机械设计基础自由度的计算
机械设计基础自由度的计算

机械设计基础自由度的计算在机械设计的领域中,自由度的计算是一项至关重要的基础工作。
它就像是解开机械运动谜题的关键钥匙,能够帮助我们准确理解和预测机械部件的运动可能性与限制。
首先,让我们来搞清楚什么是自由度。
简单来说,自由度就是一个物体在空间中能够自由运动的独立方式的数量。
比如,一个在平面上自由运动的点,它可以沿着 x 轴和 y 轴方向移动,所以它有两个自由度。
而一个在三维空间中自由运动的点,则有三个自由度,分别是沿着 x、y、z 轴的移动。
那么在机械系统中,自由度又是如何计算的呢?这就需要引入一些基本的概念和公式。
我们通常使用的自由度计算公式是:F = 3n 2PL PH 。
这里的 F 代表自由度,n 表示活动构件的数量,PL 表示低副的数量,PH 表示高副的数量。
低副是指两个构件之间通过面接触形成的运动副,比如转动副和移动副。
转动副限制了两个构件之间沿轴线方向的移动和绕其他轴的转动,只允许绕着轴线的相对转动,所以每个转动副提供一个约束,减少两个自由度。
移动副则限制了两个构件之间绕轴线的转动和沿其他方向的移动,只允许沿一个方向的相对移动,同样提供一个约束,减少两个自由度。
高副是指两个构件之间通过点或线接触形成的运动副,比如齿轮副和凸轮副。
高副提供一个约束,减少一个自由度。
为了更好地理解自由度的计算,让我们来看几个具体的例子。
假设我们有一个简单的平面机构,由两个杆件通过一个转动副连接在一起,并且其中一个杆件的一端固定在平面上。
在这个例子中,活动构件的数量 n 为 1(因为有一个杆件可以活动),低副的数量 PL 为1(转动副),高副的数量 PH 为 0。
将这些值代入公式 F = 3n 2PLPH ,可得自由度 F = 3×1 2×1 0 = 1。
这意味着这个机构只有一个自由度,也就是绕着转动副的转动。
再来看一个稍微复杂一点的例子,一个平面四杆机构。
它由四个杆件通过四个转动副连接而成。
机械设计基础-计算题

如图所示的行星 轮机构,为了受 力均衡,采用了 两个对称布置的 行星轮2及2’,
例题1 计算机构的自由度 复合铰链有几处? 1处
5
4 3
② ④
①
局部自由度有几处? 虚约束有几处? 2处
机构由几个构件组成 5个 活动构件有 4个
2③
低副有
4个
高副有
2个
1
F = 3n–2PL–PH
= 3× 4 – 2×4 – 2 =2
机车驱动轮
A
M
B
N
O1
O3
若计入虚约束,则机构
自由度数就会:减少
(4)构件中对传递运动不起独立作用的对称部分的 约束称为虚约束。
虚约束对运动虽不起作用但
可以增加构件的刚性或使构件受 力均衡,因此在实际机械中并不 少见。但虚约束要求制造精度较 高,若误差太大,不能满足某些 特殊几何要求会变成真约束.
① 1m法
式中,m表示外啮合次数
i15
1 5
(1)3
z2 z3z4 z5 z1z2 z3 z4
z3z4 z5 z1z3 z4
“-”表示首、末两轮转向相反
②画箭头法
具体步骤如下:在图上 用箭头依传动顺序逐一标出 各轮转向,若首、末两轮方 向相反,则在传动比计算结 果中加上“-”号。
2.轮系中所有各齿轮的几何轴线不是都平行, 但首、末两轮的轴线互相平行
用标注箭头法确定
i14
1 4
z2 z3 z4 z1z2 z3
3. 轮系中首、末两轮几何轴线不平行 ②
如下图所示为一空
n8
间定轴轮系,当各轮齿数
及首轮的转向已知时,可
求出其传动比大小和标出
各轮的转向,即:
机械设计基础:自由度计算需要注意的几个问题

