高等数学竞赛试题含答案

合集下载

数学竞赛高数试题及答案

数学竞赛高数试题及答案

数学竞赛高数试题及答案试题一:极限的计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

解答:根据洛必达法则,我们可以将原式转换为 \(\lim_{x \to 0} \frac{\cos x}{1}\),由于 \(\cos 0 = 1\),所以极限的值为 1。

试题二:导数的应用问题:若函数 \( f(x) = 3x^2 - 2x + 1 \),求其在 \( x = 1 \) 处的导数值。

解答:首先求导数 \( f'(x) = 6x - 2 \),然后将 \( x = 1 \) 代入得到 \( f'(1) = 6 \times 1 - 2 = 4 \)。

试题三:不定积分的求解问题:求不定积分 \(\int \frac{1}{x^2 + 1} dx\)。

解答:这是一个基本的积分形式,可以直接应用反正切函数的积分公式,得到 \(\int \frac{1}{x^2 + 1} dx = \arctan(x) + C\),其中\( C \) 是积分常数。

试题四:级数的收敛性判断问题:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) 是否收敛。

解答:根据比值测试,我们有 \(\lim_{n \to \infty}\frac{1}{(n+1)^2} / \frac{1}{n^2} = \lim_{n \to \infty}\frac{n^2}{(n+1)^2} = 1\),由于极限值为 1,小于 1,所以级数收敛。

试题五:多元函数的偏导数问题:设函数 \( z = f(x, y) = x^2y + y^3 \),求 \( f \) 关于\( x \) 和 \( y \) 的偏导数。

解答:对 \( x \) 求偏导,保持 \( y \) 为常数,得到 \( f_x =2xy \)。

对 \( y \) 求偏导,保持 \( x \) 为常数,得到 \( f_y = x^2 + 3y^2 \)。

高数竞赛试题及答案

高数竞赛试题及答案

高数竞赛试题及答案在高等数学领域中,竞赛试题的编写与解答一直是学生们提高自己数学水平的重要方式之一。

本文将提供一些高等数学竞赛试题,并附上详细的解答过程,以帮助读者更好地理解和应用数学知识。

1. 竞赛试题一考虑函数f(x) = |x^2 - 4x + 3|,其中x为实数。

(1)求函数f(x)的定义域。

(2)求函数f(x)的最大值和最小值。

解答过程:(1)为了求函数f(x)的定义域,我们需要确定使函数的值有意义的x 的范围。

由于函数f(x)中包含了一个绝对值,我们可以将其拆分成两种情况讨论:当x^2 - 4x + 3 ≥ 0时,函数f(x) = x^2 - 4x + 3;当x^2 - 4x + 3 < 0时,函数f(x) = -(x^2 - 4x + 3)。

