y
A BLeabharlann yij yiA B C
A
B
C
-2 -2 -2 -2
0 0 0 0
2 2 2 2
-3 -2 -2 -1
-1 0 0 1
0 1 2 5
-1 0 0 1
-1 0 0 1
-2 -1 0 3
SSt n( yi y )2 32
SST ( yij y )2 50
2 2
因为
SST ( yij y ) ( yij yi yi y )
2
( y y ) 0
i
所以 SST SSt SSe
第一节 方差分析的基本原理
自由度的分解 总自由度: 处理项自由度: 误差项自由度:
dfT nk 1
dft k 1
dfe dfT dft k (n 1)
SSe ( yij yi )2 18
第一节 方差分析的基本原理
通过前面的平方和的直观分解可以看出: SSe SSt
SST SSt SSe
2
当然也可以由公式推导出来:
( yij yi ) ( yi y ) 2 (yij yi ) ( yi y )
18 23 14 29
y 21
第一节 方差分析的基本原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方差分析第五章所介绍的t 检验法适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验,但在生产和科学研究中经常会遇到比较多个处理优劣的问题,即需进行多个平均数间的差异显著性检验。
这时,若仍采用t 检验法就不适宜了。
这是因为:1、检验过程烦琐 例如,一试验包含5个处理,采用t 检验法要进行25C =10次两两平均数的差异显著性检验;若有k 个处理,则要作k (k-1)/2次类似的检验。
2、无统一的试验误差,误差估计的精确性和检验的灵敏性低 对同一试验的多个处理进行比较时,应该有一个统一的试验误差的估计值。
若用t 检验法作两两比较,由于每次比较需计算一个21x x S ,故使得各次比较误差的估计不统一,同时没有充分利用资料所提供的信息而使误差估计的精确性降低,从而降低检验的灵敏性。
例如,试验有5个处理,每个处理重复6次,共有30个观测值。
进行t 检验时,每次只能利用两个处理共12个观测值估计试验误差,误差自由度为2(6-1)=10;若利用整个试验的30个观测值估计试验误差,显然估计的精确性高,且误差自由度为5(6-1)=25。
可见,在用t 检法进行检验时,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。
3、推断的可靠性低,检验的I 型错误率大 即使利用资料所提供的全部信息估计了试验误差,若用t 检验法进行多个处理平均数间的差异显著性检验,由于没有考虑相互比较的两个平均数的秩次问题,因而会增大犯I 型错误的概率,降低推断的可靠性。
由于上述原因,多个平均数的差异显著性检验不宜用t 检验,须采用方差分析法。
方差分析(analysis of variance)是由英国统计学家R.A.Fisher 于1923年提出的。
这种方法是将k 个处理的观测值作为一个整体看待,把观测值总变异的平方和及自由度分解为相应于不同变异来源的平方和及自由度,进而获得不同变异来源总体方差估计值;通过计算这些总体方差的估计值的适当比值,就能检验各样本所属总体平均数是否相等。
方差分析实质上是关于观测值变异原因的数量分析,它在科学研究中应用十分广泛。
本章在讨论方差分析基本原理的基础上,重点介绍单因素试验资料及两因素试验资料的方差分析法。
在此之前,先介绍几个常用术语。
1、试验指标(experimental index ) 为衡量试验结果的好坏或处理效应的高低,在试验中具体测定的性状或观测的项目称为试验指标。
由于试验目的不同,选择的试验指标也不相同。
在畜禽、水产试验中常用的试验指标有:日增重、产仔数、产奶量、产蛋率、瘦肉率、某些生理生化和体型指标(如血糖含量、体高、体重)等。
2、试验因素(experimental factor ) 试验中所研究的影响试验指标的因素叫试验因素。
如研究如何提高猪的日增重时,饲料的配方、猪的品种、饲养方式、环境温湿度等都对日增重有影响,均可作为试验因素来考虑。
当试验中考察的因素只有一个时,称为单因素试验;若同时研究两个或两个以上的因素对试验指标的影响时,则称为两因素或多因素试验。
试验因素常用大写字母A 、B 、C 、…等表示。
3、因素水平(level of factor ) 试验因素所处的某种特定状态或数量等级称为因素水平,简称水平。
如比较3个品种奶牛产奶量的高低,这3个品种就是奶牛品种这个试验因素的3个水平;研究某种饲料中4种不同能量水平对肥育猪瘦肉率的影响,这4种特定的能量水平就是饲料能量这一试验因素的4个水平。
因素水平用代表该因素的字母加添足标1,2,…,来表示。
如A 1、A 2、…,B 1、B 2、…,等。
4、试验处理(treatment ) 事先设计好的实施在试验单位上的具体项目叫试验处理,简称处理。
在单因素试验中,实施在试验单位上的具体项目就是试验因素的某一水平。
例如进行饲料的比较试验时,实施在试验单位(某种畜禽)上的具体项目就是喂饲某一种饲料。
所以进行单因素试验时,试验因素的一个水平就是一个处理。
在多因素试验中,实施在试验单位上的具体项目是各因素的某一水平组合。
例如进行3种饲料和3个品种对猪日增重影响的两因素试验,整个试验共有3×3=9个水平组合,实施在试验单位(试验猪)上的具体项目就是某品种与某种饲料的结合。
所以,在多因素试验时,试验因素的一个水平组合就是一个处理。
5、试验单位(experimental unit ) 在试验中能接受不同试验处理的独立的试验载体叫试验单位。
在畜禽、水产试验中,一只家禽、一头家畜、一只小白鼠、一尾鱼,即一个动物;或几只家禽、几头家畜、几只小白鼠、几尾鱼,即一组动物都可作为试验单位。
试验单位往往也是观测数据的单位。
