三位数字计时器实验报告
三位数码管实验报告

三位数码管实验——实验日志及报告1. 实验日志实验日期:2020.3.161.1三位数码管实验下载与观察1.1.1操作说明:待完成时序验证、管脚分配后:将下载电缆线与USB接口连接,打开实验板电源开关。
选择Tools->Programmer命令进入下载窗口(尚无实验板);单击Hardware Setup键,进入电缆配置窗口,USB版电缆在Available hardwa items列表选择USB-Blaster;然后选择Add File,选中.sof文件完成配置;选择Add Hardware,进入如图对话框,在Hardware type列表中选择ButeBlaster II项,Port 栏为LPT1,之后Start,Progress栏中出现100%则下载成功。
1.1.2 实验现象:下载成功后,三位数码管显示的都是0,且持续显示,熄灭时间极短,X0、Y7二极管常亮,拨动CLK开关,降低时钟频率,三个数码管依次显示;对三个通道分别进行设置,将配置的拨码开关相应的调整后可以看到数码管显示出相应的数字。
1.2示波器测量位选信号和时钟信号(暂无)2. 实验报告2.1实验目的A.结合三位数码管显示实验,熟悉软件quartusII的使用,熟悉FPGA开发模式;B.熟悉DDA系列数字系统实验平台的使用;C.在DDA—IIIA实验平台上完成三位数码管显示实验的观察与测量,进一步加深通过实验板验证电路的方法;D.了解图形输入、文本输入、层次实际的过程;E.了解图形输入的注意事项和画图技巧;2.2设计2.2.1模4计数器电路图仿真波形:芯片号:cycloneII ep2c5t144c8管脚分配:clk:pin_91、q[1]:pin_118、q[0]:pin_115说明:模4计数器可记录5个脉冲,以实现控制功能。
Quartus II工程设计过程:创建工程文件、电路设计、编译综合、仿真验证、引脚配置、编程下载、硬件验证等。
数字钟实验报告

数字钟实验报告引言:数字钟是一种使用数字显示时间的时钟,它已经成为我们日常生活中不可或缺的一部分。
通过数字钟,我们可以准确地了解当前的时间,从而更好地安排自己的生活。
本实验旨在探究数字钟的原理和制作过程,并通过实际的制作过程加深对数字钟的了解。
一、原理介绍数字钟的原理基于电子技术和计时器的结合。
其中,主要包括以下几个部分:时钟芯片、数码管、控制电路以及电源等。
1.时钟芯片:时钟芯片是数字钟的核心部件,它内置了计时器和时钟功能。
通过时钟芯片,我们可以实现时间的自动更新和准确显示。
2.数码管:数码管是数字钟的显示部分,它由数根发光二极管组成,能够显示0-9的数字。
通过不同的控制电流和电压,数码管可以根据时钟芯片的指令来显示相应的数字。
3.控制电路:控制电路是连接时钟芯片和数码管之间的桥梁,它负责将时钟芯片输出的信号转换为数码管可识别的信号。
控制电路可以通过编码器、解码器和集线器等元件来实现。
4.电源:电源为数字钟提供所需的电能,将电能转换为供时钟芯片和数码管正常工作所需的电流和电压。
二、实验准备在进行实验之前,我们需要准备以下实验器材:晶体管、电阻器、电容器、发光二极管、电线、焊接工具等。
1.选择晶体管:在制作数字钟的过程中,我们需要选择合适的晶体管来实现数字的显示。
常见的晶体管有阳极、阴极共阳、阴极共阴等。
根据所需的显示效果选择不同类型的晶体管。
2.电阻器和电容器:电阻器和电容器是控制电路的重要组成部分,它们能够限制电流和调节电压,从而保证数字钟的正常工作。
3.焊接工具:焊接工具是将各个器材连接在一起的关键。
使用焊接工具进行焊接时,需要注意操作安全,确保焊点牢固。