对于第一种情况,我们需要求解不等式x^2 - 4x + 3 ≥ 0。

通过因式分解或配方法,我们可以得到(x-1)(x-3) ≥ 0。

解这个不等式可以得到x ≤ 1或x ≥ 3。

对于第二种情况,我们需要求解不等式x^2 - 4x + 3 < 0。

同样通过因式分解或配方法,可以得到(x-1)(x-3) < 0。

解这个不等式可以得到1< x < 3。

综上所述,函数f(x)的定义域为x ≤ 1或x ≥ 3,且1 < x < 3。

(2)为了求函数f(x)的最大值和最小值,我们可以分别考虑函数f(x)在定义域的两个区间内的取值情况。

当x ≤ 1时,函数f(x) = x^2 - 4x + 3。

通过求导可以知道,函数f(x)在x = 2处取得最小值。

代入可得最小值为f(2) = 1。

当x ≥ 3时,函数f(x) = -(x^2 - 4x + 3)。

同样通过求导可以知道,函数f(x)在x = 2处取得最大值。

代入可得最大值为f(2) = -1。

综上所述,函数f(x)的最大值为-1,最小值为1。

2. 竞赛试题二已知函数f(x) = 2^(x+1) - 3^(x-2),其中x为实数。

高等数学竞赛试题(完整资料).doc

高等数学竞赛试题(完整资料).doc

【最新整理,下载后即可编辑】第二十届高等数学竞赛试卷一、填空题(每小题5分,本题共50分): 1. 若0→x 时,1)1(412--ax与x x sin 是等价无穷小,则=a .2.=+→)1ln(12)(cos lim x x x .3. 设函数2301sin d ,0,(),0,x t t x f x xa x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =.4. =∂∂+∂∂=yz y x z x x y xy z 则设,sin.5.的解为:满足微分方程91)1(ln 2-==+'y x x y y x ._______)()( ,,)()(,.=-=⎩⎨⎧≤≤==>⎰⎰Ddxdy x y g x f I D x a x g x f a 则表示全平面,而其他若设010067..d tan )cos (22222005=+⎰-x x x x ππ8. .sin 2sin sin 1lim=⎪⎭⎫⎝⎛+++∞→n n n n n n πππ9..,1222=≤++Ω⎰⎰⎰Ωdv e z y x z计算所界定由设空间区域10. 设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意的0t >都有2(,)(,)f tx ty t f x y -=. 对D 内的任意分段光滑的有向简单闭曲线L ,则..),(),(=-⎰dy y x f x x d y x f y L二、计算题(每小题6分,本题共42分):.,)()(cos .的解,并求满足化简微分方程:用变量代换21010102='==+'-''-<<===x x y yy y x y x t t x π解题过程是:2. 设∑是锥面1)z z =≤≤的下侧,计算曲面积分d d 2d d 3(1)d d x y z y z x z x y ∑++-⎰⎰..解题过程是:.,),(.的值和数图形有拐点,试确定常处函数的,且在点处有极小值在设函数c b a x cx bx ax y 20012323=+++=解题过程是:.)(d d )()()(),()(.x f t y x y x f y x t f t x f t y x 求函数满足下式:上连续,且对任意的在设函数4222222224+++=∞-∞⎰⎰≤+解题过程是:..之间的最短距离.与平面求旋转抛物面22522=-++=z y x y x z解题过程是:要多少时间?厘米的雪堆全部融化需问高为)系数侧面积成正比,(比例已知体积减少的速率与,小时设长度为厘米,时间为其侧面满足方程的雪堆在融化过程中,为时间设有一高为130,9.0)()()(2)())((.622t h y x t h z t t h +-=解题过程是:.86,)1,1,1(632.722222处的梯度的方向导数和在点处沿方向在点计算函数处指向外侧的法向量在点是曲面设P n P zy x u P z y x n+==++解题过程是:三、证明题(本题8分):.)()(022)(0)(22)()(4242的表达式求函数;,有简单闭曲线内的任意分段光滑证明:对右半平面的值恒为同一常数,曲线积分上,单闭曲线原点的任意分段光滑简有连续的导数,在围绕设函数y II yx xydydx y C x I yx xydydx y L y C L ϕϕϕϕ=++>++⎰⎰第二十届高等数学竞赛试卷参考答案一、填空题(每小题5分,本题共50分):1. 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则=a ..解当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.2.=+→)1ln(12)(cos lim x x x .解)1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而212cos sin lim cos ln lim )1ln(cos ln lim 02020-=-==+→→→x x xx x x x x x x ,故 原式=.121e e=-3. 设函数2301sin d ,0(),0x t t x f x xa x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =.解 由题设知,函数()f x 在 0x =处连续,则lim ()(0)x f x f a→==,又因为 2203200sin d sin 1lim ()limlim 33x x x x t t x f x x x →→→===⎰.所以13a =.4.='+'⎪⎭⎫⎝⎛=y x z y z x u f x y xyf z 则可导函数设,)(,..20sin 202,1,:22z x y xy x y xyf z y z x x y f y x y xf x x y f xy x y xf y z x y f x y x y yf x y x y f xy x y yf x z y x =+=+⎪⎭⎫⎝⎛='+'∴⎪⎭⎫ ⎝⎛'+⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛'+⎪⎭⎫ ⎝⎛=∂∂⎪⎭⎫⎝⎛'-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛'+⎪⎭⎫ ⎝⎛=∂∂解5.的解为:满足微分方程91)1(ln 2-==+'y x x y y x ...91ln 31091)1(191ln 31]ln [1]ln [ln 222222x x x y C y x C x x x C xdx x x C dx ex e y x y xy dxx dx x -==-=+-=+⋅=+⎰⋅⎰==+'⎰⎰-,故所求通解为:得,由,于是通解为:解:原方程等价为:._______)()( ,,)()(,.=-=⎩⎨⎧≤≤==>⎰⎰Ddxdy x y g x f I D x a x g x f a 则表示全平面,而其他若设01006解:本题积分区域为全平面,但只有当 10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可 .⎩⎨⎧+≤≤=-⇒⎩⎨⎧≤-≤=-,,0;1)(,,0;10)(其他若其他若x y x a x y g x y a x y g⎪⎩⎪⎨⎧+≤≤≤≤=-其他,0,1,10)()(2x y x x a x y g x f.])1[(0)()(2121012221a dx x x a dydx a dxdy dxdy a dxdyx y g x f I x xD D D=-+==+=-=⎰⎰⎰⎰⎰⎰⎰⎰⎰+7..d tan )cos (22222005=+⎰-x x x x ππ.22212d sin 20d tan cos d d tan d tan )cos (2022222222200522222005πππππππππ=⋅⋅=+=+==+⎰⎰⎰⎰---x x xx x x x x x x x x x 解:8..sin 2sin sin 1lim =⎪⎭⎫ ⎝⎛++∞→n n n n n n πππ⎰∑∑=∆=⋅=⎪⎭⎫⎝⎛-+++=→∞=→∞→∞1011d sin )(lim 1sin lim )1(sin 2sin sin 1limx x x f n n i n n n n n i ni i n ni n n πξππππ 解:ni n x n n n i n n n x x f i i ==∆<<<<<<=ξπ,1 ,210]10[, sin )(取等份,分点为分为,把区间看作 ().20cos cos 101cos d sin 1`0ππππππ=+-=-==∴⎰x x x 原式9..,1222=≤++Ω⎰⎰⎰Ωdv e z y x z计算所界定由设空间区域.2)1(22211210222ππ=-===-≤+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩdz e z dxdy dz e dv e dv ez y x D z z D z z zz z上法.,故采用"先二后一"为圆域的函数,截面被积函数仅为解:10. 设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意的0t >都有2(,)(,)f tx ty t f x y -=. 对D 内的任意分段光滑的有向简单闭曲线L ,则..),(),(=-⎰dy y x f x x d y x f y L解 2(,)(,)f tx ty t f x y -=两边对t 求导得3(,)(,)2(,)x y xf tx ty yf tx ty t f x y -''+=-.令1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=-,. 即11(,)(,)(,)22x y f x y xf x y yf x y ''=-- ①设(,)(,),(,)(,)P x y yf x y Q x y xf x y ==-,则(,)(,),(,)(,)x y Q Pf x y xf x y f x y yf x y x y ∂∂''=--=+∂∂.则由①可得11(,)(,)22y x Q Pyf x y xf x y x y∂∂⎛⎫''==- ⎪∂∂⎝⎭.故由曲线积分与路径无关的定理可知,对D 内的任意分段光滑的有向简单闭曲线L ,都有.0),(),(=-⎰dy y x xf x d y x yf L二、计算题(每小题6分,本题共42分):.,)()(cos .的解,并求满足化简微分方程:用变量代换21010102='==+'-''-<<===x x y yy y x y x t t x π,解:dt dyt dx dt dt dy y sin 1-=⋅=',代入原方程得0),sin 1(]sin 1sin cos [22222=+-⋅-=⋅'=''y dty d t dt y d t dt dy t t dx dt dt y d y 。

