初中数学竞赛辅导 第十五讲 乘法公式(含答案)
【数学竞赛】七年级数学思维探究(19)乘法公式(含答案)

高斯 1777 1855 ,德国数学家、天文学家和物理学家,有“数学王子”之称,高斯的成就遍布数学的各个领域,在数论、非欧几何、重变函数论、椭圆函数论等方面均有创始性贡献,他十分着重数学的应用,并且在对天文学、大地丈量学和磁学的研究中也着重于用数学方法19.乘法公式解读课标多项式的形式是多种多样的,两个有必定关系的特别多项式相乘,结果经常简短而优美. 乘法公式是多项式相乘得出的既有特别性又有适用性的详细结论,学习乘法公式应注意: 1.理解公式,掌握公式的结构特点;2.认识公式的变形与发展;3.灵巧运用公式,既能正用、又能逆用,并且还可以适合变形或从头组合,综合运用公式; 4.掌握公式的几何意义,意会数形联合的思想.问题解决例 1 假如正整数 x , y 知足方程 x 2 y 264 ,则这样的正整数对x , y 的个数是 ______.试一试 a 2b 2a b a b , a b 以 a b 的奇偶性相同,这个十分简单的结论是解本例的基础.例 2 已知 a 、 b 、 c 知足 a 22b 7 , b 22c 1, c 26a 17 则 ab c 的值等于()A . 9B . 3C . 4D . 5试一试 由条件等式联想到完整平方式,解题的切入点是整体考虑. 例 3计算1 2 4 8 16 ( ) 212 12 1212112 1( 2)200420032220042002 2004200433( 3)45.1 13.945.1 13.931.2试一试关于( 1),经过对待求式适合变形,使之切合平方差公式的结构特点;关于( 2),用字母表示数,将数值计算转变为式的计算.例 4 老师在黑板上写出三个算式52328 2,927 2 8 4 ,152 32 8 27 ,王华接着又写了两个拥有相同规律的算式: 112 52 8 12 , 152 7 2 8 22( 1)请你再写出两拥有上述规律的版式; ( 2)用文字写出上述算式反应的规律;( 3)证明这个规律的正确性.试一试 由特别到一般,用字母表示算式反应的规律并证明.5 1 )已知 x 2y 2 z 2 2 x 4 y 6z 14 0 ,求 x y z的值.例 ((2)26 52 12,53 7 2 22, 26 53 1378 , 1378 372 32随意精选此外两个近似 26 、 53 的数,使它们能表示成两个平方数的和,把这两个数相乘,乘积仍旧是 两个平方数的和吗?你能说出此中的道理吗?x , y, z ,的值:关于( 2),剖析 关于( 1),由平方和联想到完整平方公式及其逆用, 利用配方求出 从试验下手,而后给出一般情况的证明.解( 1)由条件得x 22z20 , x 1 , y2 , z3 ,原式 2.1y 23( 2)一般地,设 m a 2b 2 , nc 2d 2 ,则 mna 2b 2c 2d 2a 2c 2b 2d 2 b 2c 2 a 2d 2a 2c 2b 2 d 22abcd b 2 c 2 2abcd a 2 d 2ac bd或 ac bd22bc ad22bc ad智慧数例 6 整数问题常是饶有兴趣又发人思虑的,若对整数作一些特别的规定, 就会获得一些特别定义下的新数,并由此产生令人思虑的问题,我们规定:若一个自然数能表示成两个非零自然数的平方差,则把这个自然数称为“智慧数”,如16 52 32 ,则 16 称为智慧数.请判断:在自然数列中,从数 1起,第 2000 个智慧是哪个数?剖析与解 要确立第 2000 个智慧数,应先找到智慧数的特点及散布规律.由于 2k 24 ,并且是 4 的倍数的数也是智慧数.由此可知,被4除 2的1 k 1 k2 ,明显,每个大于 偶数都不是智慧数.所以, 自然数列中最小的智慧数是 3 ,第 2 个智慧数是 5 ,从 5 起,挨次是 5 ,7 ,8 ;9 ,11 ,12;13 , 15 , 16 ; 17 , 19 , 20 ; 即按 2 个奇数,一个 4 的倍数,三个一组地挨次摆列下去.依据这个结论,我们简单知道: 由于 2000 1 3 666 1 ,所以第 1999 个智慧数是 4 666 4 2668 ,故第 2000 个智慧数 是 2669 . 数学冲浪知识技术广场 1.若 a 22ab b20 ,则代数式a a4ba 2b a 2b 的值为.2.已知 m 28, m n 2n2=______. n 2,则 m 23.已知 x 22x 2y1 0 ,则 xy 999=______ .y4 .已知 a 2 b 2 2a 4b5 0 ,则 2a 24b 3 的值为 _______.5.已知以 a 、 b 、 x 、 y 知足 ax by 3 , ay bx 5 ,则 a 2 b 2 x 2 y 2 的值为 ______.6.如图,从边长为 a 的正方形内去掉一个边长为b 的小正方形,而后将节余部分剪拼成一个长方形,上述操作所能考证的等式是( )ababA . a 2 b 2ab a bB . a 2a 2 2ab b 2bC . a b 222ab b 2D . a 2ab a a ba7.已知 a1 x 20 , b 1 x 19 , c 1 x 21 ,则代数式 a2 b 2c 2 ab bcac 的值是()20 20 20 A . 4B . 3C . 2D . 1 8.已知xy 1 , x 2 y 22 ,那么 x 4 y 4 的值是( )A . 4B . 3C .7D .5229.若 a、 b 为有理数,且 2a 22ab b 2 4a 4 0 ,则 a 2b ab 2 =( )A . 8B . 16C . 8D .1610.在 2004 , 2005 , 2006 , 2007 这四个数中,不可以表示为两个整数平万的数是( )A . 2004B . 2005C . 2006D . 2007 11.计算( 1)671721741781 1( 2)24690 12345 12347 123462 (3) 20052004222220052003 2005200512 . 一个自然数减去 45后是一个完整平方数,这个自然数加上 44后还是一个完整平方数,试求这个自然数. 思想方法天地13 .已知 2007a 2005 a 222006 ,那么 2007 a2005 a =_____ .14 .已知 a b4 , ab c 2 4 0 ,则 a b =______.n15.杨辉三角是一个由数字摆列成昀三角形数表, 一般形式如下图, 此中每一横行都表示 a b (此处 n 0 , 1, 2 , 3 , 4, 5 , 6 )的睁开式中的系数,杨辉三角最实质的特点是,它的两条斜边都是由数字 1构成的,而其他的数则是等于它“肩”上的两个数之和.11 11 2 11 3 3 11 4 6 4 11 51 01 0 5 1161 5 201 561a 01ba b 1 a ba 2a 2 2ab b 2ba 3 a 3 3a 2b 3ab 2 b 3ba 4 a 4 4a 3b 6a 2b 2 4ab 3 b 4ba 5a 5 5a 4b 10a 3 b 2 10a 2 b 3 5ab 4 b 5ba 6a 6 5a 5b 15a 4 b 2 20a 2 b 3 15a 2 b 4 6ab 5 b 6b上图的构成规律你看懂了吗?7______.