三、实验步骤通过以下步骤,我们可以逐步完成数字钟的制作:1.划定电路板:首先,我们需要在电路板上进行标记,划定数字钟的各个部分的位置。
这一步骤旨在确保各个元件的安装位置准确无误。
2.安装元件:接下来,我们可以一步步安装各个元件。
首先,焊接晶体管和电阻器等固定元件,然后进行焊接。
数电实验报告计数器

数电实验报告计数器计数器是数字电路中常见的一种电路元件,用于计数和显示数字。
在数电实验中,我们通常会设计和实现各种类型的计数器电路,以探究其工作原理和性能特点。
本文将介绍数电实验中的计数器的设计和实验结果,并探讨其应用和改进。
一、设计和实现在数电实验中,我们通常使用逻辑门和触发器来实现计数器电路。
逻辑门用于控制计数器的输入和输出,而触发器则用于存储和更新计数器的状态。
以4位二进制计数器为例,我们可以使用四个触发器和适当的逻辑门来实现。
触发器的输入端连接到逻辑门的输出端,而逻辑门的输入端连接到触发器的输出端。
通过适当的控制信号,我们可以实现计数器的正向计数、逆向计数、清零和加载等功能。
在实验中,我们需要根据设计要求选择适当的逻辑门和触发器,并将其连接起来。
然后,通过给逻辑门和触发器提供适当的输入信号,我们可以观察计数器的输出结果,并验证其正确性和稳定性。
二、实验结果在实验中,我们设计了一个4位二进制计数器,并通过适当的输入信号进行了测试。
实验结果表明,计数器能够正确地进行正向计数和逆向计数,并能够在达到最大计数值或最小计数值时自动清零。
此外,我们还观察到计数器的输出信号在计数过程中保持稳定,并且能够及时响应输入信号的变化。
这说明计数器具有较高的稳定性和响应速度,适用于各种计数应用场景。
三、应用和改进计数器在数字电路中有广泛的应用,例如频率分频、时序控制、计时器等。
通过适当的设计和连接,我们可以实现各种复杂的计数功能,满足不同的应用需求。
在实验中,我们还可以对计数器进行改进和优化,以提高其性能和功能。
例如,我们可以增加计数器的位数,以扩大计数范围;我们还可以添加输入输出接口,以实现与其他电路元件的连接和通信。
此外,我们还可以使用更高级的计数器电路,如同步计数器、环形计数器等,以实现更复杂的计数功能。
这些改进和扩展将进一步提高计数器的灵活性和实用性。
总结:通过数电实验,我们了解了计数器的设计和实现原理,并验证了其在实际应用中的性能和功能。
简易数字钟实验报告

题目计算机控制技术综合课程设计
简易数字钟
二级学院电子信息与自动化
专 业电气工程及其自动化
班 级107070403
学生姓名冉静学号20
指导教师贺娟 雷李
考核项目
设计50分
平时成绩20分
答辩30分
设计质量20分
创新设计15分
报告质量15分
熟练程度20分
个人素质10分
得分
总分
考核等级
教师签名
简易数字时钟实验报告
1.方案一
简易的时钟,具有,整点报时的功能。但是没有秒钟的显示。接通电源后,程序开始执行。K1为设置现在时间功能键;K2为小时调整,按一下小时加一;K3为分钟调整,按一下为分钟加一;K4为完成键,设置完成后按下时钟进入正常的走时状态。
其中,P0口接的电阻为限流电阻,选用的数码显示管所需电流比较小;4位LED数码管的共阳极引脚分别与V1-V4三极管的集电极相连,三极管的基极分别通过限流电阻与单片机的P2端口的P2.0-P2.3引脚上。4位数码管显示器分别由4只三极管控制,例如,P2.0输出为低电平时V4三极管导通,与其相连的共阳极数码管显示器开始工作;P2.0输出高电平时V4三极管截止,与其相连的数码管显示器停止工作。
disdata[5]=s%10;//秒钟低位
for(i=0;i<6;i++)//循环显示
{
P1=0xff;
P1=seg7[disdata[i]];
P2=disp[i];
