发电机氢气系统介绍

合集下载

发电机氢气系统(水氢氢)

发电机氢气系统(水氢氢)

11
完整编辑ppt
除湿装置
氢气去湿装置采用冷凝式,基本工作原理是 使进入去湿装置内的氢气冷却至-10℃以下,氢 气中的部分水蒸汽将在干燥器内凝结成霜,然后 定时自动(停用)化霜,霜溶化成的水流进集水 箱(筒)中,达到一定量之后发出信号,由人工 手动排水。使发电机内氢气含水分逐渐减少。冷 凝式氢气去湿装置的制冷原元件是压缩机。经过 冷却脱水的氢气回送至发电机之前重新加温至 18℃左右,加温设备也设置在去湿装置内。氢气 的循环仍然依靠发电机内风扇两端的压差,去湿 装置本身的气阻力约1k1P2 a(100mm水柱),故完整氢编辑ppt
缺点:
1、需要一套复杂的气体置换系统 2、氢气的渗透力强,对密封要求高 3、氢气与空气(氧气)混合到一定比例(4~74%)时,遇火将发生爆 炸,威胁发电机的安全运行
返回
35
完整编辑ppt
露点
露点温度是指空气在水汽含量和气压都
不改变的条件下,冷却到饱和时的温度。
形象地说,就是空气中的水蒸气变为露珠
时候的温度叫露点温度。露点温度本是个
16
完整编辑ppt
17
完整编辑ppt
纯度分析仪
气体纯度分析仪是用以测量机内氢气 和二氧化碳纯度的分析器,使用前还须进 行2h(小时)通电预热,其反馈的数据和 信号才准确。
18
完整编辑ppt
氢气湿度仪
在发电机氢气干燥装置的入口和出口 各装有一台氢气温湿度仪,以便在线监测 发电机内氢气的湿度状况。
7、气体置换期间,干燥装置进出口管路上的 氢气湿度仪必须切除。
8、置换期间,应检查发电机密封油系统运行 正常,油气压差维持在0.056MPa左右。
9、气体置换期间,现场严禁吸烟或者动火工 作,排氢气时,速度2应3 缓慢,排污口附近完整编辑ppt

电厂发电机氢气冷却系统

电厂发电机氢气冷却系统

氢气作为冷却介质,在循环过程中不会产生有害物质,对环境无污染。
氢气冷却系统具有较高的冷却效率,可降低发电机的能耗,提高电厂的经济效益。
高效节能
环保无污染
与水冷却系统相比
氢气冷却系统无需担心冻结和腐蚀问题,且冷却效果优于水冷却系统。
与空气冷却系统相比
氢气具有更高的热传导性,使得氢气冷却系统的冷却效果远优于空气冷却系统。同时,氢气冷却系统噪音低,运行更平稳。
05
CHAPTER
氢气冷却系统的应用与实例
某电厂原有发电机冷却系统存在效率低下、故障率高等问题,严重影响发电机的安全运行和发电效率。
改造背景
对原有冷却系统进行全面升级改造,采用先进的氢气冷却技术,包括氢气循环泵、冷却器、过滤器等关键设备的选型和配置。
改造方案
改造后,发电机冷却效率显著提高,故障率大幅降低,发电量明显增加,取得了显著的经济效益和社会效益。
高效冷却器设计
采用先进的冷却器设计,提高氢气的降温效率,保证发电机的稳定运行。
精密过滤器
采用高精度过滤器,去除氢气中的微小颗粒和水分,保证氢气的纯净度和系统的安全性。
自动化控制系统
采用先进的自动化控制系统,实时监测和调整系统内的氢气压力、温度和流量等参数,确保系统的稳定运行和发电机的安全。
04
CHAPTER
氢气冷却系统的性能与特点
氢气具有极高的热传导性,能够快速将发电机产生的热量带走,确保发电机在适宜的工作温度下运行。
高效冷却
氢气在发电机内部循环,使得各部件的温度分布更加均匀,减少局部过热现象。
温度均匀
可靠性高
氢气冷却系统经过精心设计,部件选用高品质材料制造,具有较高的可靠性和稳定性。
维护简便