高等数学竞赛试题含答案

高等数学竞赛试题含答案

高等数学竞赛试题一、选择题1. 设n n n y z x ≤≤,且0)(lim =-∞→n n n x y ,则n n z ∞→lim ( C )(A) 存在且等于零; (B) 存在但不一定等于零; (C) 不一定存在; (D) 一定不存在. 2. 设)(x f 是连续函数,)()(x f x F 是的原函数,则( A )(A) 当)(x f 为奇函数时,)(x F 必为偶函数; (B) 当)(x f 为偶函数时,)(x F 必为奇函数; (C) 当)(x f 为周期函数时,)(x F 必为周期函数; (D) 当)(x f 为单调增函数时,)(x F 必为单调增函数. 3. 设0>a ,)(x f 在),(a a -内恒有2|)(|0)("x x f x f ≤>且,记⎰-=a adx x f I )(,则有( B )(A) 0=I ;(B) 0>I ;(C) 0<I ;(D) 不确定.4. 设)(x f 有连续导数,且0)0(',0)0(≠=f f ,⎰-=x dt t f t x x F 022)()()(,当0→x 时,k x x F 与)('是同阶无穷小,则=k ( B )(A) 4; (B) 3; (C) 2; (D) 1.5.设⎪⎩⎪⎨⎧=+≠++=0,00,),(2222222y x y x y x yx y x f ,则),(y x f 在点)0,0(( D )(A) 不连续;(B) 连续但偏导数不存在;(C) 可微; (D) 连续且偏导数存在但不可微.6. 设k j b j i a ρρρρρρ+-=+=2,,则以向量a ϖ、b ϖ为边的平行四边形的对角线的长度为( A )(A) 11,3; (B) 3, 11; (C) 10,3; (D) 11,2.7. 设21L L 与是包含原点在内的两条同向闭曲线,12L L 在的内部,若已知2222L xdx ydykx y +=+⎰Ñ(k 为常数),则有1222L xdx ydyx y ++⎰Ñ( D )(A) 等于k ; (B) 等于k -; (C) 大于k ; (D) 不一定等于k ,与L 2的形状有关. 8. 设∑∞=0n nn xa 在1=x 处收敛,则∑∞=-+0)1(1n nnx n a 在0=x 处( D )二、设)(1lim)(2212N n x bxax x x f n n n ∈+++=-∞→,试确定a 、b 的值,使与)(lim 1x f x →)(lim 1x f x -→都存在.解:当||1x <时,221lim lim 0n n n n x x -→∞→∞==,故2()f x ax bx =+;当||1x >时,1()f x x=112111,1,lim ()1,lim (),1(),11,1,1,lim (),lim ()1,1x x x x x f x f x a b a b x f x ax bx x x f x a b f x a b x -+-+→-→-→→⎧<-=-=--=⎪⎪⎪=+-<<⎨⎪⎪>=+=+=⎪⎩0a =,1b =。

高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案高等数学竞赛试题一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 3 \)的顶点坐标是:A. (2, -1)B. (1, 0)C. (2, 1)D. (2, -1)2. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 3x}{3x} \)的值是:A. 1B. 0C. 3D. 无法确定3. 曲线\( y = x^3 - 2x^2 + x \)在点(1,0)处的切线斜率是:A. 0B. -1C. 1D. 24. 以下哪个级数是发散的?A. \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)B. \( \sum_{n=1}^{\infty} \frac{1}{n} \)C. \( \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \)D. \( \sum_{n=1}^{\infty} \frac{1}{2^n} \)5. 函数\( f(x) = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi \)6. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin x \)7. 已知\( \int_{0}^{1} x^2 dx = \frac{1}{3} \),求\( \int_{0}^{1} x^3 dx \)的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( 1 \)8. 以下哪个是二阶常系数线性微分方程?A. \( y'' + 3y' + 2y = 0 \)B. \( y' + y = x^2 \)C. \( y'' + y' = 0 \)D. \( y'' - 2y' + y = \sin x \)9. 以下哪个是二元函数的偏导数?A. \( \frac{\partial^2 f}{\partial x \partial y} \)B. \( \frac{\partial f}{\partial x} \)C. \( \frac{\partial f}{\partial y} \)D. \( \frac{d^2f}{dx^2} \)10. 已知\( \lim_{x \to \infty} \frac{f(x)}{x} = 0 \),那么\( f(x) \)是:A. 常数B. 有界函数C. 无穷小量D. 无穷大量二、填空题(每题4分,共20分)11. 函数\( f(x) = \sqrt{x} \)的定义域是_________。