Delayms(2);//显示延时
}
}
void time0(void)interrupt 1 using 0 //时间计数函数
{
TH0=0xfc;//(65536-20000)/256;
电子电工实验报告——数字计时器

南京理工大学电子电工综合实验(Ⅱ)--数字计时器实验报告专业:通信工程班级:9141042202姓名:许雪婷学号:9141133702082016年09月目录一、实验目的、要求及内容;二、器件引脚图及功能表;三、各单元电路的原理、设计方法及逻辑图;四、数字计时器电路引脚接线图;一、 实验目的、要求及内容1.实验目的① 掌握常见集成电路实现单元电路的设计过程。
② 了解各单元再次组合新单元的方法。
2.实验要求实现00’00”—59’59”的可整点报时的数字计时器。
3.实验内容① 设计实现信号源的单元电路。
(KHz F Hz F Hz F Hz F 14,5003,22,11≈≈≈≈) ② 设计实现00’00”—59’59”计时器单元电路。
③ 设计实现快速校分单元电路。
含防抖动电路(开关k1,频率F2,校分时秒计时器停止)。
④ 加入任意时刻复位单元电路(开关K2)。
⑤ 设计实现整点报时单元电路(产生59’53”,59’55”,59’57”,三低音频率F3,59’59”一高音频率F4)。
二、器件引脚图及功能表元件清单:集成电路:NE555 一片,CD4040 一片,CD4518 二片,CD4511 四片,74LS00 三片,74LS20 一片,74LS21 三片,74LS74 一片。
电阻:1KΩ一只,3KΩ一只,150Ω四只。
电容:0.047uF 一只。
LED共阴双字屏二块。
1、NE555图1-1 NE555引脚图图1-2 NE555逻辑功能表2、CD4040图2-1 CD4040引脚图图2-2 CD4040功能表3、CD4518图3-1 CD4518引脚图图3-2 CD4518功能表4、CD4511图2-1 CD4511引脚图图2-2 CD4511逻辑功能表5、74LS0074LS00是一种集成了4个与非门的集成电路。
图5-1 74LS00引脚图图5-2 与非门逻辑表6、74LS2074LS20同样是一种与非门集成电路,与74LS00不同的是它的每个与非门有4个输入端。
最新数字钟实验报告

最新数字钟实验报告实验目的:本实验旨在设计并构建一个数字时钟,通过编程和电子组件的使用,实现时间的精确显示和设置。
实验过程中,我们将学习如何使用微控制器、数码管显示以及编写相应的软件代码来控制时钟的运行。
实验材料:1. 微控制器(如Arduino UNO)2. 数码管显示模块3. 电阻、电容4. 跳线5. 电源适配器6. 编程软件(如Arduino IDE)实验步骤:1. 准备实验材料,并确保所有组件完好无损。
2. 连接微控制器与数码管显示模块,通过跳线将数码管的各个引脚与微控制器对应引脚相连。
3. 在Arduino IDE中编写数字钟的程序代码,包括时间设置、显示更新和闹钟功能。
4. 将编写好的代码上传至微控制器中。
5. 连接电源,测试数字钟是否能够正常运行,包括时间的显示、设置和闹钟功能。
6. 调整代码中的参数,确保时间显示的准确性和稳定性。
7. 记录实验数据和观察结果,对出现的问题进行分析和调试。
实验结果:通过实验,我们成功构建了一个数字钟,它能够显示小时、分钟和秒。
用户可以通过特定的按钮组合来设置时间,并且设定闹钟。
在测试过程中,时钟的显示准确无误,设置功能也运作正常。
闹钟在设定的时间准时响起,满足了实验的基本要求。
实验结论:本次实验验证了通过微控制器和数码管可以成功实现数字钟的设计和功能。
