第八章空间与图形
《空间与图形》(教案)2023-2024学年数学一年级上册-人教版

教案:《空间与图形》2023-2024学年数学一年级上册-人教版教学目标:1. 让学生通过观察和操作,感知和理解物体的形状和大小,培养学生的空间观念。
2. 使学生能够运用简单的图形和模型来描述和解释生活中的现象,提高学生的观察力和思维能力。
3. 培养学生对数学的兴趣,激发学生的探索欲望,培养学生的自主学习能力。
教学重点:1. 培养学生的空间观念,使学生能够正确地识别和描述物体的形状和大小。
2. 培养学生的观察能力和思维能力,使学生能够运用图形和模型来解释生活中的现象。
教学难点:1. 帮助学生理解图形的变换,如平移、旋转等。
2. 引导学生运用图形和模型来解决问题。
教学准备:1. 教师准备相关的教具和学具,如各种形状的积木、图片等。
2. 学生准备学习用品,如铅笔、橡皮、尺子等。
教学过程:一、导入(5分钟)1. 教师通过展示一些形状各异的物体,引导学生观察和讨论,激发学生对空间和图形的兴趣。
2. 教师提出问题,如“你们在生活中见过哪些形状的物体?”等,引导学生思考和回答。
二、新课导入(15分钟)1. 教师通过展示一些简单的图形,如正方形、长方形、圆形等,引导学生观察和描述。
2. 教师讲解图形的基本特征,如边的数量、角度的大小等,帮助学生理解图形。
3. 教师通过展示一些图形的变换,如平移、旋转等,引导学生观察和讨论,帮助学生理解图形的变换。
三、课堂练习(10分钟)1. 教师布置一些练习题,如让学生画出一些简单的图形,或者让学生用图形来解释一些现象。
2. 教师巡回指导,帮助学生解决遇到的问题。
四、课堂小结(5分钟)1. 教师引导学生回顾本节课的学习内容,帮助学生巩固所学知识。
2. 教师提出一些问题,如“你们学到了哪些知识?”等,引导学生思考和回答。
五、课后作业(5分钟)1. 教师布置一些课后作业,如让学生回家后找一些形状各异的物体,然后画出它们的形状。
2. 教师提醒学生要认真完成作业,巩固所学知识。
教学反思:本节课通过观察和操作,使学生感知和理解了物体的形状和大小,培养了学生的空间观念。
8第八章空间解析几何答案

8第八章空间解析几何答案第八章空间解析几何与向量代数§8.1向量及其线性运算1.填空题(1)点关于面对称的点为(),关于面对称的点为(),关于面对称的点为().(2)点关于轴对称的点为(),关于轴对称的点为(),关于轴对称的点为(),关于坐标原点对称的点为().2. 已知两点和,计算向量的模、方向余弦和方向角.解:因为,故,方向余弦为,,,方向角为,, .3. 在平面上,求与、、等距离的点.解:设该点为,则,即,解得,则该点为.4. 求平行于向量的单位向量的分解式.解:所求的向量有两个,一个与同向,一个与反向. 因为,所以.5. 已知点且向量在x轴、y轴和z轴上的投影分别为,求点的坐标.解:设点的坐标为,由题意可知,则,即点的坐标为.§8.2 数量积向量积1.若,求的模.解:所以.2.已知,证明:.证明:由,可得,可知,展开可得,即,故.3. 。
4.已知,,求与的夹角及在上的投影.解:,,. 因为,所以.5..§8.3 曲面及其方程1.填空题(1)将xOz坐标面上的抛物线绕轴旋转一周,所生成的旋转曲面的方程为(),绕轴旋转一周,所生成的旋转曲面的方程为().(2)以点为球心,且通过坐标原点的球面方程为().(3)将坐标面的圆绕轴旋转一周,所生成的旋转曲面的方程为(). 2.求与点与点之比为的动点的轨迹,并注明它是什么曲面.解:设动点为,由于,所以,解之,可得,即,所以所求的动点的轨迹为以点为心,半径为的球面.3§8.4 空间曲线及其方程1. 填空题(1)二元一次方程组在平面解析几何中表示的图形是(两相交直线的交点);它在空间解析几何中表示的图形是(两平面的交线,平行于轴且过点).(2)旋转抛物面在面上的投影为(),在面上的投影为(),在面上的投影为().2.求球面与平面的交线在面上的投影方程.解:将代入,得,因此投影方程为.4.分别求母线平行于轴、轴及轴且通过曲线的柱面方程.解:在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1).解:将代入得,即. 令,,所求的参数方程为..§8.5 平面及其方程1. 填空题(1)一平面过点且平行于向量和,平面的点法式方程为(),平面的一般方程为(),平面的截距式方程(),平面的一个单位法向量为().(2)设直线的方程为,当()时,直线过原点;当()且(或有一个成立)时,直线平行于轴但不与轴相交;当()时,直线与轴相交;当()时,直线与轴重合.2.求过三点,和的平面方程.解:由平面的三点式方程知,所求的平面方程为=0,即.3.求过点且垂直于两平面和的平面方程.解:该平面的法向量为,平面的方程为,即.4.分别按下列条件求平面方程:(1)平行于平面且经过点;(2)通过轴和点;(3)求平行于轴,且经过两点和的平面方程.解:(1)平面的法向量是,可作为所求平面的法向量,因此所求平面的方程为,即.(2)所求平面的法向量即垂直于轴又垂直于向量,所以所求平面的法向量为,因此所求平面的方程为,即.(3)由于所求平面平行于轴,故设所求平面方程为. 