高数竞赛试题及答案

高数竞赛试题及答案

高等数学竞赛试题一、填空题(每小题2分,共12分)1、函数2ln(1),0()(1)sin 2,0x x x f x e x x βα⎧+≥⎪=⎨⎪-<⎩若若 在点0=x 处可导,则,αβ==。

2、设x d xx f xx x f e ⎰-=12)(2ln )(,则()f x =。

3、221(1)(arctan )dxx x +∞=+⎰。

4、设二元函数(,)u x y 满足22ux y y∂=+∂,2(,)1u x x =,则(,)u x y =。

5、由x y z所确定的(,)z z x y =在点(1,0,1)-处的全微分为。

6、过1123:101x y z L ---==-且平行于221:211x y zL +-==的平面方程为。

二、选择题(每小题2分,共12分) 1、把0x →+时的无穷小量⎰=xdt t 02cos α,⎰=2tan x dt t β,⎰=xdt t 03sin γ排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是( )()A γβα,,; ()B βγα,,; ()C γαβ,,; ()D αγβ,,。

2、设2,()0,x x f x x ⎧⎪=⎨⎪⎩若为有理数若为无理数,则()f x 可导点的个数为( )(A) 0; (B) 1; (C) 2; (D) 无穷。

3、设()f x 是(,)-∞+∞上可导的、周期为6π的函数,且满足0()()lim1x f f x xππ→--=-,则曲线()y f x = 在(7,(7))f ππ处的切线斜率为( )A 、2-;B 、0 ;C 、1-;D 、1。

4、设0a >,()t ϕ是正值连续函数,则曲线()()aay f x x t t dt ϕ-==-⎰( )(A) 在[],0a -上是凹的,在[]0,a 上是凸的; (B) 在[],0a -上是凸的,在[]0,a 上是凹的; (C) 在[],a a -上是凹的; (D) 在[],a a -上是凸的。

高等数学竞赛试题含答案

高等数学竞赛试题含答案

高等数学竞赛试题1.计算{}2222,max 0abb x a ydx edy ⎰⎰,(a>0,b>0)解:原积分=22222222000baax abab y b x a y b x a y a bb xa b dx edy dx edy xe dx dy e dx a+=+⎰⎰⎰⎰⎰⎰⎰=222222111(1)(1)(1)22a b a b a b e e e ab ab ab-+-=-2. 设幂级数nn n a x∞=∑的系数满足02a =,11n n na a n -=+-,n=1,2,3…,求此幂级数的和函数()s x 。

解:0(),n nn s x a x +∞==∑则1111111'()(1)n n n nn n n n s x na xa xn x +∞+∞+∞----=====+-∑∑∑12()(1)()(1)n n xs x n x s x x +∞+==++=+-∑即2'()()(1)xs x s x x =+-,且(0)2o s a == 解方程1()1xs x ce x =+- 由(0)1s =⇒1()1xs x e x=+- 3. 已知()f x 二阶可导,且()0f x >,[]2''()()'()0f x f x f x -≥,x R ∈ (1)证明 21212()()()2x x f x f x f +≥, 12,x x R ∀∈ (2)若(0)1f =,证明'(0)(),f xf x e x R ≥∈证明:(1)记()ln ()g x f x = 则'()'()()f xg x f x = 22''(')''()0ff f g x f -=> 1212()()()22g x g x x x g ++∴≥ 即 21212()()()2x xf x f x f +≥⑵2222''()'(0)''(')()(0)'(0)ln (0)|2(0)2x g f ff f g x g g x x f x x f fξξ=-=++=++ '(0)f x ≥ 即'(0)()f xf x e≥4.求10(1)limln(1)xx x e x →+-+由洛比塔法则原极限=120(1)ln(1)1lim(1)(1)2xx x x x x e x x →-+++=-+5.设222 0cos()sin t u x t y e udu -⎧=⎪⎨=⎪⎩⎰ ,求22d y dx 解:42sin()2t dy e t t -=⋅⋅ 2sin()2dx t t =-⋅4t dy e dx -∴=- 44232222(')42sin()2sin()t t d y d y t e t edx dx t t t --===--⋅ 6.2 0(1)(1)dxx x α+∞++⎰,(0α≠) 解:记原积分为I 则201/(1)(1)dxI t x x x α+∞==++⎰含 20(1)(1)t dt t t αα+∞++⎰ 22 124dx I I x ππ+∞∴==∴=+⎰7.设函数()f x 满足方程,()2()3sin xxe f x e f x x ππ-+-=,x R ∈,求()f x 的极值。