实验过程中遇到的问题主要涉及代码的优化和硬件的稳定性,通过调整代码和重新检查硬件连接,问题得到了解决。
最终,我们得到了一个功能完善、运行稳定的数字钟原型。
三位数字显示计时系统课程设计

三位数字显示计时系统一.设计要求设计一个3位数字显示的时间计数系统,以供运动员比赛用。
要求精度到秒,最大计时9分59秒。
可以用按钮开关控制计数器的启动,停止及清零,开机时可以自动清零。
二.设计方案数字显示计时系统是通过控制电路使加法计数器对连续脉冲进行计数,而加法计数器通过译码器来显示它记忆的脉冲周期个数。
1.连续脉冲发生:可选用555定时器构成的多谐振荡器产生,也可选用石英晶体振荡器,通过计数器分频产生,获得精确的秒脉冲信号。
2.计数及译码显示:加法计数器构成电子秒表的计数单元。
分频器输出端取得周期为一秒的矩形脉冲送入计数器中。
三个计数器的输出端分别与三个数码显示译码器的相应输入端连接。
可显示0:00——9:59计时。
三.设计原理1.74LS160功能表;74LS160,为模十加法计数器。
使用三片:第一片清零端CR,置数端LD,CTT,CTP均置1,CP输入连续脉冲,实现模十计数,经过十个脉冲后,输出端CO=1。
将第一片芯片的输出端CO接第二个芯片的CTT和CTP,第二个芯片的置数端LD置1,CP输入连续脉冲,当第一个芯片循环一次时才开始计数。
由于该芯片为异步清零,所以将输出QB,QC接入与非门,输出接入清零端CR, 当计数至5时,实现清零,完成模六计数。
将第二片芯片的清零端的CR接高位片的脉冲输入端CP,高位位片清零端CR,置数端LD,CTT,CTP均置1,当第二片芯片实现一次清零即模六计数一次,才开始计数,实现模十计数。
2.74L00为与非门芯片。
与非门功能表四.设计仿真(EWB仿真)五.设计实验操作1.取实验所需芯片:一片74LS00,三片74LS1602.分别将三个74LS160电源,接地端接好,CP接连续脉冲,ENT,ENP,LD,CLR接1,QA,QB,QC,QD接数码显示管的A,B,C,D,测试芯片的计数功能。
74LS00电源,接地接好,按与非门的功能表测试芯片功能。
3.测试完成后,按如上仿真电路图连线。
多功能数字计时器实验报告.

多功能数字计时器实验报告姓名:***学号:************专业:信息对抗指导老师:***实验时间:2015年9月18日目录1.电路基础功能设计要求介绍2.电路原理简介3.单元电路设计3.1脉冲发生电路3.2计时电路3.3译码显示电路3.4清零电路3.5校分电路3.6报时电路4.总电路图5.拓展电路5.1启停电路5.2动态显示电路6.附录6.1元件清单6.2芯片引脚图和功能表7.实验感受与体会8.参考文献一、电路基础功能设计要求介绍设计制作一个0分00秒~9分59秒的多功能计时器,设计要求如下:a.设计一个脉冲发生电路,为计时器提供秒脉冲(1HZ),为报时电路提供驱动蜂鸣器的高低脉冲信号(1KHZ、2KHZ);b.设计计时电路:完成0分00秒~9分59秒的计时、译码、显示功能;c.设计清零电路:具有开机自动清零功能,并且在任何时候,按动清零开关,可以对计时器进行手动清零.d.设计校分电路:在任何时候,拨动校分开关,可进行快速校分.(校分隔秒)e.设计报时电路:使数字计时器从9分53秒开始报时,每隔一秒发一声,共发三声低音,一声高音;即9分53秒、9分55秒、9分57秒发低音(频率1kHz),9分59秒发高音(频率2kHz)f.系统级联.将以上电路进行级联完成计时器的所有功能.二、电路原理简介工作原理:由振荡器产生的稳定的高频脉冲信号,作为数字钟的时间基准,再经分频器输出标准秒脉冲.秒个位计数器记满10后向秒十位计数器进位,秒十位计满6后向分进位同时置零. 计数器的输出经译码器送显示器.记时出现误差时可以用校时电路进行校分.扩展电路必须在主体电路正常运行的情况下才能进行功能扩展。