将点和分别代入得及,解得及. 因此所得方程为,即.§8.6 空间直线及其方程1. 填空题(1)直线和平面的关系是(平面与直线互相垂直).(2)过点且与直线平行的直线的方程是().(3)直线与直线的夹角为().2.化直线为对称式方程和参数方程.解:直线的方向向量为. 取,代入直线方程可得,. 所以直线的对称式方程为.令,所给直线的参数方程为.3.求过点且与直线垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即.所求平面的方程为,即.4. 确定的值,使直线与平面平行,并求直线与平面之间的距离.解:直线的方向向量,要使直线与平面平行,只要(其中为平面的法向量),即,解得. 令,代入直线的方程可得,,直线与平面之间的距离.第八章空间解析几何与向量代数综合练习1.填空题:(1)已知,,且与夹角为,则().(2)若向量,平行,则().(3)已知向量的模为,且与轴的夹角为,与y轴的夹角为,与z 轴的夹角为锐角,则=().(4)曲线 (a、b为常数)在xOy平面上投影曲线是().(5)xOy平面上曲线绕x轴旋转一周所得旋转曲面方程是().(6)直线与平面的夹角的正弦().(7)方程所表示的曲面名称为(双曲抛物面).(8)与两直线及都平行,且过原点的平面方程是().(9)已知动点到平面的距离与点到点的距离相等,则点的轨迹方程为().(10)与两平面和等距离的平面方程为().2. 设,,求向量,使得成立,这样的有多少个,求其中长度最短的.解:设,则,则,因此这样的,有无穷个.由于,因此,当时,即长度最短.3.已知点和点,试在轴上求一点,使得的面积最小.解:设,则,,,故的面积为,显然,当时,的面积最小,为,所求点为.4. 求曲线在各坐标平面上的投影曲线方程.解:在平面投影为;在平面投影为;在zOx平面投影为.5.求原点关于平面的对称点的坐标.解:过原点作垂直于平面的直线,该直线的方向向量等于平面的法向量,所求直线的对称式方程为,即为其参数方程. 将此参数方程代入平面,有,解得,即直线与平面的交点为. 设所求的对称点为,则,,,即所求的对称点为.6.求直线在平面上的投影直线绕轴线转一周所成曲面的方程.解:过作垂直于平面的平面,所求的直线在平面上的投影就是平面和的交线. 平面的法向量为:,则过点的平面的方程为:,即. 所以投影线为. 将投影线表示为以为参数的形式:,则绕轴的旋转面的方程为,即.7.求球心在直线上,且过点和点的球面方程.解:设球心为,则,即.又因为球心在直线上,直线的参数方程为,将直线的参数方程代入,可得,球心坐标为,所求球面方程为.8.已知两条直线的方程是,,求过且平行于的平面方程.解:因为所求平面过,所以点在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为. 因此所求平面的方程为,即.9. 在过直线的所有平面中,求和原点距离最大的平面.解:设平面束方程为,即,平面与原点的距离为要使平面与原点的距离最大,只要,即该平面方程为.10. 设两个平面的方程为和(1)求两个平面的夹角. (2)求两个平面的角平分面方程.(3)求通过两个平面的交线,且和坐标面垂直的平面方程.解:(1)两个平面的法向量为和,设两个平面的夹角为,则,所以.(2)因为角平分面上任意一点到两个平面的距离相等,由点到平面的距离公式,可得,即,所求的角平分面方程为或.(3)设通过两个平面的交线的平面方程为,即,由于该平面垂直于坐标面,所以,可得,因此所求的平面方程为.。
人教A版高中数学必修第二册教学课件:第八章8.2立体图形的直观图(共29张PPT)

知识梳理
一、 投影与直观图
1.投影的定义 由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这 种现象叫做投影.其中,我们把光线叫做投影线,把留下物体影子的屏幕叫 做投影面.
2.直观图 (1)直观图是观察者站在某一点观察一个空间几何体获得的图形. (2)立体图形的直观图通常是在平行投影下得到的平面图形.
Hale Waihona Puke ① ② ③ ④ ⑤图8-2-4
A.①② B.①②③ C.②⑤ D.③④⑤
2. C 解析:由斜二测画法知,长方形的直观图应为平行 四边形,且锐角为45°,故②⑤正确.
训练题3 如图8-2-5所示是水平放置的三角形的直观图, A′B′∥y′轴,则原图中△ABC是 ( )
下列叙述中,正确的个数为
()
斜二测画法的位置关系与2.度用量斜特征二用测口诀画简法记为画:空间几何体的直观图的具体规则
了解空间几何体的不同表现形式.
用斜二测画法画出正六棱锥P-ABCDEF的直观图,其中底面ABCDEF为正六边形,点P在底面的投影是正六边形的中心O.
九十度,画一半,横不变,纵减半,
第八章 立体几何初步
三、用斜二测画法画空间几何体的直观图
原图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,在直观图中长度变为原来的一半”的规则,确定平面图
形的关键点.
点拨:斜二测画法中“斜二测”的意思:
(1)直观图是观察者站在某一点 观 察 一个 空 间几何体获得的图形.