发电机氢冷系统介绍

发电机氢冷系统介绍

发电机充氢操作步骤及注意事项(1)
• 氢气系统投入的条件 1. 充氢前确认发电机本体检修工作全部结束,汽机房内停止
一切动火工作。 2. 充氢现场必须清理干净,无易燃物件并严禁烟火,围好安
全隔离带并挂上警告牌。 3. 现场消防设备足够并完好。 4. 发电机泄漏试验合格。 5. 发电机密封油系统正常运行。 6. 发电机检漏装置投入。 7. 现场、CRT有关信号显示正常,报警准确,各表计良好并
• 4、液体检漏器(液位信号器):
• 液体检漏器是指装在发电机壳和主出线盒下面的 浮子控制开关,它可指示出发电机内可能存在的冷却 器泄漏或冷凝成的液体以及由于调整不当而进入机内 的密封油,在机壳的底部,每端机壳端环上设有开口, 将收集起的液体排到液体检漏器。每个检漏器装有一 根回气管通到机壳,使得来自发电机机壳的排水管不 能通大气;回气管和水管都装有截止阀,另外,为了 能排除积聚的液体,检漏器底部还装有排放阀。
左右。

在水冷定子中,应注意防止二氧化碳与水接触,因为
水中溶有二氧化碳将急剧增加定子线圈冷却水的导电率。
氢气的置换流程(3)
• 4 发电机充氢
• 氢冷发电机在正常运行时,氢气纯度应在95%或以 上。在发电机静止或盘车情况下,从发电机的顶部汇 流管充氢,氢气经供氢装置进入机壳内顶部的汇流管 向下驱赶CO2。当从底部原CO2母管和气体不易流动的 死区取样检验,氢气纯度高于96%,氧含量低于2% 时,停止排气,并升压到工作氢压。升压速度不可太 快,以免引起静电。

发电机氢冷系统设备介绍(1)
• 1、供气装置(气体控制站):

氢气供气装置提供必须的阀门,压力表,调节器和其
它设备将氢气送进发电机,它还提供用以自动调节机内氢

发电机氢系统介绍

发电机氢系统介绍

发电部培训专题1发电机氢气系统简介说明:1.1发电机由于存在着损耗的原因,会导致发电机本体及线圈发热,如果不及时将这些热量及时释放掉,将会导致发电机绝缘老化,影响发电机使用寿命,甚至引发其它恶性的电气事故的发生。

因此大、小发电机都有自己的一套冷却装置。

1.2大型发电机是一种高电压、大电流的电气设备,因此对于它的冷却方式的选择,是确保发电机安全运行的一项重要手段,发电机根据容量等技术参数选择不同的冷却方式,如空冷、氢冷、水氢氢、双水内冷等。

在这些方式中,双水内冷冷却效果是最好的,但由于双水内冷存在着连接部件漏水这一难以解决的问题,在我国80年代投产的多台引进的捷克机组中多次发生此类事故,所以目前我国发电机至今仍多采用的是氢气冷却这种方式,我厂发电机用的是水-氢-氢冷却方式。

1.3之所以目前多采用氢气冷却的原因是氢气有着以下优点:a.氢气比重比较小,相对于其它气体来说它的阻力损耗比较小。

b.氢气是不助燃的气体。

c.氢气比热较其它气体来说大一些。

d.氢气化学价比较稳定。

1.4但用氢气冷却这种方式也存在很大的缺点:a.它是可燃物,使的生产危险点控制更加严格。

b.它需要专用的密封装置,增加了系统的复杂性。

2主要技术参数2.1发电机内额定运行参数:a.氢气压力:0.414MPa.b.氢气温度:不大于46℃c.氢气纯度:大于98%d.氢气耗量:小于13~19立方米/天e.氢气含氧量:小于2%f.氢气含水量:不大于25克/立方米2.2对供给发电机的氢气要求a.供氢气压力不高于3.2MPa.(g)b.供氢气纯度不低于99.5%c.氢气露点温度.≤–21℃2.3置换时的损耗值:3氢气系统设备的组成、功能及原理简介:3.1氢气干燥器装置:a.氢气干燥器是用来除去发电机内氢气中的水份而设的;当发电机中的氢气含水量过高将会对发电机造成多方面的不良影响,我厂在发电机外设置专用的氢气干燥器,它的进氢管路接至转子风扇的高压侧,它的回氢管路接至风扇的低压侧,从而使机内部分氢气不断地流进干燥器内得到干燥。