请你直接写出 a b杨辉三角还有另一个特点( 1)从第二行到第五行,每一行数字构成的数(如第三行为 121)都是上一行的数与 ______积.( 2)由此你可写出 115 =______.( 3)由第 _____行可写出 118 =______.16.假如 a 2b 3c 12 ,且 a 2 b 2 c 2ab bc ca ,则 a b 2c 3 的值是( )A . 12B . 14C 16D . 18.17 .假如 xy 1 , x 2 y 2 3 ,那么 x 3 y 3 的值为( ) A . 2 B . 3 C . 4 D . 518 .把 2009 表示成两个整数的平方差的形式,则不一样的表示法有( )A .16 种B . 14种 C . 12种 D .10种 22 02 ,19 .假如一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神奇数” ,如 412 42 22,20 6242 ,所以 4 , 12 , 20这三个数都是神奇数.( 1) 28 和 2012 这两个数是神奇数吗?为何?(2)设两个连续偶数为 2k 2 和 2k (此中 k 取非负整数),由这两个连续偶数结构的神奇数是 4 的倍数吗?为何? (3)两个连续奇数的平方差(取正当)是神奇数吗?为何? 20 .已知 a b c 0 , a 2 b 2 c 2 1( 1)求 ab bc ca 的值;(4442)求 a b c 的值.应用研究乐园21 .( 1)证明:奇数的平方被 8除余 1.( 2)请你进一步证明:2006不可以表示为 10 个奇数的平方之和.22.某校举行春天运动会时,由若干名同学构成一个 8 列的长方形行列.假如原行列中增 120 人,就能构成一个正方形行列;假如原行列中减少 120 人,也能构成一个正方形行列.问原长方形行列有多少名同学?19 乘法公式问题解决例 1 2 对 x y x y 64, x y xy 0 且xy 与 xy 的奇偶性相同,得x y 32 x y 16x y2 , y 4 , x 则 x 17 x 10y , 615 y 例 2B 三等式相加得:a 3 2b1 2 c 1 2 0a3 , b 1, c 1例 3(1)原式2 1 2 1 221 241 281 216 1122 1 22 1 241 28 1 216 11232 1 1232a 2( 2)设 200420003a ,则原式1a 1 2a 21a211 2 a 2 12( 3)原式45.1 13.9 45.12 45.1 13.9 13.9245.1 13.945.1 13.945.1213.93481例 4(1)略( 2)规律:随意两个奇数的平方差等于 8 的倍数( 3)设 m 、 n 为整数,2m 1 22n 24 m n m n 11当 m 、 n 同奇或同偶, 4 m n 是 8 的倍数,当 m 、 n 一奇一偶, 4 mn 1 是 8 的倍数.数学冲浪1. 0 2. 523. 1 由条件得 x y 14. 75. 34 原式 a 2 x 2 a 2 y 2 b 2 x 2 b 2 y 2ax2ay2bybx6. A17.B 原式ab 2b c 2c a 228. C9. Ba2a2 2b 10 . C 形如 4k 或 2k 1 的数为“智慧数” 11 1 16 2 24690 3 1) 7 ;( ).(;() 2 2①12.设这个自然为x ,由题意得 x 45 m x 44 n 2② ② -①得 n 2 m 2 89,即 n m n m 89 1 进而n m 89 ,解得n 45nm 1m44故 x452 44 198113. 4016 原式 2007 a22005 a2 2007 a 2005 a14. 0把 a b4 代入 ab c 24 0得 b 2c 2 0 , b 2 ,2C 0 , a24 2 , a b 015.略( 1) 11 ( 2) 161051 ( 3) 9 ; 21435888116. B 由 a 2 b 2 c 2 ab bc ac ,得1a b 2bc 2a c 2 0 ,进而 abc 22217. C2xyxx 2y 22yxy1 , x 3 y 3x y x 2 xy y 2418 . C提示:xy x y2009 241有 6 个正因数,分别是 1, 7,41,49,287和 2009 ,7 所以对应的方程组为:x y1,7 , 41, 49 , 2872009 , 1, 7 , 41, 49 , 287 , 2009x y2009 , 287 , 49 , 41,7 , 1,2009, 287, 49, 41, 7, 1故 x , y 共有 12 组不一样的表示19.( 1) 28 4 7 82 62 , 2012 4 503 5042 5022 故 28 和 2012 都是神奇数.(2) 2k 2 22k 24 2k1 ,为 4 的倍数.( 3)神奇数是4 的倍数,但必定不是8 的倍数,但 2n 22n 1 28n ,1故两个连续奇数的平方差不是神奇数20 .( 1) a b c 2a 2 b2c22ab 2bc 2ac ,得 ab bc ca12( 2)由 abbc ca 12,得 ab bc ca 21 ,即 a 2b2 b 2c 2 c 2a22abc a bc 144得 a 2 b 2 b 2 c 2 c 2 a 2 14又 a 2b 2c 2 1 ,平方得 a 4 b 4 c 42a 2b 2 2b 2c 2 2c 2a 2 1故44422 22 221 2 1 1a b c 1 2 a b b c c a4 2221 .( 1)2n 1 4n n 1 18| 4n n 1 ,故奇数的平方被 8 除余 1x 2 x 3x 10 2006.( 此中 x ,x( )假定 2006 能够表示为 10 个奇数的平方之和, 也就是 x 1, ,2222212 x 10 是奇数)等式左侧被 8 除余 2 ,而 2006 被 8 除余 6 ,矛盾.故 2006 不可以表示为 10 个奇数的平方之和.8x120222.设m ①, m 、 n 均为正整数,且 m n ,① -②8x 120=n2②得 mn n n240 24 3 522都是8 的倍数,则 m 、 n 能被 4 整除, m n 、 m n 均能被 4 整除,m , n。
专题复习:乘法公式知识点归纳及典例+练习题及答案(师)