数字计时器由计时电路、译码显示电路、脉冲发生电路、校分电路、清零电路和报时电路这几部分组成。
其原理框图如下:三、单元电路设计1.脉冲发生电路脉冲信号发生电路完成为计时电路提供计数脉冲的功能。
实验中采用32768Hz的石英- 4 - 晶体多谐振荡器作为脉冲信号源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、实验简介 (1)1.1实验目的: (1)1.2实验内容: (1)1.3实验需求: (1)二、设计简介 (2)2.1设计概况: (2)2.2设计要求 (2)三、设计原理 (3)3.1整体电路设计原理: (3)3.2分步电路设计原理: (4)3.2.1秒信号发生电路 (4)3.2.2计时电路 (6)3.2.3清零电路 (8)3.2.4译码显示电路 (10)3.2.5总体电路连接图 (10)四、电路安装与调试说明 (13)五、实验中遇到的问题及解决办法 (13)六、附录 (14)面包板连接图: (14)电路原理图: (15)芯片管脚图及功能表: (16)摘要:数字计时器由秒脉冲信号发生器、计时电路、译码显示电路、校分电路、清零电路、报时电路等几部分单元电路组成。
本次试验要求采用中小规模集成电路实现数字计时器的设计,并附加开机清零,快速校分,整点报时等功能。
关键词:脉冲信号发生电路、计时电路、报时电路、校分电路、清零电路、起停电路正文一、实验简介1.1实验目的:1. 通过实验掌握十进制加法计数、译码、显示电路的工作过程。
2. 通过实验深入掌握电路的分频原理和数字信号的测量方法。
3. 熟悉集成电路构成的计数、译码、显示器件的外部功能及其使用方法。
1.2实验内容:1. 运用电路模拟软件,设计多功能数字计时器;2. 连接实物电路,完成电路功能的测试:3. 完成实验报告。
1.3实验需求:实验物品:剪刀,起子,镊子,剥线钳,插线板,导线,元器件;元器件清单:二、设计简介2.1设计概况:本实验采用中小规模集成电路设计一个多功能数字计时器。
实验需要分别设计脉冲发生电路,计时电路,译码显示电路,和控制电路以及附加电路,然后进行连接组成。
要求完成0分00秒~9分59秒的计时功能,并在控制电路作用下实现开机清零,快速校分,整点报时功能。
2.2设计要求:1.秒信号发生电路:为计时器提供秒信号2.计时电路:完成0分00秒~9分59秒的计时功能。
3.清零电路:具有开机自动清零功能;在任何时候,按动清零开关,可进行计时器手动清零。
4.译码显示电路:显示计时电路产生的数字信息。
5.系统级联调试:将以上电路进行级联完成计时器的所有功能。
三、设计原理3.1整体电路设计原理:数字计时器是由计时电路、译码显示电路、脉冲发生电路和控制电路等几部分组成的,其中控制电路按照设计要求可以由校分电路、清零电路和报时电路组成。
计时电路示意图如图3.1所示,计时电路完成计时功能,并且将计时结果传送至显示电路,进而实现显示功能。
原理框图如图3.2所示,主要由计时电路,秒信号发生电路,清零电路和译码显示电路组成。
计时电路在秒信号的作用下,产生0:00~9:59的循环计时,清零电路控制计时电路的清零端,实现时钟的清零,最终将计时电路的输出送至译码显示电路,实现时钟的显示。
图3.1 三位计时器示意图图3.2 数字钟的原理框图3.2分步电路设计原理:3.2.1秒信号发生电路图3.3 秒信号发生电路秒信号发生电路为计时电路提供驱动信号,电路原理如图3.3所示。
为提供较为精确的秒信号,本设计中振荡电路采用215Hz的石英晶体管为主体的晶振电路,并作为电路的秒信号源。