大学生高等数学竞赛试题汇总与答案

大学生高等数学竞赛试题汇总与答案

大学生高等数学竞赛试题汇总与答案大学生高等数学竞赛试题汇总与答案1.试题一:已知函数f(x)在区间[0, 1]上连续,且f(0) = 0,f(1) = 1,若对任意的x ∈ [0, 1],都有f(x) ≤ x,证明函数f(x)在区间[0, 1]上存在唯一的根。

解答:首先,由题意可知,函数f(x)在区间[0, 1]上连续,且f(0) = 0,f(1) = 1,即函数f(x)在区间[0, 1]的端点值分别为0和1。

假设存在两个不同的根x1和x2,且0 ≤ x1 < x2 ≤ 1。

则根据题意有f(x1) = 0,f(x2) = 0。

由于f(x)在区间[0, 1]上连续,根据介值定理,对于任意的c ∈ (0, 1),都存在一个介于x1和x2之间的数x0,使得f(x0) = c。

当c = 0时,根据题意有f(x1) = 0,所以x1也是f(x) = 0的根,与x1和x2不同的假设矛盾。

当c = 1时,根据题意有f(x2) = 0,所以x2也是f(x) = 0的根,与x1和x2不同的假设矛盾。

综上所述,假设不成立,即函数f(x)在区间[0, 1]上存在唯一的根。

2.试题二:已知函数f(x)在区间[0, +∞)上连续,且f(0) = 0,f(x) > 0,对任意的x > 0,且f'(x) > 0,证明函数f(x)在区间(0, +∞)上单调递增。