发电机氢气系统介绍资料

发电机氢气系统介绍资料
污阀:#1~#5检漏计底部及管道排污门、纯度风扇进出口排放门、发电机工况监视柜排放门、 氢气干燥器排放门、差压变送器排放门。 • 11) 关闭发电机排气阀及CO2瓶阀,保持机内压力0.02MPa,稳定15分钟。 • 12) 打开发电机排气阀及CO2瓶阀,继续充入CO2。 • 13) 当机内CO2纯度达95﹪,停止充CO2,关闭发电机排气门。 • 14) 关闭CO2瓶针阀及CO2减压器前后阀。 • 15) 关闭发电机充CO2总隔离门。 • 16) 关闭发电机排气总门。
• 大容量氢冷发电机内要求保持高纯度的氧气,其主要目的是提高发电的效率,从经济 方面考虑。因为氢气混入空气或纯度下降时,混合气体的密度随氢气纯度的下降而增 大,使发电机的通风摩擦损耗也随着氢气纯度的下降而上升。一台运行氢压为 0.5MPa、容量为907MW的氢冷发电机,其氢气纯度从98%降到95%时,摩擦相和 通风损耗大约增加32%,即相当于损失685kW。一般情况下,当机壳内的氢气压力 不变时,氢气纯度每降低l%,其通风摩擦损耗约增加11%。我国发电机运行规程又规 定:“当氢气纯度降低到92%或者气体系统中的氧气超过2%时,必须立即进行排 污”,这说明运行的氧气纯度在92%~95%之间时,除对效率有所影响外,并无严重 危害。当然,长期运行在这个氢气纯度范围是不经济的。所以又规定了一个必须立即 排污的下限。
部。
• 5)开启氢母管至1号机氢压控制站手动门,开启发电机补氢调节阀前手动门,检查供氢 母管压力0.63~0.7MPa。
• 6)开启发电机补氢调节阀后手动门,开启发电机补氢手动门。 • 7)开启发电机补氢压力调节阀旁路门或用发电机补氢压力调节阀,将氢气充入机内,
控制机内气体压力不允许超到0.021MPa,最大不允许超到0.035MPa。 • 8)开启发电机排气总门。开启发电机排CO2门,调节使机内气压保持0.015~

(整理)发电机氢气系统.

(整理)发电机氢气系统.

第十二章发电机氢气系统第一节氢气控制系统一、作用用以置换发电机内气体,有控制地向发电机内输送氢气,保持机内氢气压力稳定,监视机内有关氢压、温度及纯度以及液体的泄漏干燥机内氢气。

二、主要技术参数1、发电机内:额定氢压:0.414Mpa允许最大氢压:0.42Mpa氢气纯度:>96%氢气湿度:<1g/m³(标准大气压下)2、发电机及氢气管路系统(不包括制氢站储氢设备及氢母管)漏气量<19m³/24h。

三、系统设备介绍1、供气装置(气体控制站):氢气供气装置提供必须的阀门,压力表,调节器和其它设备将氢气送进发电机,它还提供用以自动调节机内氢气压力或手动调节的阀门,或者是借助于压力调节器手动调节机内所需氢气压力值。

二氧化碳供气装置在气体置换期间将二氧化碳充入发电机。

氢气是通过设置在发电机内顶部汇流管道进入发电机内,并均匀地分布到各地方;二氧化碳是通过发电机底部管道进入发电机并均匀分布到各地方。

2、氢气干燥器:本系统配置冷凝式氢气干燥器,正常时,一台运行,一台备用,用以干燥发电机内氢气。

干燥器内氢气流动是靠发电机转子上的风扇前后压力进行的。

3、液体检漏器(液位信号器):液体检漏器是指装在发电机壳和主出线盒下面的浮子控制开关,它可指示出发电机内可能存在的冷却器泄漏或冷凝成的液体以及由于调整不当而进入机内的密封油,在机壳的底部,每端机壳端环上设有开口,将收集起的液体排到液体检漏器。