由于振荡电路产生的源信号为215Hz,而秒的基准信号频率为1Hz,则需要对215Hz 信号进行分频,得到1Hz信号。
分频器采用CD4060和74LS74来实现,CD4060为14位二进制串行计数器,各管脚功能如表3.1所示,功能表如表3.2所示。
虽然CD4060内部有14级由T触发器构成的二分频器,但实际输出端只有10个:Q4~Q10、Q12~Q14。
Q1~Q3以及Q11并不引出。
、、CP0为晶振电路的引出端,需接外部石英晶体。
Cr为复零端,为高电平或正脉冲时振荡器停振。
从输出功能看,CD4060能得到10种不同的分频系数,最小为24分频,最大为214分频,即将215Hz送入该芯片,最大分频输出Q14输出信号频率为2Hz。
由于CD4060最多能完成14级二分频,所以还需要再加一级二分频,才能把4060输出的2Hz 信号变成秒信号。
外接二分频器可采用D 触发器(74LS74)构成的二分频电路,74LS74管脚功能如表3.3所示,该芯片有上片和下片两个D 触发器,2Hz 信号经过二分频电路得到1Hz 的秒脉冲信号,即将D 触发器的同相位输出Q 端与触发信号D 端连接在一起,复位端和控制端接电源,使该两端口无效,则Q 端的输出信号即为1Hz 的秒脉冲信号。
所用器件:215Hz 晶体管1个、22MΩ电阻1个、20pF 电容1个、10pF 电容1个、CD4060(分频器)1片、74LS74(D 触发器)1片。
表3.1 CD4060管脚功能 表3.2 CD4060功能表时钟输入端 0CP 时钟输出端反相时钟输出端 Q 4~Q 10,Q 12~Q 14计数器输出端表3.3 74LS74管脚功能管脚号 引脚代码引脚功能 1 1RD复位信号 2 1D 触发信号 3 1CP时钟信号 4 1SD控制 5 1Q同相位输出 6 1Q反相位输出7GND地输入 功能CR x 1 清零 ↓ 0 计数 ↑保持82Q反相位输出92Q同相位输出102SD控制112CP时钟信号122D触发信号132RD复位信号14VCC电源3.2.2计时电路该电路是本实验的关键部分,由分计数器、秒十位计数器和秒个位计数器构成,电路均使用CD4518BCD码计数器来实现。
CD4518管教如图3.4所示,该计数器为双十进制同步加法计数器,片子内部封装两个相同且独立的十进制计数器,每个计数器中都含有四位二进制的技术单元,每个计数器含有两个时钟输入端“CP”和“EN”,简称双时钟,可以根据使用要求来选择不同的时钟输入,两者所不同在于:“CP”端对时钟的上升沿有效,“EN”端对时钟的下降沿有效。
该计数器功能表如表3.4所示。
图3.4 CD4518管教图表3.4 CD4518功能表计时整体电路如图3.5所示,分位计数器和秒个位计数器均是从0~9循环计数(模10计数),可采用CD4518直接实现十进制计数功能;秒十位计数器为六进制计数器,需要将CD4518的模10计数变换为一个从0~5循环的模六计数:当4518计数到6时,将QC,QB 引到与门74LS21的输入端,此时74LS21输出一个高电压,送回至4518的Cr端,实现复位(4518回0),由于4518的Cr端为异步复位,因此4518需要计数到6时才引出复位信号,并且6状态非常短暂,显示器并不显示,所以实际效果还是0~5显示。
74LS21为四输入与门,片子内部封装两个相同且独立的四输入与门,该电路中只用到1个与门的2个输入,因此需要将该与门的其他两个输入端接5V电源+极,不可悬空不接。