解答:根据题意可知,函数f(x)在区间[0, +∞)上连续,且f(0) = 0,f(x) > 0,对任意的x > 0,且f'(x) > 0。

假设存在两个不同的数x1和x2,且0 < x1 < x2。

由于f(x)在区间[0, +∞)上连续,根据介值定理,对于任意的c ∈ (0, f(x2)),都存在一个介于x1和x2之间的数x0,使得f(x0) = c。

根据函数的导数性质,当x > 0时,f'(x) > 0,即函数f(x)在区间(0, +∞)上单调递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学竞赛试题一、选择题1.设n n n y z x ≤≤,且0)(lim =-∞→n n n x y ,则n n z ∞→lim (C )(A)存在且等于零;(B)存在但不一定等于零;(C)不一定存在;(D)一定不存在.2.设)(x f 是连续函数,)()(x f x F 是的原函数,则(A )(A)当)(x f 为奇函数时,)(x F 必为偶函数;(B)当)(x f 为偶函数时,)(x F 必为奇函数;(C)当)(x f 为周期函数时,)(x F 必为周期函数;(D)当)(x f 为单调增函数时,)(x F 必为单调增函数.3.设0>a ,)(x f 在),(a a -内恒有2|)(|0)("x x f x f ≤>且,记⎰-=a adx x f I )(,则有(B )(A)0=I ;(B)0>I ;(C)0<I ;(D)不确定.4.设)(x f 有连续导数,且0)0(',0)0(≠=f f ,⎰-=x dt t f t x x F 022)()()(,当0→x 时,kx x F 与)('是同阶无穷小,则=k (B )(A)4;(B)3;(C)2;(D)1.5.设⎪⎩⎪⎨⎧=+≠++=0,00,),(2222222y x y x y x yx y x f ,则),(y x f 在点)0,0((D)(A)不连续;(B)连续但偏导数不存在;(C)可微;(D)连续且偏导数存在但不可微.6.设k j b j i a+-=+=2,,则以向量a、b为边的平行四边形的对角线的长度为(A )(A)11,3;(B)3,11;(C)10,3;(D)11,2.7.设21L L 与是包含原点在内的两条同向闭曲线,12L L 在的内部,若已知2222L xdx ydykx y +=+⎰ (k 为常数),则有1222L xdx ydyx y ++⎰(D)(A)等于k ;(B)等于k -;(C)大于k ;(D)不一定等于k ,与L 2的形状有关.8.设∑∞=0n nn x a 在1=x 处收敛,则∑∞=-+0)1(1n n nx n a 在0=x 处(D )二、设)(1lim)(2212N n x bxax x x f n n n ∈+++=-∞→,试确定a 、b 的值,使与)(lim 1x f x →)(lim 1x f x -→都存在.解:当||1x <时,221lim lim 0n n n n x x -→∞→∞==,故2()f x ax bx =+;当||1x >时,1()f x x=112111,1,lim ()1,lim (),1(),11,1,1,lim (),lim ()1,1x x x x x f x f x a b a b x f x ax bx x x f x a b f x a b x -+-+→-→-→→⎧<-=-=--=⎪⎪⎪=+-<<⎨⎪⎪>=+=+=⎪⎩0a =,1b =。

三、设)()(x f x F 是的一个原函数,且1)0(=F x x f x F 2cos )()(,=,求dx x f ⎰π0|)(|.解:()()F x f x '=,()()cos 2F x F x x '=,()()cos 2F x F x dx xdx'=⎰⎰2()sin 2F x x C =+,由(0)1F =知1C =,()|cos sin |F x x x ==+,22|cos 2||cos sin ||()||cos sin ||()||cos sin |x x x f x x x F x x x -===-+404|()|(cos sin )(sin cos )1)(12f x dx x x dx x x dx ππππ=-+-=++=⎰⎰⎰四、设}0,0|),,{(2223>≤≤---∈=Ωa z y x a R z y x ,S 为Ω的边界曲面外侧,计算⎰⎰+++++=Sz y x dzdxy a x dydz ax I 1)(2222解:1:S z =(下侧),2222:0x y a S z ⎧+≤⎨=⎩(上侧), 20S =⎰⎰,∴12111222()SS S S S S S axdydz x a dzdx +⎛⎫=+==++=-⎪⎪⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰[]122()2()S axdydz x a ydzdx a x a dV +Ω=++=++⎰⎰4314(32)323a x dV adV a πΩΩ=+==⋅=五、已知10=x ,13014x x =+,41312+=x x ,…,4131+=+n n x x ,….求证:(1)数列}{n x 收敛;(2)}{n x 的极限值a 是方程0144=-+x x 的唯一正根.解一:(1) 01n x <<,33113333111144(4)(4)n n n n n n n n x x x x x x x x -+----=-=++++2211124n n n n n n x x x x x x ----++<1316n n x x --<21210331616nn n x x x x --⎛⎫⎛⎫<-<<- ⎪ ⎝⎭⎝⎭31431165516nn⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭;又 0316nn ∞=⎛⎫⎪⎝⎭∑收敛,∴10n n n x x ∞+=-∑收敛,∴10()n n n x x ∞+=-∑收敛,又因10n n S x x +=-,故{}n x 收敛。

(2)令lim n n x a →∞=, 01n x <<, 0a ≥,且314a a =+,4410a a +-=,即a 是4410x x +-=的根,令4()41f x x x =+-,(0,)x ∈+∞,3()440f x x '=+>,(0)1f =-,lim ()x f x →+∞=+∞,故()0f x =根唯一。

解二:由已知01x =,13010.24x x ==+,23110.24954x x ==+…,33210.24904x x =+…,由此可见,02x x >,13x x <(用归纳法证明偶数项单调减少,奇数项单调增加)。