每个检漏器装有一根回气管通到机壳,使得来自发电机机壳的排水管不能通大气;回气管和水管都装有截止阀,另外,为了能排除积聚的液体,检漏器底部还装有排放阀。

4、氢气纯度检测设备:在发电机里,氢气纯度由纯度差压变送器,氢气压力变送器等氢气测量组件测定。

用一负荷非常小,以至运转速度几乎不变的感应马达,驱动纯度风机使从发电机内抽出的气体循环流动,因此,纯度风机产生的压力直接反映出取样气体的密度。

氢气纯度差压变送器测出纯度风机产生的压力。

发电机氢冷系统介绍

发电机氢冷系统介绍

引言概述:发电机氢冷系统是一种常见的发电机冷却技术,通过使用氢气来冷却发电机内部的线圈,以提高发电机的效率和可靠性。

本文将介绍发电机氢冷系统的工作原理、组成结构以及优势。

正文内容:一、工作原理1.1氢气冷却的原理氢气具有很高的热导率和低的密度,使其成为一种理想的冷却介质。

当氢气进入发电机内部的线圈时,它会带走线圈产生的热量,使线圈保持在合适的温度范围内,避免过热导致断电和损坏。

1.2冷却系统的工作原理发电机氢冷系统主要由氢气供应系统、冷却系统和循环系统组成。

氢气在供应系统中被压缩和过滤,然后通过冷却系统进入发电机内部。

冷却系统通过散热器将热量排出,然后再将冷却过的氢气重新循环到发电机内部,形成一个闭环循环。

二、组成结构2.1氢气供应系统氢气供应系统包括氢气储气罐、压缩机和过滤系统。

储气罐用于储存氢气,压缩机将氢气压缩到适当的压力,过滤系统则用于除去杂质和水分。

2.2冷却系统冷却系统包括冷却器和散热器。

冷却器是用于将氢气冷却的装置,通常采用氢气与液体或气体之间的热交换原理。

散热器是用于将冷却后的氢气中的热量转移到周围环境中的设备。

2.3循环系统循环系统主要是用于将冷却过的氢气重新循环到发电机内部。

它包括循环管道、泵和阀门等设备,以确保氢气能够顺畅地流动,并且氢气的压力和温度保持在合适的范围内。

三、优势3.1高热导率和低密度氢气具有比空气更高的热导率和更低的密度,能够更有效地带走发电机产生的热量,并且减少发电机的整体重量。

3.2良好的散热性能由于发电机氢冷系统中的氢气能够快速冷却发电机内部的线圈,因此可以显著提高发电机的散热性能,降低温升。

3.3高可靠性和安全性氢气是一种非常稳定和可靠的冷却介质,它不会产生腐蚀和污染问题,并且能够有效地防止发电机内部的线圈过热和烧毁。

3.4节能环保相对于传统的水冷或风冷系统,发电机氢冷系统能够更好地节约能源和资源,同时还能减少对环境的影响。

3.5适用于高功率发电机由于氢气具有优良的散热性能和热导率,因此适用于高功率发电机的冷却需求,能够保持发电机的高效运行。

发电机氢冷系统介绍(一)

发电机氢冷系统介绍(一)