搭建电路时,首先将所有芯片电源端(VCC和GND端)分别连接至5V电源+、-极;对于秒个位计数器,将秒信号发生电路输出的秒信号(1Hz信号)送入秒个位计数器的2CP端,同时2EN端接5V电源+极,2Cr端接5V电源-极(注意:当清零电路搭建完成后,需将清零电路的输出替换2Cr端的5V电源-极),秒个位计数器即可完成0~9循环计数;对于秒十位计数器,将秒个位计数器的输出2QD端送入秒十位计数器的2EN端,完成秒个位到秒十位的进位(当秒个位计数器从9跳至0时,2QD端得到0~9循环计数过程中唯一的下降沿,将此下降沿送至秒十位计数器的2EN端,即可实现秒十位计数器加1,实现进位),同时2CP端接5V电源+极,秒十位计数器即可在进位信号的驱动下完成0~5循环计数。
对于分位计数器,将秒十位计数器的输出2QC端送入分位计数器的2EN端,完成秒十位到分位的进位(当秒十位计数器从5跳至0时,2QC端得到0~5循环计数过程中唯一的下降沿,将此下降沿送至分位计数器的2EN端,即可实现分位计数器加1,实现进位),同时2CP端接5V电源+极,2Cr 端接5V电源-极(注意:当清零电路搭建完成后,需将清零电路的输出替换2Cr端的5V电源-极),分位计数器即可完成0~9循环计数。
所用器件:CD4518(计数器)3片、74LS21(与门)1片。
图3.5 计时电路3.2.3清零电路该电路具有开机清零和手动清零功能。
电路原理如图3.6所示,将图1.5计时电路的秒个位和分位的清零端即CD4518的管脚15(高电压有效)原来的接5V电源-极导线拔开,将非门输出送至2Cr端,而秒十位CD4518的清零端原来接74LS21的输出,需要将此输出和图1.6中非门输出送入一个或门,再将或门输出送至秒十位CD4518的清零端,才能同时实现秒十位计数器的清零功能和模6计数功能。
电路管脚连接如图3.7所示,对于清零电路,电路正常工作时开关打开,刚开机时,由于电容上的电压不能突变,电容两端初始为低电压,经过一个非门输出高电压,送到CD4518的2Cr端,整个计时电路清零,进而实现电路开机时清零,当电容充满电以后,非门的输入端为高电压,非门输出低电压,2Cr端无效,CD4518实现正常计数,电路正常工作。
按下开关后,电容、电阻组成一个回路,电容放电,当电容储存电量放完后,电容两端电压为低电压,即非门的输入端为低电压,非门输出高电压,送到CD4518的2Cr端,整个计时电路清零,进而实现电路手动清零。
所用器件:CD4069(非门)1片、74LS32(或门)1片,1kΩ电阻2个、10μF电容1个、开关1个。
图3.6 清零电路原理图图3.7 清零电路管脚连接图3.2.4译码显示电路译码显示电路采用三片CD4511显示译码器和三个七段共阴数码管,分位、秒十位和秒个位各采用一片CD4511和一个数码管。
CD4511的作用是将计数器QA~QD输出的二进制代码译成特定的输出信号以供显示器按代码的原意显示成数字,译码器采用CD4511七段字型译码器,由a~g各脚输出段信号,以控制点亮LED数码管的字型段,CD4511的输入端ABCD依次接计数器的QA~QD,即8421(BCD)码输出,CD4511有三个使能管脚,功能如表3.5所示。
表3.5 CD4511使能管脚功能图3.8所示为七段型发光二极管构成的数码显示器,由于此二极管由高电压驱动,阴极共用,所以为共阴极。
g (a)图3.8 共阴极七段数码显示器电路从0:00~9:59循环计时,译码电路分别进行译码,采用共阴极七段LED 数码管进行循环显示。
CD4511的输入接到相应计数器的输出,而它的输出端与数码管的相应端相连,数码管通过300Ω的电阻接地,电路连接如图3.9所示。
所用器件:CD4511(译码器)3片、300Ω电阻3个、LED 数码显示管3个。
图3.9 译码显示电路3.2.5总体电路连接图将以上四个模块电路按照信号顺序连接,即可得到总体电路如图3.10所示。