专题复习:乘法公式知识点归纳及典例+练习题一、知识概述 1、平方差公式 由多项式乘法得到 (a+b)(a-b) =a -b . 即两个数的和与这两个数的差的积,等于它们的平方差. 2、平方差公式的特征 ①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数; ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方); ③公式中的 a 和 b 可以是具体数,也可以是单项式或多项式; ④对于形如两数和与这两数差相乘的形式,就可以运用上述公式来计算. 3、完全平方公式 由多项式乘法得到(a±b) =a ±2ab+b2 2 2 2 2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍. 推广形式:(a+b+c) =a +b +c +2ab+2bc+2ca 4、完全平方公式的特征 (a+b) =a +2ab+b 与(a-b) =a -2ab+b 都叫做完全平方公式,为了区别,我们把前者叫做两数 和的完全平方公式,后者叫做两数差的完全平方公式. ①两公式的左边:都是一个二项式的完全平方,二者仅有一个符号不同;右边:都是二次三项式,其 中有两项是公式左边两项中每一项的平方,中间是左边二项式中两项乘积的 2 倍,两者也仅有一个符号不 同. ②公式中的 a、b 可以是数,也可以是单项式或多项式. ③对于形如两数和(或差)的平方的乘法,都可以运用上述公式计算. 5、乘法公式的主要变式 (1)a -b =(a+b)(a-b); (2)(a+b) -(a-b) =4ab; (3)(a+b) +(a-b) =2(a +b ); (4)a +b =(a+b) -2ab=(a-b) +2ab (5)a +b =(a+b) -3ab(a+b). 熟悉这些变形公式,明确它们间联系,综合运用,常可简化解题过程. 注意:(1)公式中的 a,b 既可以表示单项式,也可以表示多项式. (2)乘法公式既可以单独使用,也可以同时使用. (3)这些公式既可以正用,也可以逆用,因此在解题时应灵活地运用公式,以计算简捷为宜.3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2二、典型例题讲解 例 1、计算: (1)(3a+2b)(2b-3a); (2)(x-2y)(-x-2y);(3) (4)(a+b+c)(a-b-c). 解:;(1)原式=(2b+3a)(2b-3a) =(2b) -(3a) =4b -9a2 2 2 2(2)原式=(-2y+x)(-2y-x) =(-2y) -x =4y -x2 2 2 2(3)原式=== (4)原式=[a+(b+c)][a-(b+c)] =a -(b+c)2 2 2 2=a -(b +2bc+c ) =a -b -2bc-c 例 2、计算: (1)2004 -19962 2 2 2 2 22(2)(x-y+z) -(x+y-z)2(3)(2x+y-3)(2x-y-3). 解:(1)2004 -1996 =(2004+1996)(2004-1996) =4000×8=32000 (2)(x-y+z) -(x+y-z)2 2 2 2=[(x-y+z)+(x+y-z)][ (x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz (3)(2x+y-3)(2x-y-3)=[(2x-3)+y][(2x-3)-y] =(2x-3) -y =4x -12x+9-y =4x -y -12x+9; 例 3、计算: (1)(3x+4y) ; (3)(2a-b) ;2 2 2 2 2 2 2 2 2(2)(-3+2a) ; (4)(-3a-2b)22解:(1)原式=(3x) +2·3x·4y+(4y) =9x +24xy+16y2 2 22(2)原式=(-3) +2·(-3)·2a+4a =4a -12a+922(3)原式=(2a) +2·2a·(-b)+(-b) =4a -4ab+b2 222(4)原式=[-(3a+2b)] =(3a+2b)2 22=(3a) +2·(3a)·2b+(2b) =9a +12ab+4b2 22例 4、已知 m+n=4, mn=-12,求(1);(2);(3).解:(1);(2);(3)2.例 5、多项式 9x +1 加上一个单项式后,使它能够成为一个整式的完全平方,那么加上的单项式可以是 ________(填上一个你认为正确的即可). 分析: 解答时,很多学生只习惯于课本上的完全平方的顺序,认为只有添加中间(两项的乘积的 2 倍)项,即 9x +1+6x=(3x+1) 或 9x -6x+1=(3x-1) ;但只要从多方面考虑,还会得出2 2 2 2,9x +1-1=9x =(3x) , 9x +1-9x =12, 所以添加的单项式可以是 6x,22222-6x,,-1,-9x .2答案:±6x 或 例 6、计算:或-1 或-9x2,并说明结果与 y 的取值是否有关. 解:从上述结果可以看出,结果中不含 y 的项,因此结果与 y 的取值无关. 点评: (1)利用平方差公式计算的关键是弄清具体题目中,哪一项是公式中的 a,哪一项是公式中的 b; (2)通常在各因式中, 相同项在前, 相反项在后, 但有时位置会发生变化, 因此要归纳总结公式的变化, 使之更准确的灵活运用公式. ①位置变化:(b+a)(-b+a)=(a+b)(a-b)=a -b ; ②符号变化:(-a-b)(a-b)=(-b-a)(-b+a)=(-b) -a =b -a ; ③系数变化:(3a+2b)(3a-2b)=(3a) -(2b) =9a -4b ; ④指数变化:(a +b )(a -b )=(a ) -(b ) =a -b ; ⑤连用公式变化:(a-b)(a+b)(a +b )(a +b ) =(a -b )(a +b )(a +b )=(a -b )(a +b ) =a -b ; ⑥逆用公式变化:(a-b+c) -(a-b-c)2 2 8 8 2 2 2 2 4 4 4 4 4 4 2 2 4 4 3 3 3 3 3 2 3 2 6 6 2 2 2 2 2 2 2 2 2 2=[(a-b+c)+(a-b-c)][(a-b+c)-(a-b-c)] =4c(a-b). 例 7、已知 .求 分析:的值.若直接代入求解则十分繁杂。
全国初中数学竞赛辅导(初1)第15讲奇数与偶数教师版