1
C.
① ②
训练题1.下列叙述中,正确的个数为 ( )
①相等的角,在直观图中仍相等;
②长度相等的线段,在直观图中长度仍相等;
③若两条线段平行,则在直观图中对应的线段仍平行;
2015届高考数学总复习 基础知识名师讲义 第八章 第五节空间图形的平行关系 理

第五节 空间图形的平行关系知识梳理1.认识和理解空间中线、面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.a ⊥α ⇒α∥β a ⊥βα∥β⇒a ∥β a ⊂αα∥β⇒a ⊥βa ⊥α基础自测1.(2013·山东省高考冲刺预测)设m ,n 是平面α内的两条不同直线,l 1,l 2是平面a ⊂αb ⊂αa ∩b =P ⇒α∥β a ∥β b ∥β a ,b ⊂α a ′,b ′⊂βa ∩b =P ⇒α∥β a ∥a b ∥b ′β内的两条相交直线,则α∥β的一个充分不必要条件是( )A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2解析:m ∥l 1且n ∥l 2,m ,n ⊂α,l 1,l 2为β内两条相交直线,则可得α∥β;若α∥β,l 1,l 2为β内两条相交直线,则不一定有m ∥l 1且n ∥l 2,故选B.答案:B2.(2013·温州检测)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,下列命题中错误的是( )A .若m ⊥α,m ⊥β,则α∥βB .若α∥γ,β∥γ,则α∥βC .若m ⊂α,n ⊂β,m ∥n ,则α∥βD .若m ,n 是异面直线,m ⊂α,m ∥β,n ⊂β,n ∥α,则α∥β解析:由线面垂直的性质可知A 正确;由两个平面平行的性质可知B 正确;由异面直线的性质易知D 也是正确的;对于选项C ,α,β可以相交、可以平行,故C 错误,选C.答案:C 3.在正方体ABCDA 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.解析:如图,连接AC ,BD 交于点O ,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,∴BD 1∥平面ACE .答案:平行4.设a ,b ,c 为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b ; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ;③ ⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④⎭⎪⎬⎪⎫α∥c a ∥c ⇒a ∥α;⑤ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α.其中正确的命题是________(将正确的序号都填上).答案:①④⑤⑥1.(2013·安徽卷)如图,正方体ABCDA 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题正确的是________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为62.解析:截面S 与DD 1的交点为M ,由平面与平面平行的性质定理知AM ∥PQ ,若0<CQ <12,则M 在线段DD 1上(不包括端点)如图S 为四边形,命题①正确;当CQ =12时,M 点与D 1重合,四边形APQD 1为等腰梯形,命题②正确;当CQ =34时,由△PCQ ∽△ADM ,DM AD =CQ PC ,则DM =AD ·CQPC=32.连接MQ 交C 1D 1于R 点,C 1R D 1R =C 1Q D 1M =12,即D 1R =2C 1R ,又D 1R +C 1R =1,则C 1R =13,故命题③正确.当34<CQ <1时,连接AM 交A 1D 1于N ,则截面S 为五边形APQRN ,命题④错误.当CQ=1时,截面S 为菱形,其对角线长分别为2,3,则S 的面积12×2×3=62,故命题⑤正确.答案:①②③⑤2.(2013·辽宁模拟)如图,多面体ABFEDC 的直观图及三视图如图所示,M ,N 分别为AF ,BC 的中点.(1)求证:MN ∥平面CDEF ; (2)求多面体ACDEF 的体积.由多面体ABFEDC 的三视图知,三棱柱AEDBFC 中,底面DAE 是等腰直角三角形,DA =AE =2,DA ⊥平面ABFE ,四边形ABFE ,ABCD 都是边长为2的正方形.(1)证明:连接EB ,则M 是EB 的中点.在△EBC 中,MN ∥EC ,又EC ⊂平面CDEF ,MN ⊄平面CDEF , 所以MN ∥平面CDEF .(2)解析:因为DA ⊥平面ABFE ,EF ⊂平面ABFE , 所以EF ⊥A D.又EF ⊥AE ,所以EF ⊥平面ADE .所以四边形CDEF 是矩形,且侧面CDEF ⊥平面DAE . 取DE 的中点H ,连接AH ,因为DA ⊥AE ,DA =AE =2,DE =2 2. 所以AH =2,且AH ⊥平面CDEF . 所以多面体A -CDEF 的体积 V =13S 四边形CDEF ·AH =13DE ·EF ·AH =83.1.平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:若α∩β=l ,a ∥l ,a ⊄α,α⊄β,a ∥α,a ∥β,排除选项A ;若α∩β=l ,a ⊂α,a ∥l ,则a ∥β,选项B 错误;若α∩β=l ,a ⊂α,a ∥l ,b ⊂β,b ∥l ,则a ∥β,b ∥α,选项C 错误,故正确答案为选项D.答案:D2.如图,在四棱锥PABCD 中,底面ABCD 是正方形,PA ⊥平面ABCD ,E 是PC 中点,F 为线段AC 上一点.(1)求证:BD ⊥EF;(2)试确定点F 在线段AC 上的位置,使EF ∥平面PBD ,并说明理由.(1) 证明:∵PA ⊥平面ABCD,∴PA ⊥BD . 又四边形ABCD 是正方形, ∴AC ⊥BD .又PA ∩AC =A ,∴BD ⊥平面PAC .又EF ⊂平面PAC , ∴BD ⊥EF .(2)解析:设AC 与BD 交于点O ,当F 为OC 中点,即AF =34AC 时,EF ∥平面PBD .理由如下:连接PO ,∵EF ∥平面PBD ,EF ⊂平面PAC ,平面PAC ∩平面PBD =PO ,在△POC中,E为PC的中点,∴F为OC的中点.。
2015届高考数学总复习第八章 第五节空间图形的平行关系精讲课件 文

变式探究
1 .正方体 ABCD - A1B1C1D1 中,点 N 在 BD 上,点 M 在 B1C 上,且CM=DN,求证:MN∥平面AA1B1B.