3
2
n=2
2
PL=2
1
1
PH=1
F=3n-2PL-PH=6-4-1=1
自由度计算注意事项
复合铰链 局部自由度 虚 约 束
已知:AB=CD=EF,计算图示平行四边形机构的自由度
B 2E
1
4
A
F
C n=4 3 PL=6
PH=0
D
F=3n-2PL-PH=12-12-0=0
自由度计算注意事项
复合铰链 局部自由度 虚 约 束
虚约束
对机构的运动实际不起作用的约束
处理办法
计算自由度时应去掉虚约束
自由度计算注意事项
复合铰链 局部自由度 虚 约 束
已知:AB=CD=EF,计算图示平行四边形机构的自由度
B 2E
1
4
A
F
C
∵ FE=AB =CD 3 故增加构件4前后E点的轨迹都是圆弧。
D 增加的约束不起作用,应去掉构件4。
自由度计算注意事项
Thank You
成都航空职业技术学院机械基础教研室
自由度计算注意事项
复合铰链
2个转动副
计算如图惯性筛机构的自由度
2
C
4 3
E 5
B1
D
A
F=3n-2PL-PH=3x5-2x7-0=1
自由度计算注意事项Fra bibliotek复合铰链
计算图示锯床进给机构的自由度
B
E
A
C D
n=7 PL=10 PH=0
F
F=3n-2PL-PH=21-20=1
自由度计算注意事项
复合铰链 局部自由度
复合铰链 局部自由度 虚 约 束
机械设计基础 自由度课件

2.3 平面机构的自由度(重点)
移动副:限制了构件一个移动和绕平面的轴转动, 保留了沿移动副方向的相对移动,所以平面运动的 一个移动副也引入两个约束,保留一个自由度。
2.3 平面机构的自由度(重点)
一个平面高副引入一个约束,保留两个自由度。
动画
2.3 平面机构的自由度(重点)
综上所述,平面机构中,
B
4
2 D 1
AD=BD=DC C3
1.机构中联结构件与被联结构件在联 接处的轨迹重合 2.两构件组成若干个导路中心线 互相平行或重叠的移动副 1 A
A
B
2
3 C 4
F 3 3 2 4 1
2.3 平面机构的自由度(重点)
常见的虚约束: 3.两构件组成若干个轴线互相重合的转动副。 B 2 C 2' 2 1 C B 5 A D 3 A 1 D E
F 3n 2 PL PH 3 4 2 5 1 0 2
F=2
B 1
2
5
3
D
4
A
E
n=4 pL=5 pH=0
2.3 平面机构的自由度(重点)
二、机构具有确定相对运动的条件
结论: 1.机构可能运动的条件是: 1 2 C B 2 机构自由度数 F1。 3 3 A 1 2.机构具有确定运动的条 4 n=2, P5=3,F=0 D 件是: 输入的独立运动数目 n=3, P5=4, P4=1, F=0 等于机构自由度数 F。 即主动件数等于机构 自由度数F 。 1 A B 2 C 3 D 4
2
B
1 A B
D
E
G
复合铰链 6 7 A O
F
C H
E
局部自由度
《机械设计基础》课件 第1章 平面机构的自由度和速度分析

13
§1-2 平面机构运动简图
机构示意图 —— 不按比例绘制
三、机构运动简图的作用
是机构分析和设计的工具
四、机构中构件的分类
分为三类:
1)固定构件(机架):用来支承活动构件的构件。在研究机构
中活动构件的运动时,常以固定构件作为参考坐标系;
2)原动件(主动件):运动规律已知(外界输入)的构件;
61
3. 直动从动件凸轮机构
求构件2的速度?
62
课后作业:
5、7、9、11、13、15
63
1
1
1
2)移动副
17
§1-2 平面机构运动简图
3)高副:应画出接触处的曲线轮廓
18
§1-2 平面机构运动简图
六、机构运动简图中构件的表示方法
轴、杆
机架
永久连接
固定连接,如轴和齿轮
19
§1-2 平面机构运动简图
参与组成两转动副的构件
一个转动副+一个移动副的构件
参与组成三个转动副的构件
20
§1-2 平面机构运动简图
4
3
2
2
1
4
32
§1-3 平面机构的自由度★
平面机构自由度:
所有活动构件相对于机架所能具有的独立运动数目之和。
作用:
讨论机构具有确定运动的条件。
C
C
D
B
A
B
D
A
E
F
33
§1-3 平面机构的自由度★
一、平面机构自由度计算公式
1. 每个低副引入两个约束,使构件失去两个自由度
34
2. 每个高副引入一个约束,使构件失去一个自由度
机械设计基础课件 第三章 平面机构自由度的计算