6、重复(repetition ) 在试验中,将一个处理实施在两个或两个以上的试验单位上,称为处理有重复;一处理实施的试验单位数称为处理的重复数。
例如,用某种饲料喂4头猪,就说这个处理(饲料)有4次重复。
第一节 方差分析的基本原理与步骤方差分析有很多类型,无论简单与否,其基本原理与步骤是相同的。
本节结合单因素试验结果的方差分析介绍其原理与步骤。
一、线性模型与基本假定假设某单因素试验有k 个处理,每个处理有n 次重复,共有nk 个观测值。
这类试验资料的数据模式如表6-1所示。
表6-1 k 个处理每个处理有n 个观测值的数据模式处理 观 测 值合计.i x 平均.i x A 1 x 11 x 12 … x 1j … x 1n.1x .1x A 2 x 21 x 22 … x 2j … x 2n.2x .2x … …A i x i1 x i2 … x ij … x in.i x .i x … … A k x k1 x k2 … x kj … x kn x k . .k x合计..x..x表中ij x 表示第i 个处理的第j 个观测值(i =1,2,…,k ;j =1,2,…,n );∑==nj ij i x x 1.表示第i 个处理n 个观测值的和;∑∑∑=====k i i k i n j ij x x x 111...表示全部观测值的总和;nx n x x i nj ij i /./.1==∑=表示第i 个处理的平均数;kn x kn x x ki nj ij /../..11==∑∑==表示全部观测值的总平均数;ij x 可以分解为ij i ij x εμ+= (6-1)i μ表示第i 个处理观测值总体的平均数。
为了看出各处理的影响大小,将i μ再进行分解,令∑==ki i k11μμ (6-2)μμα-=i i (6-3)则ij i ij x εαμ++= (6-4)其中μ表示全试验观测值总体的平均数,i α是第i 个处理的效应(treatment effects )表示处理i 对试验结果产生的影响。
显然有01=∑=ki iα(6-5)εij是试验误差,相互独立,且服从正态分布N (0,σ2)。
(6-4)式叫做单因素试验的线性模型(linear model )亦称数学模型。
在这个模型中ij x 表示为总平均数μ、处理效应αi 、试验误差εij 之和。
由εij相互独立且服从正态分布N (0,σ2),可知各处理A i (i =1,2,…,k )所属总体亦应具正态性,即服从正态分布N (μi ,σ2)。
尽管各总体的均数i μ可以不等或相等,σ2则必须是相等的。
所以,单因素试验的数学模型可归纳为:效应的可加性(additivity )、分布的正态性(normality )、方差的同质性(homogeneity )。
这也是进行其它类型方差分析的前提或基本假定。
若将表(6-1)中的观测值x ij (i =1,2,…,k ;j =1,2,…,n )的数据结构(模型)用样本符号来表示,则ij i i ij i ij e t x x x x x x x ++=-+-+=........)()( (6-6)与(6-4)式比较可知,..x 、i i t x x =-)(...、ij i ij e x x =-)(.分别是μ、(μi -μ)=i α、(x ij -i μ)=ij ε的估计值。
(6-4)、(6-6)两式告诉我们:每个观测值都包含处理效应(μi -μ或...x x i -),与误差(i ij x μ-或.i ij x x -),故kn 个观测值的总变异可分解为处理间的变异和处理内的变异两部分。
二、平方和与自由度的剖分我们知道,方差与标准差都可以用来度量样本的变异程度。
因为方差在统计分析上有许多优点,而且不用开方,所以在方差分析中是用样本方差即均方(mean squares )来度量资料的变异程度的。
表6-1中全部观测值的总变异可以用总均方来度量。
将总变异分解为处理间变异和处理内变异,就是要将总均方分解为处理间均方和处理内均方。
但这种分解是通过将总均方的分子──称为总离均差平方和,简称为总平方和,剖分成处理间平方和与处理内平方和两部分;将总均方的分母──称为总自由度,剖分成处理间自由度与处理内自由度两部分来实现的。
(一)总平方和的剖分 在表6-1中,反映全部观测值总变异的总平方和是各观测值x ij 与总平均数..x 的离均差平方和,记为SS T 。
即∑∑==-=ki nj ij T x x SS 112..)(因为[][]∑∑∑∑∑∑∑∑∑∑∑===========-+--+-=-+--+-=-+-=-ki nj i ij nj i ij ki ki i i ki nj i ij i ij i ik i nj k i nj i ij i ijx x x x x x x x n x x x x x x x x x x x x x x11211121122111122.)(].)(..).[(2..).(.)(.)..)(.(2..).(.)(..).(..)(其中 ∑==-nj i ij x x 1.0)(所以 ∑∑∑∑∑=====-+-=-ki nj ki ki nj i ij i ij x x x x n x x 111112.2...2..)()()( (6-7)(6-7)式中,∑=-ki i x x n12..).(为各处理平均数.i x 与总平均数..x 的离均差平方和与重复数n 的乘积,反映了重复n 次的处理间变异,称为处理间平方和,记为SS t ,即∑=-=ki i t x x nSS 12..).((6-7)式中,∑∑==-k i nj i ij x x 112.)(为各处理内离均差平方和之和,反映了各处理内的变异即误差,称为处理内平方和或误差平方和,记为SS e ,即∑∑==-=ki nj i ij e x x SS 112.)(于是有SS T =SS t +SS e (6-8)(6-7),(6-8)两式是单因素试验结果总平方和、处理间平方和、处理内平方和的关系式。