证明: 如图,连接 CN 并延长交 BA所在直线于点P, 连接B1P,则B1P⊂平面AA1B1B.
因为△NDC∽△NBP,
DN CN 所以 NB = NP. 又 CM=DN,B1C=BD, CM DN CN 所以MB = NB = NP, 1 所以 MN∥B1P.因为 B1P⊂平面 AA1B1B, 所以 MN∥平面 AA1B1B.
证明:(1)连接BC1,B1C,
则B1C⊥BC1, BC1是AP在平面BB1C1C上的射影, ∴AP⊥B1C. 又B1C∥MN,∴AP⊥MN.
(2)连接B1D1, ∵P,N分别是D1C1,B1C1的中点,
∴PN∥B1D1.
又B1D1∥BD,
∴PN∥BD.
又PN不在平面A1BD上,∴PN∥平面A1BD
(1)证明:∵截面EFGH是一个矩形, ∴EF∥GH.又GH⊂平面BCD, ∴EF∥平面BCD,而EF⊂平面ACD, 平面ACD∩平面BCD=CD.∴EF∥CD. 又∵CD⊄平面EFGH,EF⊂平面EFGH, ∴CD∥平面EFGH. (2)解析:由(1)知CD∥EF, 同理 AB∥FG ,由异面直线所成角的定义知 ∠ EFG 即为所 求的角.易得∠EFG=90°.
(2)证明:∵EC∥PD,PD⊂平面PDA,
EC⊄平面PDA,∴EC∥平面PDA. 同理可得BC∥平面PDA, ∵EC⊂平面EBC,BC⊂平面EBC,且EC∩BC=C, ∴平面BEC∥平面PDA. 又BE⊂平面EBC,∴BE∥平面PDA.
点评:利用判定定理判定直线与平面平行,关键是找平 面内与已知直线平行的直线,可先直观判断平面内是否已有, 若没有,则需作出该直线,常考虑三角形的中位线、平行四 边形的对边或过已知直线作一平面找其交线.
新教材 人教A版高中数学必修第二册 第八章 立体几何初步 知识点汇总及解题规律方法提炼

第八章立体几何初步8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体记作棱柱ABCDEFA′B′C′D′E′F′记作棱锥SABCD按底面多边形的边数分为三棱锥、记作棱台ABCDA′B′C′D′得的棱台分别为三棱台、四棱台、(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系①棱柱的分类棱柱⎩⎨⎧直棱柱⎩⎨⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系典型应用1棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.典型应用2棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.典型应用1圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.典型应用2简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.典型应用3旋转体中的计算问题如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.【解】设圆台的母线长为l cm,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO作截面,如图所示,则△SO′A′∽△SOA,SA′=3 cm.所以SA′SA=O′A′OA,所以33+l=r4r=14.解得l=9,即圆台O′O的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.[注意]在研究与截面有关的问题时,要注意截面与物体的相对位置的变化.由于相对位置的改变,截面的形状也会随之发生变化.8.2立体图形的直观图1.用斜二测画法画水平放置的平面图形的直观图的步骤(1)建系:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)平行不变:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)长度规则:已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.2.空间几何体直观图的画法(1)与平面图形的直观图画法相比多了一个z轴,直观图中与之对应的是z′轴.(2)直观图中平面x′O′y′表示水平平面,平面y′O′z′和x′O′z′表示竖直平面.(3)已知图形中平行于z轴(或在z轴上)的线段,在其直观图中平行性和长度都不变.(4)成图后,去掉辅助线,将被遮挡的部分改为虚线.■名师点拨(1)画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.(2)用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).典型应用1画水平放置的平面图形的直观图画水平放置的直角梯形的直观图,如图所示.【解】(1)在已知的直角梯形OBCD中,以底边OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.如图①所示.(2)画相应的x′轴和y′轴,使∠x′O′y′=45°,在x′轴上截取O′B′=OB,在y′轴上截取O′D′=12OD,过点D′作x′轴的平行线l,在l上沿x′轴正方向取点C′使得D′C′=DC.连接B′C′,如图②.(3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.画水平放置的平面图形的直观图的关键及注意事项(1)在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键,一般要使平面多边形尽可能多的顶点在坐标轴上或边与坐标轴平行,以便于画图.(2)画图时要注意原图和直观图中线段的长度的关系是否发生变化.典型应用2画简单几何体的直观图已知一个正四棱台的上底面边长为2,下底面边长为6,高为4,用斜二测画法画出此正四棱台的直观图.【解】(1)画轴.如图①,画x轴、y轴、z轴,三轴相交于点O,使∠xOy =45°,∠xOz=90°.(2)画下底面.以O为中点,在x轴上取线段EF,使得EF=6,在y轴上取线段GH,使得GH=3,再过G,H分别作AB綊EF,CD綊EF,且使得AB的中点为G,CD的中点为H,连接AD,BC,这样就得到了正四棱台的下底面ABCD 的直观图.(3)画上底面.在z轴上截取线段OO1=4,过O1作O1x′∥Ox,O1y′∥Oy,使∠x′O1y′=45°,建立坐标系x′O1y′,在x′O1y′中仿照(2)的步骤画出上底面A1B1C1D1的直观图.(4)连接AA1、BB1、CC1、DD1,擦去辅助线,得到的图形就是所求的正四棱台的直观图(如图②).画空间图形的直观图的原则(1)用斜二测画法画空间图形的直观图时,图形中平行于x 轴、y 轴、z 轴的线段在直观图中应分别画成平行于x ′轴、y ′轴、z ′轴的线段.(2)平行于x 轴、z 轴的线段在直观图中长度保持不变,平行于y 轴的线段长度变为原来的12.典型应用3直观图的还原与计算如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图.