设222n n x x -≥,2121n n x x -+≤。

2223321211144n n n n x x xx+-+=≥=++,2123332221144n n nn x x x x +++=≤=++由01n x <≤知{}2n x 、{}21n x +收敛,令2lim n n x a →∞=,21lim n n x b +→∞=;由201n x <≤,2101n x +<≤,知01a ≤≤,01b ≤≤。

对232114n n x x -=+两边取极限得314a b =+,341ab a +=①对213214n n x x +=+两边取极限得314b a =+,341a b b +=②由①—②得22()4()0ab b a a b -+-=,解得0a b -=由a b =知{}n x 收敛,且为方程4410x x +-=的根(再证唯一性)。

六、设),(y x f 在单位圆上有连续的偏导数,且在边界上取值为零,求证:220lim 2(0,0)Df f xy x ydxdy f x y επ→∂∂+∂∂=-+⎰⎰,其中D 为圆环域:1222≤+≤y x ε解一:令cos x r θ=,cos y r θ=,cos sin f f x f y f f r x r y r x y θθ∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂,f f fr x yr x y∂∂∂=+∂∂∂。

由已知当1r =时,(cos ,sin )0f θθ=,222x y DDfrxf yf r I dxdy rdrd x y r θ∂+∂==+⎰⎰⎰⎰212100(cos ,sin )|f d dr f r r d r ππεεθθθθ∂==∂⎰⎰⎰220(cos ,sin )(cos ,sin )f d f d ππθθθεθεθθ=-⎰⎰**02(cos ,sin )f πεθεθ=-,*[0,2]θπ∈,故0lim 2(0,0)I f επ→=-解二:令22(,)yf x y P x y =-+,22(,)xf x y Q x y =+, 22f fxy Q Px y x yx y ∂∂+∂∂∂∂-=∂∂+∴22Df f x y x ydxdy x y∂∂+∂∂+⎰⎰,令1L 为221x y +=(逆时针),2L 为222x y ε+=(顺时针)12L L Pdx Qdy Pdx Qdy=+++⎰⎰ 2:cos ,sin L x y εθεθ==122222(,)(,)(,)(,)L L yf x y dx xf x y dy yf x y dx xf x y dyx y x y -+-+=+++⎰⎰ 1221(,)(,)(,)(,)L Lyf x y dx xf x y dy yf x y dx xf x y dyε=-++-+⎰⎰[]02210(sin )(sin )cos cos (cos ,sin )f d πεθεθεθεθεθεθθε=+--+⋅⎰20(cos ,sin )f d πεθεθθ=-⎰**02lim (cos ,sin )f επεθεθ→=-,*[0,2]θπ∈**220lim 2lim (cos ,sin )2(0,0)Df f x y x y dxdy f f x y εεπεθεθπ→→∂∂+∂∂=-=-+⎰⎰。

七、有一圆锥形的塔,底半径为R ,高为)(R h h >,现沿塔身建一登上塔顶的楼梯,要求楼梯曲线在每一点的切线与过该点垂直于xoy 平面的直线的夹角为4π,楼梯入口在点( ,0,0 )R ,试求楼梯曲线的方程.解:设曲线上任一点为(,,)x y z ,h z rh R-=,∴曲线参数方程为(*)()cos ()sin (02)()x r y r hz h r R θθθθθπθ⎧⎪=⎪=≤≤⎨⎪⎪=-⎩,在点(,,)x y z 的切向量为{}(),(),()v x y z θθθ'''= ,垂线方向向量为(0,0,1)k =。

()()cos ()sin ()()sin ()cos ()()x r r y r r hz r R θθθθθθθθθθθθ⎧⎪''=-⎪''=+⎨⎪⎪''=-⎩,cos 4||||v k v k π⋅==⋅,()hr Rθ'-=,化简得dr d θ=0dr d θ<,解得1r C e=,由0θ=,r R =得1C R =,故Rer =,将此式代入参数方程(*)即得楼梯曲线。

相关文档
最新文档