全国初中数学竞赛辅导(初1)第15讲奇数与偶数教师版第⼗五讲奇数与偶数通常我们所说的“单数”、“双数”,也就是奇数和偶数,即±1,±3,±5,…是奇数,0,±2,±4,±6,…是偶数.⽤整除的术语来说就是:能被2整除的整数是偶数,不能被2整除的整数是奇数.通常奇数可以表⽰为2k+1(或2k-1)的形式,其中k为整数,偶数可以表⽰为2k的形式,其中k 是整数.奇数和偶数有以下基本性质:性质1 奇数≠偶数.性质2 奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数.性质3 奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数.性质4 奇数个奇数之和是奇数;偶数个奇数之和是偶数;任意有限个偶数之和为偶数.性质5 若⼲个奇数的乘积是奇数,偶数与整数的乘积是偶数.性质 6 如果若⼲个整数的乘积是奇数,那么其中每⼀个因⼦都是奇数;如果若⼲个整数的乘积是偶数,那么其中⾄少有⼀个因⼦是偶数.性质7 如果两个整数的和(或差)是偶数,那么这两个整数的奇偶性相同;如果两个整数的和(或差)是奇数,那么这两个整数⼀定是⼀奇⼀偶.性质8 两个整数的和与差的奇偶性相同.性质9 奇数的平⽅除以8余1,偶数的平⽅是4的倍数.性质10 整数a和|a|有相同的奇偶性性质11 两个连续的整数中,必有⼀个是奇数,⼀个是偶数,两个相邻整数之和是奇数,之积是偶数.性质12 如果若⼲个整数之和是奇数,那么其中⾄少有⼀个是奇数;如果奇数个整数之和是偶数,那么其中⾄少有⼀个是偶数.下⾯我们给出性质7⾄性质9的证明.性质7的证明设两个整数的和是偶数,如果这两个整数为⼀奇⼀偶,那么由性质2知,它们的和为奇数,因此它们同为奇数或同为偶数.同理两个整数的和(或差)是奇数时,这两个数⼀定是⼀奇⼀偶.性质8的证明设两个整数为X,y.因为(x+y)+(x-y)=2x为偶数,由性质7便知,x+y与x-y同奇偶.性质9的证明若x是奇数,设x=2k+1,其中k为整数,于是x2=(2k+1)2=4k3+4k+1=4k(k+1)+1.因为k与k+1是两个连续的整数,它们必定⼀奇⼀偶,从⽽它们的乘积是偶数.于是,x2除以8余1.若y是偶数,设y=2t,其中t为整数,于是y2=(2t)2=4t2所以,y2是4的倍数.例1 在1,2,3,…,1998中的每⼀个数的前⾯,任意添上⼀个“+”或“-”,那么最后运算的结果是奇数还是偶数?解由性质8知,这最后运算所得的奇偶性同1+2+3+…+1998=999×1999的奇偶性是相同的,即为奇数.例2 设1,2,3,…,9的任⼀排列为a1,a2,…,a9.求证:(a1-1)(a2-2)…(a9-9)是⼀个偶数.证法1 因为(a1-1)+(a2-2)+(a3-3)+…+(a9-9)=(a1+a2+…+a9)-(1+2+…+9)=0是偶数,所以,(a1-1),(a2-2),…,(a9-9)这9个数中必定有⼀个是偶数(否则,便得奇数个(9个)奇数的和为偶数,与性质4⽭盾),从⽽由性质5知(a1-1)(a2-2)…(a9-9)是偶数.证法2 由于1,2,…,9中只有4个偶数,所以a1,a3,a5,a7,a9中⾄少有⼀个是奇数,于是,a1-1,a3-3,a5-5,a7-7,a9-9⾄少有⼀个是偶数,从⽽(a1-1)(a2-2)…(a9-9)是偶数.例3 有n个数x1,x2,…,x n,它们中的每⼀个数或者为1,或者为-1.如果x1x2+x2x3+…+x n-1x n+x n x1=0,求证:n是4的倍数.证我们先证明n=2k为偶数,再证k也是偶数.由于x1,x2,…,x n。
初一数学竞赛培优讲义 含答案 全册 共15讲 改好98页

装订线初一数学竞赛培优第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
乘法公式精选题(含答案)

5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。
八年级数学竞赛例题专题讲解:乘法公式(含答案)

专题02 乘法公式阅读与思考乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:1.熟悉每个公式的结构特征;2.正用 即根据待求式的结构特征,模仿公式进行直接的简单的套用; 3.逆用 即将公式反过来逆向使用; 4.变用 即能将公式变换形式使用;5.活用 即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.例题与求解【例1】 1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是 .(全国初中数字联赛试题)解题思路:因22()()a b a b a b -=+-,而a b +a b -的奇偶性相同,故能表示成两个整数的平方差的数,要么为奇数,要么能被4整除.【例2】(1)已知,a b 满足等式2220,4(2)x a b y b a =++=-,则,x y 的大小关系是( )A .x y ≤B .x y ≥C .x y <D .x y >(山西省太原市竞赛试题)(2)已知,,a b c 满足22227,21,617a b b c c a +=-=--=-,则a b c ++的值等于( ) A .2B .3C .4D .5(河北省竞赛试题)解题思路:对于(1),作差比较,x y 的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.【例3】计算下列各题:(1) 2486(71)(71)(71)(71)1+++++;(天津市竞赛试题) (2)221.23450.76552.4690.7655++⨯;(“希望杯”邀请赛试题)(3)22222222(13599)(246100)++++-++++.解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.【例4】设221,2a b a b +=+=,求77a b +的值. (西安市竞赛试题)解题思路:由常用公式不能直接求出77a b +的结构,必须把77a b +表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.【例5】观察:222123415;2345111;3456119;⨯⨯⨯+=⨯⨯⨯+=⨯⨯⨯+=(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算20002001200220031⨯⨯⨯+的结果(用一个最简式子表示).(黄冈市竞赛试题)解题思路:从特殊情况入手,观察找规律.【例6】设,,a b c 满足2223331,2,3,a b c a b c a b c ++=++=++=求:(1)abc 的值; (2)444a b c ++的值.(江苏省竞赛试题)解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.能力训练A 级1.已知22(3)9x m x --+是一个多项式的平方,则m = . (广东省中考试题) 2.数4831-能被30以内的两位偶数整除的是 .3.已知222246140,x y z x y z ++-+-+=那么x y z ++= .(天津市竞赛试题)4.若3310,100,x y x y +=+=则22x y += .5.已知,,,a b x y 满足3,5,ax by ax by +=-=则2222()()a b x y ++的值为 .(河北省竞赛试题)6.若n 满足22(2004)(2005)1,n n -+-=则(2005)(2004)n n --等于 . 7.22221111(1)(1)(1)(1)2319992000----等于( ) A .19992000 B .20012000 C .19994000D .200140008.若222210276,251M a b a N a b a =+-+=+++,则M N -的值是( )A .正数B .负数C .非负数D .可正可负9.