若A 1D 1∥O ′y ′,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=O ′D 1=1.试画出原四边形,并求原图形的面积.【解】 如图,建立直角坐标系xOy ,在x 轴上截取OD =O ′D 1=1,OC =O ′C 1=2.在过点D 与y 轴平行的直线上截取DA =2D 1A 1=2.在过点A 与x 轴平行的直线上截取AB =A 1B 1=2.连接BC ,便得到了原图形(如图).由作法可知,原四边形ABCD 是直角梯形,上、下底长度分别为AB =2,CD =3,直角腰长度为AD =2.所以面积为S =2+32×2=5.(1)直观图的还原技巧由直观图还原为平面图的关键是找与x ′轴、y ′轴平行的直线或线段,且平行于x ′轴的线段还原时长度不变,平行于y ′轴的线段还原时放大为直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.(2)直观图与原图面积之间的关系若一个平面多边形的面积为S ,其直观图的面积为S ′,则有S ′=24S 或S =22S ′.利用这一公式可由原图形面积求其直观图面积或由直观图面积求原图形面积.柱、锥、台的表面积和体积1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V棱柱=Sh;(2)V棱锥=13Sh;V棱台3S′,S分别是棱台的上、下底面面积,h为棱台的高.3.圆柱、圆锥、圆台的表面积和体积1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh . (2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh .(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系 S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh . 典型应用1柱、锥、台的表面积(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的( ) A.2倍 B .3 倍 C .2 倍D .5 倍(2)已知正方体的 8 个顶点中,有 4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为( )A .1∶ 2B .1∶3C .2∶ 2D .3∶6(3)已知某圆台的一个底面周长是另一个底面周长的 3 倍,母线长为 3 ,圆台的侧面积为 84π,则该圆台较小底面的半径为( )A .7B .6C .5D .3【解析】 (1)设圆锥的底面半径为 r ,母线长为 l ,则由题意可知,l =2r ,于是 S 侧=πr ·2r =2πr 2,S 底=πr 2,可知选 C.(2)棱锥 B ′ACD ′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为 1,则 B ′C =2,S △B ′AC =32.三棱锥的表面积 S 锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为r,则另一底面的半径为3r.由S侧=3π(r+3r)=84π,解得r=7.【答案】(1)C (2)B (3)A空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和.(2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.典型应用2柱、锥、台的体积如图所示,正方体ABCDA1B1C1D1的棱长为a,过顶点B,D,A1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥AA1BD的体积及高.【解】(1)V三棱锥A1ABD=13S△ABD·A1A=13×12·AB·AD·A1A=16a3.故剩余部分的体积V=V正方体-V三棱锥A1ABD=a3-16a3=56a3.(2)V三棱锥AA1BD=V三棱锥A1ABD=1 6a 3.设三棱锥AA1BD的高为h,则V三棱锥AA1BD=13·S△A1BD·h=13×12×32(2a)2h=36a2h,故36a2h=16a3,解得h=3 3a.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒]求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.典型应用3组合体的表面积和体积如图在底面半径为2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S.则R=OC=2,AC=4,AO=42-22=2 3.如图所示,易知△AEB∽△AOC,所以AEAO=EBOC,即323=r2,所以r=1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以 S =S 底+S 侧=2π+23π =(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比. 解:由例题解析可知:圆柱的底面半径为 r =1,高 h =3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π. 所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π.3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值.解:设圆锥的底面半径为 R ,圆柱的底面半径为 r , 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EB OC , 即23-h 23=r2, 所以 h =23-3r ,S 圆柱侧=2πrh =2πr (23-3r ) =-23πr 2+43πr ,所以当 r =1,h =3时,圆柱的侧面积最大,其最大值为 23π.求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.球的体积和表面积1.球的表面积设球的半径为R,则球的表面积S=4πR2.2.球的体积设球的半径为R,则球的体积V=43πR3.■名师点拨对球的体积和表面积的几点认识(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R都有唯一确定的S和V与之对应,故表面积和体积是关于R的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.典型应用1球的表面积与体积(1)已知球的体积是32π3,则此球的表面积是()A.12πB.16πC.16π3 D.64π3(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC.20πD.28π【解析】(1)设球的半径为R,则由已知得V=43πR3=32π3,解得R=2.所以球的表面积S=4πR2=16π.(2)由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r,故78×43πr3=283π,所以r=2,表面积S=78×4πr2+34πr2=17π,选A.