1个约束,2个自由度
5.自由度:构件的独立运动(参数) 平面运动 X,Y,α 约束:对独立运动所加的限制
实长(m) μl= 图长(mm)
机构:
(1)机架:某一构件相对固定(只有一个) (2)原动件:机构中按给定的运动规律独立运动的构件 (3)从动件:确定运动
机构的运动简图:机构用一些简单的线条和规定的符号表达,该图形具有确定的比例
第三章 平面机构的自由度计算
1.机械中每一种独立的运动单元体称为一个构件
2.凡使两个构件直接接触而又能有一定的相对运动的连接称为运动副
3.构成运动副时,两个构件上参与接触的部分(点,线或者面)称为运动副的元素
4.低副:两构件组成面接触的运动副(回转副和移动副)
2个约束,1个自由度
高副:两构件组成点或线接触的运动副
第一章 绪论
机械:机器和机构 机器:(1)构件的组合体
(2)各构件之间有确定的相对运动 (3)用来变换或传递能量,物料与信息,以减轻人做的有用功 机构:具有机器的前两个特点,传递运动和力的装置
构件和零件 构件:运动的最小单元 零件:加工的最小单元
机器是由若干机构组成 机构是由若干构件组成 机构由一个或若干个零件组成
F≤0 机构不能动 F﹥0 机构可以动
F﹥原动件数,运动不确定 F=原动件数,运动确定 F﹤原动件数,不能动
三角形构件的三个自由度均不受限制
轮系 第九章 轮系 行星轮系
只会遇见这种小滚子的局部自由度 焊死处理
虚约束特别容易被漏掉
第二条后面有一个例题 这个比较不容易被看出来
无非就是判断机构能不能动,原动件数目几个,是否合适, 拿到题之后,第一步先看,有没有复合铰链,局部自由度,虚约束
复 复
机械设计基础复习总结

自由度计算小结自由度计算公式:F =3n -2Pl -Ph机构自由度=3×活动构件数-(2×低副数+1×高副数)计算步骤:(1)确定活动构件数目(2)确定运动副种类和数目(3)确定特殊结构: 局部自由度、虚约束、复合铰链(4)计算、验证自由度例 计算图所示机构的自由度 (若存在局部自由度、复合铰链、虚约束请标出)。
键联接和花键联接● 键联接的主要类型有:平键联接、半圆键联接、楔键联接和切向键联接等。
1、平键联接键工作原理:两侧面是工作面,靠两侧面挤压传递转矩。
成对使用:承载能力不够时采用, 按 180°布置两个键。
一对平键按1.5 个键计算。
2、半圆键联接工作原理: 两侧面是工作面,侧面挤压传递转矩。
3、楔键联接工作原理: 上下表面为工作面,靠摩擦力传递转矩。
4、切向键联接工作原理:键的窄面是工作面,靠工作面上的挤压力和轴与轮毂间的摩擦力来传递转矩。
一个切向键只能传递单向力矩,双向力矩时,需要采用两个切向键,两键的夹角为︒︒130~120。
● 花键联接是有外花键和内花键组成。
花键联接可用于静联接或动联接。
按齿形不同可以分为矩形花键和渐开线花键两类,两种花键均已标准化。
矩形花键定心方式为小径定心,特点是定心精度高,定心稳定性好。
渐开线花键定心方式为齿形定心,具有自动定心作用,有利于各齿间的均匀承载。
螺纹联接1、螺栓联接按其受力状况不同,分为普通螺栓联接和铰制孔用螺栓联接。
2、普通螺栓,其主要失效形式为螺栓杆和螺纹部分发生断裂(受拉);铰制孔用螺栓联接,其主要失效形式为螺栓杆和孔壁见压溃或螺栓杆被剪断(受剪)。
3、防松的根本问题是防止螺旋副的相对转动。
(1)摩擦防松 对顶螺母、弹簧垫圈、自锁螺母(2)机械防松 槽型螺母和开口销、圆螺母和带翘垫圈、止动垫圈、串联钢丝4、螺纹联接的预紧目的:在于增强联接的可靠性和紧密性,以防止受载后被连接件间出现缝隙或发生相对滑移。
机械设计基础平面自由度计算