若222,4,x y x y -=+=则19921992xy +的值是( )A .4B .19922C .21992D .4199210.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学? (“CASIO ”杯全国初中数学竞赛试题)11.设9310382a =+-,证明:a 是37的倍数. (“希望杯”邀请赛试题)12.观察下面各式的规律:222222222222(121)1(12)2;(231)2(23)3;(341)3(34)4;⨯+=+⨯+⨯+=+⨯+⨯+=+⨯+ 写出第2003行和第n 行的式子,并证明你的结论.B 级1.()na b +展开式中的系数,当n =1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出901.1的值为 . (《学习报》公开赛试题)2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,,a b c ,则222a b c ab bc ac ++---的值为 .(天津市竞赛试题)3.已知,,x y z 满足等式25,9,x y z xy y +==+-则234x y z ++= .4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为 .(全国初中数学联赛试题)5.已知19992000,19992001,19992002a x b x c x =+=+=+,则多项式222a b c ab bc ac ++---的值为( ) A .0B .1C .2D .36.把2009表示成两个整数的平方差的形式,则不同的表示法有( )A .16种B .14种C .12种D .10种(北京市竞赛试题)7.若正整数,x y 满足2264x y -=,则这样的正整数对(,)x y 的个数是( )A .1B .2C .3D .4(山东省竞赛试题)8.已知3a b -=,则339a b ab --的值是( )A .3B .9C .27D .81(“希望杯”邀请赛试题)9.满足等式221954m n +=的整数对(,)m n 是否存在?若存在,求出(,)m n 的值;若不存在,说明理由.第2题图11 2 1 1 3 311 4 6 4 1 1510 10 5 1… … … … … … …。
乘法公式复习(附答案)

华夏教育 初二数学乘法公式一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2数形结合的数学思想认识乘法公式:假设a 、b 都是正数,那么可以用以下图形所示意的面积来认识乘法公式。
如图1,两个矩形的面积之和(即阴影部分的面积)为(a+b)(a-b),通过左右两图的对照,即可得到平方差公式(a+b)(a-b)=a 2-b 2;图2中的两个图阴影部分面积分别为(a+b)2与(a-b)2,通过面积的计算方法,即可得到两个完全平方公式:(a+b)2=a 2+2ab+b 2与(a-b)2=a 2-2ab+b 2。
二、乘法公式的用法(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础。
注意掌握公式的特征,认清公式中的“两数”.例1 计算:()()53532222x y x y +- 解:原式()()=-=-53259222244x y x y例2 计算(-2x 2-5)(2x 2-5)分析:本题两个因式中“-5”相同,“2x 2”符号相反,因而“-5”是公式(a +b )(a -b )=a 2-b 2中的a ,而“2x 2”则是公式中的b .解:原式=(-5-2x 2)(-5+2x 2)=(-5)2-(2x 2)2=25-4x 4.例3 计算(-a 2+4b )2分析:运用公式(a +b )2=a 2+2ab +b 2时,“-a 2”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为(4b -a 2)2时,则“4b ”是公式中的a ,而“a 2”就是公式中的b .(解略)(二)、连用:连续使用同一公式或连用两个以上公式解题。
例1 计算:()()()()111124-+++a a a a 解:原式()()()=-++111224a a a ()()=-+=-111448a a a例2 计算(2+1)(22+1)(24+1)(28+1).分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简.解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。
初中竞赛数学18.乘法公式(含答案)

18.乘法公式知识纵横乘法公式(multiplication formula)是在多项式乘法的基础上,•将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、•又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应该做到以下几点:1.熟悉每个公式的结构特征,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题求解【例1】•(•1)•已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.(江苏省竞赛题)(2)已知(2000-a)·(1998-a)=1999,那么,(2000-a)2+(1998-a)2=________.(2000年重庆市竞赛题)思路点拨 (1)建立两个连续奇数的方程组;(2)视(2000-a)·(1998-a)为整体,•由平方和想到完全平方公式(formula for the square the sum)及其变形.解:(1)设两个连续奇数为x,y,且x>y,则2220002x yx y⎧-=±⎨-=⎩得x+y=1000或x+y=-1000,解得(x,y)=(499,501)或(-501,-499).(2)4002 提示:(2000-a)2+(1998-a)2=[(2000-a)-(1998-a)]2+2(2000-a)·(1998-a)【例2】若x是不为0的有理数,已知M=(x2+2x+1)(x2-2x+1),N=(x2+x+1)(x2-x+1),则M与N 的大小关系是( ). (“祖冲之”杯邀请赛试题)A.M>NB.M<NC.M=ND.无法确定思路点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.解:选B【例3】计算:(1)6(7+1)(72+1)(74+1)(78+1)+1; (天津市竞赛题)(2)1.345×0.345×2.69-1.3453-1.345×0.3452. (江苏省竞赛试题)思路点拨 若按部就班计算,显然较繁,能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特征,对于(2),由于数字之间有联系,•可用字母表示数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特征.