【答案】(1)B(2)A球的体积与表面积的求法及注意事项(1)要求球的体积或表面积,必须知道半径R或者通过条件能求出半径R,然后代入体积或表面积公式求解.(2)半径和球心是球的最关键要素,把握住了这两点,计算球的表面积或体积的相关题目也就易如反掌了.典型应用2球的截面问题如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器厚度,则球的体积为()A.500π3cm3 B.866π3cm3C.1 372π3cm 3D.2 048π3cm 3【解析】 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =12×8=4(cm). 设球的半径为R cm ,则 R 2=OM 2+MB 2 =(R -2)2+42, 所以R =5,所以V 球=43π×53=5003π (cm 3). 【答案】 A球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题.(2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.典型应用3与球有关的切、接问题 角度一 球的外切正方体问题将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【解析】 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43×π×13=4π3.【答案】 A角度二球的内接长方体问题一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为________.【解析】长方体外接球直径长等于长方体体对角线长,即2R=12+22+32=14,所以球的表面积S=4πR2=14π.【答案】14π角度三球的内接正四面体问题若棱长为a的正四面体的各个顶点都在半径为R的球面上,求球的表面积.【解】把正四面体放在正方体中,设正方体棱长为x,则a=2x,由题意2R=3x=3×2a2=62a,所以S球=4πR2=32πa2.角度四球的内接圆锥问题球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为________.【解析】①当圆锥顶点与底面在球心两侧时,如图所示,设球半径为r,则球心到该圆锥底面的距离是r2,于是圆锥的底面半径为r2-⎝⎛⎭⎪⎫r22=3r2,高为3r 2.该圆锥的体积为13×π×⎝⎛⎭⎪⎫3r22×3r2=38πr3,球体积为43πr3,所以该圆锥的体积和此球体积的比值为38πr343πr3=932.②同理,当圆锥顶点与底面在球心同侧时,该圆锥的体积和此球体积的比值为332.【答案】 932或332角度五 球的内接直棱柱问题设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2D .5πa 2【解析】 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23×32a =33a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故 S 球=4πR 2=73πa 2.【答案】 B(1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为 r 1=a2,过在一个平面上的四个切点作截面如图(1).(2)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为 a ,b ,c ,过球心作长方体的对角线,则球的半径为 r 2=12a 2+b 2+c 2,如图(2).(3)正四面体的外接球正四面体的棱长a与外接球半径R的关系为:2R=6 2a.8.4.1平面1.平面(1)平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.平面是向四周无限延展的.(2)平面的画法我们常用矩形的直观图,即平行四边形表示平面.当水平放置时,常把平行四边形的一边画成横向;当平面竖直放置时,常把平行四边形的一边画成竖向.(3)平面的表示方法我们常用希腊字母α,β,γ等表示平面,如平面α、平面β、平面γ等,并将它写在代表平面的平行四边形的一个角内;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.如图中的平面α,也可以表示为平面ABCD、平面AC或者平面BD.■名师点拨(1)平面和点、直线一样,是只描述而不加定义的原始概念,不能进行度量.(2)平面无厚薄、无大小,是无限延展的.2.点、线、面之间的关系及符号表示A是点,l,m是直线,α,β是平面.从集合的角度理解点、线、面之间的关系(1)直线可以看成无数个点组成的集合,故点与直线的关系是元素与集合的关系,用“∈”或“∉”表示.(2)平面也可以看成点集,故点与平面的关系也是元素与集合的关系,用“∈”或“∉”表示.(3)直线与平面都是点集,它们之间的关系可看成集合与集合的关系,故用“⊂”或“⊄”表示.3.平面的性质在画两个相交平面时,如果其中一个平面的一部分被另一个平面挡住,通常把被挡住的部分画成虚线或不画,这样可使画出的图形立体感更强一些.如下图①,图②所示:4.平面性质的三个推论推论1经过一条直线和这条直线外一点,有且只有一个平面.如图(1).推论2经过两条相交直线,有且只有一个平面.如图(2).推论3经过两条平行直线,有且只有一个平面.如图(3).典型应用1图形、文字、符号语言的相互转化(1)用符号语言表示下面的语句,并画出图形.平面ABD与平面BDC交于BD,平面ABC与平面ADC交于AC.(2)将下面用符号语言表示的关系用文字语言予以叙述,并用图形语言予以表示.α∩β=l,A∈l,AB⊂α,AC⊂β.【解】(1)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.用图形表示如图①所示.(2)文字语言叙述为:点A在平面α与平面β的交线l上,直线AB,AC分别在平面α,β内,图形语言表示如图②所示.。
高中数学高考45第八章 立体几何 8 3 空间点、直线、平面之间的位置关系

例2 (1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平 面β的交线,则下列命题正确的是 A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交
√D.l至少与l1,l2中的一条相交
解析 由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相 交.故选D.
的公共直线. 公理4:平行于同一条直线的两条直线互相 平行 .
2.直线与直线的位置关系 (1)位置关系的分类
平行 直线 共面直线
相交直线 异面直线:不同在 任何 一个平面内,没有公共点
(2)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b, 把a′与b′所成的 锐角(或直角) 叫做异面直线a与b所成的角(或夹角). ②范围: 0,π2. .