发电机氢冷系统介绍(一)引言概述:发电机氢冷系统是一种采用氢气冷却的高效能发电技术。

它在大型发电厂的应用中展现了出色的性能和可靠性。

本文将介绍发电机氢冷系统的工作原理,组成部分,以及其在发电厂中的应用情况。

正文:1. 工作原理- 发电机氢冷系统的工作原理是利用氢气的高导热性能将热量从发电机的绕组和核心中散发出去。

这样可以有效地降低发电机的工作温度,提高发电效率。

- 氢气冷却系统采用密闭循环方式,通过氢气在高压和低压中的流动,将发电机产生的热量带走,然后通过冷却装置散热。

2. 组成部分- 发电机氢冷系统主要由氢气冷却器、氢气加压设备、氢气循环泵、氢气管路等组成。

- 氢气冷却器是发电机氢冷系统中最重要的组成部分,负责将发电机产生的热量传递给氢气,并通过冷却装置散热。

- 氢气加压设备用于将氢气加压至所需的工作压力,以确保氢气能够流动并带走发电机产生的热量。

- 氢气循环泵负责将氢气从冷却器中抽出,经过冷却后再重新注入到发电机中循环。

3. 应用情况- 发电机氢冷系统广泛应用于大型发电厂中,特别是核电厂和燃煤电厂。

其高效能和可靠性使其成为这些发电厂的首选技术之一。

- 发电机氢冷系统能够大大提高发电机的运行效率,减少能源的浪费,降低对环境的影响。

- 由于氢气的独特性质,发电机氢冷系统还具有良好的热响应性能,可以快速适应负载变化,保持发电机的稳定运行。

4. 小点1- 发电机氢冷系统的氢气需定期检测和更换,确保其质量和压力符合要求。

- 为了确保发电机氢冷系统的安全可靠运行,还需要安装氢气泄漏报警装置,并进行定期维护和检修。

5. 小点2- 发电机氢冷系统还需要与主控室的监控系统进行联动,以实时监测氢气的压力和温度等参数,确保系统运行的稳定性。

- 发电机氢冷系统在运行过程中还需要进行故障诊断和预防维护,及时发现并解决潜在问题,以保证发电机的正常运行。

总结:发电机氢冷系统是一种高效能的发电技术,通过利用氢气的高导热性能提高发电机的工作效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氢气冷却器 (冷却氢气)
氢气过滤器 (过滤杂质)
氢气系统特点
➢ 系统采用无泄漏焊接式波纹管阀,确保系统无泄漏; ➢ 系统配置氢气干燥器,保证机组湿度要求; ➢ 配置氢气置换用设备和三范围纯度分析仪,气体置换操作简
单方便; ➢ 配置全套用于监测氢气压力、温度、纯度、湿度仪器仪表;
以上装置除设有就地显示外,还有远传4~20mA和报警信号; ➢ 氢气冷却效果好,提高发电机效率; ➢ 发电机壳采用防爆设计,在发电机关键地方设置有漏氢监测
点,能及时探测漏氢点。
密封油控制系统概述
密封油系统用于向发电机密封瓦供油, 且使油压高于发电机内氢压(气压), 防止发电机内氢气沿转轴与密封瓦之间 的间隙向外泄漏,同时也防止油压过高 而导致发电机内大量进油。 密封油系统按结构形式分为单流环式密 封油系统、双流环式密封油系统,我厂 采用单流环式密封油系统。该系统密封 油路只有一路,分别进入汽轮机侧和励 磁机侧的密封瓦,经中间油孔沿轴向间 隙流向空气侧和氢气侧,形成了油膜起 到了密封润滑作用。然后分两路(氢侧、 空气侧)回油。
密封油系统 简图
定子冷却水控制系统概述
发电机定子冷却水系统的主要作用是:向发电机定子线圈不间断的 供水,使定子线圈得到冷却,使定子线圈温度保持在允许范围内 。监视进出水温、水压、流量和水的导电率等参数。系统还设有 自动水温调节器,以调节定子线圈进水温度,使之保持基本稳定 ,另外,系统还设置了离子交换器,用以提高和保持冷却水的水 质。
氢气控制站
漏 液 探 测 器 循 环 风 机
二氧化碳控制站
氢 气 湿 度 仪 除 湿 装 置
氢气系统主要设备
氢气控制站
(氢气压力控制)
二氧化碳控制站 (二氧化碳减压控制)
氢气干燥器
(氢气除湿)
油水探测器
(机内检漏)
纯度分析仪
(纯度检测)Βιβλιοθήκη 氢气湿度仪(湿度检测)
漏氢检测装置 (检漏氢气)
发电机置换的有关规定:
1.整个置换过程期间不允许发电机做任何电气试验,距发电机及 排氢口21米范围内不准有明火作业。 2.当氢气系统严密性试验不合格时,不可置换为氢气运行。 3.开启CO2瓶门时,应缓慢进行,开启减压阀后应投入加热器运行 。可用数个CO2瓶同时供给。注意CO2瓶表面的霜层情况,并应将 压力不足的气瓶及时调换。一旦停止充CO2,应立即将加热器断电 ,以防烧损加热器。 4.气体置换过程,应在低氢压方式下,并尽可能在发电机静止时 (或盘车状态)进行。整个置换过程,应严密监视发电机氢压、 氢温、密封油压、油温、油流、油氢差压。
采用氢气冷却优点: (1)运行经验表明,发电机通风损耗的大小取决于冷
却介质的质量,质量越轻,损耗越小,氢气在气体中密度最 小,有利于降低损耗;
(2)另外氢气的传热系数是空气的5倍,换热能力好; (3)氢气的绝缘性能好,控制技术相对较为成熟。 采用氢气冷却缺点: 最大的缺点是一旦于空气混合后在一定比例内(4%~ 74%)具有强烈的爆炸特性,所以发电机外壳都设计成防爆 型,气体置换采用CO2作为中间介质。
封瓦进口油管→短接管→空侧出口油管(氢侧出口油管→ 密封油回油 扩大槽→ 浮子油箱)→ 空气抽出槽→汽机主油箱。
(4)紧急密封油回路: 轴承润滑油管直接供密封瓦用油。此运行回路的作用是在主密封油 泵和直流油泵都失去作用的情况下,轴承润滑油直接作为密封油源密封 发电机内氢气。此时发电机内的氢气压力必须降到0.05 MPa,尽快停机
(1)密封油系统氢侧: 主油箱来油 → 真空密封油箱→交流密封油泵→ 滤网→ 油—氢
差压阀旁路→密封瓦进口油管→短接管→ 氢侧出口油管→ 密封油回油 扩大槽→ 浮子油箱→空气抽出槽→汽机主油箱。
(2)密封油系统空侧: 真空密封油箱→交流密封油泵→滤网→油—氢差压阀旁路→密封
瓦进口油管→短接管→空侧出口油管→ 空气抽出槽→汽机主油箱。 (3)事故密封油回路: 汽机润滑油管路→直流密封油泵→滤网→油—氢差压阀旁路→密
氢气控制系统主要技术参数
额定氢压:0.45 MPa 最大氢压:0.5 MPa 氢气温度:35~46℃ 氢气纯度:>98% 氢气露点:-5ºC— -25 ºC 氢气消耗量:13~19 Nm3/d 发电机充氢容积:88 m3 供氢压力:≤3.2 MPa
氢气系统 简图
纯 度 分 析 仪
该冷却水系统自成为一个独立的封闭循环系统。水泵从水箱中吸水 后送入冷却器降温,然后经过过滤器除去机械杂质。经流量信号 装置后进入发电机定子线棒中的空导线和引线定子出线套管,冷 却水由励端进入,由汽端流出,出水流回至水箱中,如此循环。 为了冲洗发电机内冷却管方便,系统中还设有反冲洗管逆向流回
定子冷却水系统简图
气体置换注意事项:
1.气体置换过程中,操作现场必须始终有人监视。 2.发电机置换为合格空气后,应将所有排大气、排污门开 启,使发电机与大气连通,不能憋有死压。 3. 氢气干燥器及氢气循环风机必须参与置换。 4.对于较大容器和较长管线,排死角必须大于5分钟,以 保证死角排放彻底,并用便携式纯度仪测量合格。 5.气体置换过程中,发电机内压力不能大幅波动,泄压时 要缓慢进行,防止发电机内进油。 6. 向机内充压缩空气前应检查压缩空气湿度,合格后方 可向发电机内充气。 7. 氢系统操作必须使用防爆工具。
二、 氢气系统主要操作
气体置换方法:
1. 采用中间介质置换法,即利用CO2置换发电机内的空气(或氢 气),然后用氢气(或空气)置换CO2。
2. 充氢时先用CO2置换发电机内的空气,待机内CO2含量超过85 %以后,再充入氢气置换CO2,最后置换到氢气状态。
3. 排氢时,先向发电机内引入CO2,用以置换机内氢气,当CO2 含量超过95%以后,才可以引进压缩空气驱赶CO2,当CO2低于15%以 后,可以停止向发电机内送压缩空气。
660MW机组发电机 氢气系统 (马小军)
2016年12月
氢气系统、密封油系统、定冷水系统概述 氢气系统主要操作 660MW机组氢气、密封油系统的案例分析 氢气系统的相关制度
一、氢气系统、密封油系统、定冷水系统概述
氢气系统概述
我厂汽轮发电机采用水氢氢冷却方式,定子绕组为水冷,转子 绕组为氢气内冷,铁芯为氢气外部冷却。发电机氢冷系统采用 闭式氢气循环系统,热氢通过发电机的氢气冷却器由冷却水冷 却。
相关文档
最新文档