解:(1)原式=(7-1)(7+1)(72+1)(74+1)(78+1)+1=716(2)设1.345=x,则原式=x(x-1)·2x-x 3-x(x-1)2=-x=-1.345【例4】(1)已知x 、y 满足x 2+y 2+54=2x+y,求代数式xy x y+的值. (“希望杯”邀请赛试题) (2)整数x,y 满足不等式x 2+y 2+1≤2x+2y,求x+y 的值. (第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b;乙商场:两次提价的百分率都是 2a b + (a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. (2003年河北省竞赛题)思路点拨 对于(1)、(2)两个未知数一个等式或不等式,•须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表示,作差比较它们的大小.解:(1)提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13(2)原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•所以可能有的结果是1010x y -=⎧⎨-=⎩或1110x y -=±⎧⎨-=⎩或1011x y -=⎧⎨-=±⎩,解得11x y =⎧⎨=⎩或21x y =⎧⎨=⎩ 或 12x y =⎧⎨=⎩或10x y =⎧⎨=⎩,x+y=1或2或3 (3)甲、乙、丙三个商场两次提价后,价格分别为(1+a)(1+b)=1+a+b+ab; (1+2a b +)·(1+2a b +)=1+(a+b)+( 2a b +)2; (1+b)(1+a)=1+a+b+ab; 因(2a b +)2-ab>0,所以(2a b +)2>ab, 故乙商场两次提价后,价格最高.【例5】已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数. 证明:(1)b 与c 两数必为一奇一偶; (2)2(a+b+1)是完全平方数.思路点拨 从a 2+b 2=c 2的变形入手;a 2=c 2-b 2,运用质数、奇偶数性质证明.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a 应为奇质数,c+b 与c-b 同奇同偶,b 与c 必为一奇一偶.(2)c+b=a 2,c-b=1,两式相减,得2b=a 2-1,于是2(a+b+1)=2a+2b+2=2a+a 2-1+2=(a+1)2,为一完全平方数.学力训练一、 基础夯实1.观察下列各式:(x-1)(x+1)=x 2-1;(x -1)(x 2+x+1)=x 3-1;(x -1)(x 3+x 2+x+1)=x 4-1.根据前面的规律可得 (x -1)(x n +x n-1+…+x+1)=_______.(2001年武汉市中考题)2.已知a 2+b 2+4a -2b+5=0,则a b a b+-=_____. (2001年杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655=_______;(2)19492-19502+19512-19522+……+19972-19982+19992=_________;(3) 2221999199819991997199919992+-=___________. 4.如图是用四张全等的矩形纸片拼成的图形,•请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的恒等式________.(2003年太原市中考题) 5.已知a+1a =5,则=4221a a a++=_____. (2003年菏泽市中考题)6.已知a-b=3,b+c=-5,则代数式ac-bc+a 2-ab 的值为( ).A.-15B.-2C.-6D.6 (2003年扬州市中考题)7.乘积(1-212)(1-213)……(1-211999)(1-212000)等于( ). A. 19992000 B. 20012000 C. 19994000 D. 20014000(2002年重庆市竞赛题)8.若x -y=2,x 2+y 2=4,则x 2002+y 2002的值是( ).A.4B.2002C.2D.49.若x 2-13x+1=0,则x 4+41x的个位数字是( ). A.1 B.3 C.5 D.710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是().A.a 2-b 2=(a+b)(a -b)B.(a+b)2=a 2+2ab+b 2C.(a -b)2=a 2-2ab+bD.(a+2b)(a -b)=a 2+ab -2b 2 (2002年陕西省中考题)11.(1)设x+2z=3y,试判断x 2-9y 2+4z 2+4xz 的值是不是定值?如果是定值,•求出它的值;否则请说明理由.(2)已知x 2-2x=2,将下式先化简,再求值:(x -1)2+(x+3)(x-3)+(x-3)(x-1).(2003年上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观察:1·2·3·4+1=522·3·4·5+1=1123·4·5·6+1=192……(1)请写了一个具有普遍性的结论,并给出证明;(2)根据(1),计算2000·2001·2002·2003+1的结果(用一个最简式子表示).(2001年黄冈市竞赛题)二、能力拓展14.你能很快算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,•任意一个个位数为5的自然数可写在10n+5(n为自然数),即求(10n+5)2的值,试分析n=1,n=2,n=3,……这些简单情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152=225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100×3×(3+1)+25;452=2025可写成100×4×(4+1)+•25;•……752=•5625•可成写__________;852=7225可写成__________.(2)从第(1)题的结果,归纳,猜想得(10n+5)2=________.(3)根据上面的归纳猜想,请算出19952=________. (福建省三明市中考题)15.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z=________.(2001天津市选拨赛试题)16.