√D.点C和点M
解析 ∵AB⊂γ,M∈AB,∴M∈γ. 又α∩β=l,M∈l,∴M∈β. 根据公理3可知,M在γ与β的交线上. 同理可知,点C也在γ与β的交线上.
123456
6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH 在原正方体中互为异面的对数为_3_.
解析 平面图形的翻折应注意翻折前后相对位置的变化, 则AB,CD,EF和GH在原正方体中, 显然AB与CD,EF与GH,AB与GH都是异面直线, 而AB与EF相交,CD与GH相交,CD与EF平行. 故互为异面的直线有且只有3对.
解 ∵BE∥AF 且 BE=12AF,G 为 FA 的中点, ∴BE∥FG且BE=FG, ∴四边形BEFG为平行四边形,∴EF∥BG. 由(1)知BG∥CH. ∴EF∥CH,∴EF与CH共面. 又D∈FH,∴C,D,F,E四点共面.
2015届高考数学总复习 基础知识名师讲义 第八章 第六节空间图形的垂直关系 理

第六节 空间图形的垂直关系知识梳理一、空间图形的垂直关系直线与直线垂直、直线与平面垂直、平面与平面垂直. 二、直线与直线垂直定义:两条直线所成的角为90°,则称两直线垂直,包括两类:相交垂直与异面垂直.三、直线与平面垂直1.定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面.1.定义:从一条直线AB 出发的两个半平面(α和β)所组成的图形叫做二面角.记作二面角αAB β,AB 叫做二面角的棱,两个半平面(α和β)叫做二面角的面.2.二面角的平面角:在二面角的棱AB 上任取一点O ,过O 分别在二面角的两个面α,β内作与棱垂直的射线OM ,ON ,我们把∠MON 叫做二面角αAB β的平面角,用它来度量二面角的大小.平面角是直角的二面角叫做直二面角.1.认识和理解空间中线、面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.五、两个平面垂直的判定和性质.1.定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.2.两个平面垂直的判定和性质基础自测1.已知直线m,n和平面α,β,若α⊥β,α∩β=m,n⊂α,要使n⊥β,则应增加的条件是( )A. m∥nB. n⊥mC. n∥αD. n⊥α解析:已知直线m,n和平面α,β,若α⊥β,α∩β=m,n⊂α,根据面面垂直的性质定理,应增加条件n⊥m,才能使得n⊥β.答案:B2.(2013·广东卷)设m,n是两条不同的直线,α,β,是两个不同的平面,下列命题中正确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β解析:两个平面互相垂直,在每个平面各取一条直线,这两条直线可能平行、可能相交、可能异面,排除选项A;两个平面互相平行,在每个平面各取一条直线,这两条直线可能平行,可能异面,排除选项B;根据面面垂直的判定定理知,选项C错误,选项D正确.故选D.答案:D3.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:∵底面四边相等,∴BD⊥AC.∵PA⊥平面ABCD,∴BD⊥PA.∵PA∩AC=A,∴BD⊥平面PAC.∴BD⊥PC.故当DM⊥PC(或BM⊥PC)时,有PC⊥平面MBD,从而有平面PCD⊥平面MBD.答案:DM⊥PC(或BM⊥PC)4.设l,m,n为三条不同的直线,α为一个平面,下列命题中正确的是________.①若l⊥α,则l与α相交;②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;③若l∥m,m∥n,l⊥α,则n⊥α;④若l∥m,m⊥α,n⊥α,则l∥n.解析:由于直线与平面垂直是相交的特殊情况,故命题①正确;由于不能确定直线m,n是否相交,不符合线面垂直的判定定理,命题②不正确;根据平行线的传递性,l∥n,故当l⊥α时,一定有n⊥α,命题③正确;m⊥α,n⊥α,则m∥n,又l∥m,即l∥n,命题④正确.答案:①③④1.(2013·新课标全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l 满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析:显然α与β相交,不然由α∥β⇒m ∥n ,与m ,n 为异面矛盾,排除选项A ;当α与β相交时,设交线为l ′,由m ⊥平面α,n ⊥平面β知,l ′⊥m ,l ′⊥n ,而l ⊥m ,l ⊥m ,于是易知l ′∥l .故选D.答案:D2.(2012·江苏卷)如图,在直三棱柱ABCA 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .证明:(1) ∵ABCA 1B 1C 1是直三棱柱, ∴CC 1⊥平面ABC .又AD ⊂平面ABC ,∴CC 1⊥AD .又AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , ∴AD ⊥平面BCC 1B 1.又AD ⊂平面ADE , ∴平面ADE ⊥平面BCC 1B 1.(2) ∵A 1B 1=A 1C 1,F 为B 1C 1的中点, ∴A 1F ⊥B 1C 1.∵CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, ∴CC 1⊥A 1F .又CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, ∴A 1F ⊥平面BCC 1B 1.由(1)知AD ⊥平面BCC 1B 1,∴A 1F ∥AD . 又AD ⊂平面ADE ,A 1F ⊄平面ADE , ∴A 1F ∥平面ADE .1.(2013·惠州一模)已知集合A 、B 、C ,A ={直线},B ={平面},C =A ∪B.若a ∈A ,b ∈B ,c ∈C ,给出下列四个命题:①⎩⎪⎨⎪⎧ a ∥b c ∥b ⇒a ∥c ,②⎩⎪⎨⎪⎧ a ⊥b c ⊥b ⇒a ∥c ,③⎩⎪⎨⎪⎧a ∥bc ⊥b ⇒a ⊥c , ④⎩⎪⎨⎪⎧a ⊥bc ∥b ⇒a ⊥c .其中所有正确命题的序号是________.解析:对于①,当c 表示平面时,根据a ∥b 且c ∥b ,不一定有a ∥c 成立,可能a ⊂c ,故①不正确;对于②,c如果是平面,a可以在平面c内,所以②不正确;对于③,当c表示平面时,由a∥b且c⊥b不能推出a⊥c成立,故③不正确;对于④,用与③相同的方法,可证出a⊥c成立,故④正确.综上,正确命题的序号为④.答案:④2.(2013·珠海一模)如图,四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC =60°,PA=AB=BC,E是PC的中点.(1)求证:CD⊥AE;(2)求证:PD⊥面ABE;(3)求二面角APDC的平面角的正弦值.(1)证明:PA⊥底面ABCD,所以CD⊥P A.又CD⊥AC,PA∩AC=A,故CD⊥平面PAC,因为AE⊂平面PAC,所以CD⊥AE.(2)证明:PA=AB=BC,∠ABC=60°,所以PA=AC,因为E是PC的中点,所以AE⊥PC,由(1)知CD⊥AE,从而AE⊥平面PCD,所以AE⊥PD.易知BA⊥PD,所以PD⊥平面ABE.(3)解析:过点A作AF⊥PD,垂足为F,连接EF.由(2)知,AE⊥平面PCD,故∠AFE是二面角APDC的一个平面角.设AC =a ,则AE =22a ,AD =23a ,PD =73a , 从而AF =PA ·AD PD =27a ,故sin∠AFE =AE AF =144.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
(三)圆周长和园面积的教学
教学重点
1、通过实验操作认识圆周长与直径
之间的关系,推导出圆周长公式 2、运用极限、化归法推导圆面积公 式
15
三、表面积和体积的教学
教学难点:形成”体积“概念,
理解体积单位,弄清长度单位、 面积单位和体积单位之间的区 别和联系
16
四、实际测量的教学
1、长方体和正方体
2、圆柱
3、圆锥
4、球
10
8.2 测量的教学
一、长度单位和长度计量的教学
教学目标重点: (1)是让学生形成“厘米”“米” 的概念,初步形成“千米”的观念。 (2)使学生会量长度。
11
二、周长和面积的教学
(一)“周长”和“面积”概念的教学 教学重点: 1、学会利用周长的意义推导出周长公 式 2、理解”面积“的意义和面积单位, 会比较面积大小 3、并区分长度单位和面积单位的不同
“空间与图形”教学的意义
1、培养思维能力
2、培养初步的空间观念和创造力 3、培养应用数学的意识和用形的知识解决简
单实际问题的能力 4、渗透“数形结合”思想,与“数”的教学 彼此沟通,互相促进 5、几何学在数学教育中的地位比20世纪更为 重要
1
空间观念:是在空间知觉基础上形成的、关于物体 的形状、大小和位置关系的表象。 数形结合就是根据数学问题的条件和结论之间的内 在联系,既分析其代数意义,又揭示其几何直观, 使数量关系的精确刻划与空间形式的直观形象巧妙、 和谐地结合在一起,充分利用这种结合,寻找解题 思路,使问题化难为易、化繁为简,从而得到解决。
二、东、南、西、北
三、路线图
四、物体位置的确定 五、观察物体
19
2
8.1 图形认识的教学
一、平面图形认识的教学
1、线段、直线、射线
教学应重点把握图形特征: 直;无粗细可言;无限延伸。
3
2、角和直角
第一阶段:角的初步认识 重点是引导学生从日常语言中的 “角”过渡到数学语言的“角”, 形成“角”的概念。 第二阶段:角的意义、度量、画法 和分类
4
3、垂线和平行线的教学
(1)互相垂直、垂线和垂足
(2)点到直线的距离
A .
B
C D
E
5
(3)平行线
4、长方形和正方形
6
5、三角形
(1)三角形和它的稳定性 (2)直角三角形、锐角三角形和钝角三 角形 (3)等腰三角形和等边三角形
7
(4)三角形的高和底 (5)三角形的内角和
8
6、平行四边形和梯形
7、圆
9
二、立体图形的认识的教学
教学目的:
1、使学生学会使用测量工具在地面
上测定直线,丈量距离和形状比较 简单的地块的面积。 2、初步培养步测和目测的能力。 3、认识地积单位,学会地积计算。
17
8.5 图形与变换的教学
一、轴对称图形
二、平移与旋转
三、图案欣赏与设计
18
8.6图形与位置的教学
一、上、下、前、后、左、右
12
长度单位和面积单位的比较
名
称
意
长度义Βιβλιοθήκη 进率10适应范围
长度单位 米
面积单位
厘米、分米、 特定线段的
平方厘米、平 方分米、平方 米
求长宽周 长等
求面积
特定的正方 形的面积
100
13
(二)多边形面积计算的教学
教学重点: 1、根据面积概念和面积单位以及长方形 的特征推导长方形面积公式 2、根据“全等形等积和面积的可加性” 推导出几中多边形面积的计算公式