(1)若x+y=10,x3+y3=100,则x2+y2=________. (2)若a-b=3,则a3-b3-9ab=________.17.1,2,3,•……,•98•共98•个自然数中,•能够表示成两整数的平方差的个数是________.(全国初中数学联赛试题)18.已知a-b=4,ab+c2+4=0,则a+b=( ).A.4B.0C.2D.-219.方程x2-y2=1991,共有( )组整数解.A.6B.7C.8D.920.已知a、b满足等式x=a2+b2+20,y=4(2b-a),则x、y的大小关系是( ).A.x≤yB.x≥yC.x<yD.x>y (2003年太原市竞赛题)21.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2-•ab-•bc-c a的值为( ).A.0B.1C.2D.3 (2002年全国初中数学竞赛题)22.设a+b=1,a2+b2=2,求a7+b7的值. (西安市竞赛题)23.已知a满足等式a2-a-1=0,求代数式a8+7a-4的值. (2003年河北省竞赛题)24.若x+y=a+b,且x2+y2=a2+b2,求证:x1997+y1997=a1997+b1997. (北京市竞赛题)三、综合创新25.有10位乒乓球选手进行单循环赛(每两人间均赛一场),用x1,y1•顺次表示第一号选手胜与负的场数;用x2,y2顺次表示第二号选手胜与负的场数,……;用x10,y10•顺次表示十号选手胜与负的场数.求证:x12+x22+……+x102=y12+y22+……+y102.26.(1)请观察:25=521225=352112225=335211122225=33352……写出表示一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选另外两个类似26、53的数,使它们能表示成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?答案1.x n+1-12.-133.(1)4;(2)3897326;(3)124.(a+b)2-4ab=(a-b)25.246.C7.D 提示;逆用平方差公式,分解相约8.C 提示:由已知条件得xy=09.D 提示:x≠0,由条件得x+1x=13,x4+41x=(x2+21x)2-2=[(x+1x)2-2]2-2 10.A11.(1)定值为0 提示:由条件得x-3y=-2z,原式=(x-3y)·(x+3y)+4z2+4xz=-2z·(x+3y)+4z2+4xz=4z2+2xz-6yz=4z2+2z(x-3y)=0(2)原式=3x2-6x-5=3(x2-2x)-5=1.12.提示:设这个自然数为x,由题意得224544x m x n ⎧-=⎪⎨+=⎪⎩②-①得n2-m2=89 即(n+m)(n-m)=89×1从而891n mn m+=⎧⎨-=⎩,解得4544nm=⎧⎨=⎩(m,n都为自然数) 故 x=45-44=1981.13.(1)对于自然数n,有n(n+1)(n+2)(n+3)+1=(n2+3n+1)2,证明略.(2)由(1)得原式=(20002+3×2000+1)2=4006001214.(1)100×7×(7+1)+25;100×8×(8+1)+25.(2)(10n+5)2=10n(n+1)+25(3)19952=(10×199+5)2=10×199×(199+1)+25=398002515.216.(1)40 提示:x3+y3=(x+y)(x2-xy+y2)=(x+y)[(x+y)2-3xy];(2)27.17.73 提示:x=n2-m2=(n+m)(n-m)(1≤m<n≤98,m,n为整数),因n+m与n-m•的奇偶性相同,故x是奇数或是4的倍数.18.B提示:把a=b+4代入ab+c2+4=0得(b+2)2+c2=019.C 提示:(x+y)(x-y)=1×1991=11×181=(-1)×(-1991)=(-11)×(-181)20.B提示:x-y=(a+2)2+(b-4)2≥021.D 提示:原式=12[(a-b)2+(b-c)2+(a-c)2]22. 718 提示:由a+b=1,a 2+b 2=2,得ab=-12, 利用a n+1+b n+1=(a n +b n )(a+b)-ab(a n-1+b n-1)•可分别求得 a 3+b 3=52,a 4+b 4=72,a 5+b 5=194 ,a 6+b 6=264. 23.48 提示:由a 2-a-1=0,得a -a -1=1,进而a 2+a -2=3,a 4+a -4=7, 所以a 8+7a -4=a 4(a 4+a -4)+7a -4-•1=7a -4+7a -4-1=7(a 4+a -4)-1=48.24.提示:设2222x y a b x y a b+=+⎧⎨+=+⎩, 则由①2-②得2xy=2ab ③ ②-③,得(x-y )2=(a -b)2,即│x-y │=│a-b │则x-y=a-b 或x-y=b-a,分别与x+y=a+b 联立解得x a y b =⎧⎨=⎩或x b y a =⎧⎨=⎩25.提示:由题意知:x i +y i =9(i=1,2,…,10)且x 1+x 2+…+x 10=y 1+y 2+…+y 10 因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=026.(1)提示:经观察,发现规律: (1)111n - 个 2225n 个=((1)3335n - 个)2 ,实际上, ((1)3335n - 个)2=(3332n + 个)2=(13×9992n + 个)2 =[13(10n -1)+2]2=(1053n +)2=2109n +1109n ++259 =21019n -+11019n +-+2529+= 2111n 个+ (1)111n + 个+3 = (1)111n - 个 2225n 个(2)一般地,设m=a 2+b 2,n=c 2+d 2,则mn=(a 2+b 2)(c 2+d 2)=a 2c 2+b 2d 2+b 2c 2+a 2d 2=a2c2+b2d2+2abcd+b2c2-•2abcd+a2d2=(ac+bd)2+(bc-ad)2或(a c-bd)2+(bc+ad)2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五讲乘法公式
一、内容提要
1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
完全平方公式:(a±b)2=a2±2ab+b2,
平方差公式:(a+b)(a-b)=a2-b2
立方和(差)公式:(a±b)(a2 ab+b2)=a3±b3
3.公式的推广:
①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd
即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:(a±b)3=a3±3a2b+3ab2±b3
(a±b)4=a4±4a3b+6a2b2±4ab3+b4)
(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)
…………
注意观察右边展开式的项数、指数、系数、符号的规律
③由平方差、立方和(差)公式引伸的公式
(a+b)(a3-a2b+ab2-b3)=a4-b4
(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5
(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6
…………
注意观察左边第二个因式的项数、指数、系数、符号的规律
在正整数指数的条件下,可归纳如下:设n为正整数
(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n
(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1
类似地:
(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n
4.公式的变形及其逆运算
由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab
由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b) 由公式的推广③可知:当n为正整数时
a n-
b n能被a-b整除,
a2n+1+b2n+1能被a+b整除,
a2n-b2n能被a+b及a-b整除。
二、例题
例1. 已知x+y=a xy=b
求①x2+y2②x3+y3③x4+y4④x5+y5
解:①x2+y2=(x+y)2-2xy=a2-2b
②x3+y3=(x+y)3-3xy(x+y)=a3-3ab
③x4+y4=(x+y)4-4xy(x2+y2)-6x2y2=a4-4a2b+2b2
④x5+y5=(x+y)(x4-x3y+x2y2-xy3+y4)
=(x+y)[x4+y4-xy(x2+y2)+x2y2]
=a[a4-4a2b+2b2-b(a2-2b)+b2]
=a5-5a3b+5ab2
例2.求证:四个连续整数的积加上1的和,一定是整数的平方。
证明:设这四个数分别为a, a+1, a+2, a+3(a为整数)
a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)+1=(a2+3a)(a2+3a+2)+1
=(a2+3a)2+2(a2+3a)+1=(a2+3a+1)2
∵a是整数,整数的和、差、积、商也是整数
∴a2+3a+1是整数证毕
例3.求证:2222+3111能被7整除
证明:2222+3111=(22)111+3111=4111+3111
根据a2n+1+b2n+1能被a+b整除,(见内容提要4)
∴4111+3111能被4+3整除
∴2222+3111能被7整除
例 4. 由完全平方公式推导“个位数字为5的两位数的平方数”的计算规律 解:∵(10a +5)2=100a 2+2×10a ×5+25=100a (a +1)+25
∴“个位数字为5的两位数的平方数”的特点是:幂的末两位数字是底数个位数字5的平方,幂的百位以上的数字是底数十位上数字乘以比它大1的数的积。
如:152=225 幂的百位上的数字(2=1×2), 252=625 (6=2×3),
352=1225 (12=3×4) 452=2025 (20=4×5)
……
练习十五
1. 填空:
①a 2+b 2=(a +b )2-_____ ②(a +b )2=(a -b )2+___
③a 3+b 3=(a +b )3-3ab (___) ④a 4+b 4=(a 2+b 2)2-____
,⑤a 5+b 5=(a +b )(a 4+b 4)-_____ ⑥a 5+b 5=(a 2+b 2)(a 3+b 3)-____
2. 填空:
①(x +y )(___________)=x 4-y 4 ②(x -y )(__________)=x 4-y 4
③(x +y )( ___________)=x 5+y 5 ④(x -y )(__________)=x 5-y 5
3.计算:
①552= ②652= ③752= ④852= ⑤952=
4. 计算下列各题 ,你发现什么规律
⑥11×19= ⑦22×28= ⑧34×36= ⑨43×47= ⑩76×74=
5.已知x +
x 1=3, 求①x 2+21x ②x 3+31x ③x 4+41x
的值
6、 化简:
①(a+b)2(a-b)2
②(a+b)(a2-ab+b2)
③(a-b)(a+b)3-2ab(a2-b2)
④(a+b+c)(a+b-c)(a-b+c)(-a+b+c)
7.已知a+b=1,求证:a3+b3+3ab=1
8.已知a2=a+1,求代数式a5-5a+2的值
9.求证:233+1能被9整除
10.求证:两个连续整数的积加上其中较大的一个数的和等于较大的数的平方
11.如图三个小圆圆心都在大圆的直径上,它们的直径分别是a,b,c
①求证:三个小圆周长的和等于大圆的周长
②求:大圆面积减去三个小圆面积和的差。
练习十五答案
:
1、①2ab ②4ab ③a b + ④222a b ⑤33()ab a b + ⑥22
()a b a b +
2、①3223x x y xy y -+- ②3223x x y xy y +++
③432234x x y x y xy y -+-+ ④432234x x y x y xy y ++++
3、①3025 ②4225 ③5625 ④7225 ⑤9025
4. ①209 ②616 ③1224 ④2021 ⑤5624
十位上的数字相同,个位数的和为10的两个两位数相乘,其积的末两位数是两个个位数字的积,积的百位以上的数是原十位上数字乘上比它大1的数的积
5、①7 ②18 ③47
6、①42242a a b b -+ ②33a b +
③44a b - ④444222222222a b c a b b c a c ---+++
7、证明:∵ 3323()[()3]3a b ab a b a b ab ab ++=++-+,a +b =1
∴33231(13)31a b ab ab ab ++=⨯-+=
8、解:由a 2=a +1,得:
5225252(1)(1)52a a a a a a a a a a -+=⋅⋅-+=++-+
2(21)52a a a a =++-+ (121)52(32)52a a a a a a a =+++-+=+-+
23323(1)325a a a a =-+=+-+=
9、证明:33111121121(21)[(21)321]+=++-⨯⨯
2
2049(204932048)=⨯-⨯
220492049204932048=⨯-⨯⨯ ∵2
20492049⨯能被9整除,204932048⨯⨯也能被9整除
∴220492049204932048⨯-⨯⨯能被9整除 即233+1能被9整除
10、n (n +1)+(n +1)=(n +1)2
11、①可证明3个小圆周长的和减去大圆周长,其差等于0 ②
2
(ab +ac +bc )。