机械设计基础平面自由度计算在机械设计的基础中,平面自由度的计算是非常重要的一部分。
它不仅涉及到机械零件的设计,也影响到机械系统的整体性能。
因此,正确理解和计算平面自由度对于机械设计师来说是至关重要的。
一、平面自由度的定义在机械系统中,平面自由度是指物体在二维空间中可以独立移动的自由度数。
这些自由度包括沿x轴、y轴的移动以及绕z轴的旋转。
在机械设计中,我们通常考虑的是刚体在平面内的自由度,因为大多数机械系统中的运动都可以简化为平面运动。
二、平面自由度的计算在计算平面自由度时,我们需要考虑刚体上所有点的运动情况。
对于每一个点,我们都可以确定其在平面内的位置。
如果一个刚体上有n 个点,那么我们就可以确定n个位置。
这些位置的独立性就决定了刚体的自由度数。
例如,一个简单的机器臂,它由两个关节和两个长度相等的连杆组成。
如果我们只考虑它的平面运动,那么它的自由度就可以通过以下方式计算:1、第一个关节有2个移动自由度和1个旋转自由度(因为它在平面上),总共3个自由度。
2、第二个关节同样有2个移动自由度和1个旋转自由度,总共3个自由度。
3、连杆没有额外的自由度,因为它们只是在平面上运动。
所以,整个机器臂的总自由度是6个。
三、影响平面自由度的因素在机械设计中,影响平面自由度的因素有很多。
其中最重要的因素是机构的约束和机构的运动副。
约束可以限制物体的某些运动,从而影响其自由度。
而运动副则可以提供额外的自由度,例如滑动副可以提供2个移动自由度,转动副可以提供1个旋转自由度。
四、结论在机械设计中,正确计算平面自由度对于优化机械系统的性能至关重要。
通过理解平面自由度的概念和计算方法,以及考虑影响平面自由度的因素,我们可以更好地设计和控制机械系统的运动。
这也为我们提供了更准确的设计工具,使我们能够根据实际需要来调整和优化机械系统的性能。
在机械设计中,自由度的计算是非常重要的一部分。
它不仅可以帮助我们理解和分析机械系统的运动特性,而且还可以帮助我们优化设计,预测可能存在的问题,以及提高机械系统的效率和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
相关知识讲解
(90min)
出示滚子从动
件凸轮机构模
型n: 活动构件个数P L:低副数P H:高副数
2、注意问题
①复合铰链
两个以上的构件共用同一轴线所构成的转动副
K个构件形成复合铰链,形成k-1个转动副
②局部自由度
机构中不影响机构输入与输出运动关系的个别构件的独
立运动自由度
处理方法:解除局部自由度,再进行计算
③虚约束
定义:对运动不起独立限制作用的约束
常见虚约束:
a 轨迹重合的虚约束
当D为BC中点时,构件AD对BC的限制的虚约束
类型
理解
局部
自由
度
复合铰链
3
相关知识讲解(90min)
图片展示b如果两构件上两点之间的距离始终保持不变,将此两点用构件和运动副连接,则会带来虚约束
c如果两个构件组成多个移动方向一致的移动副或两个构件组成多个轴线重合的转动副时,只需考虑其中一处的约束,其余为虚约束
d 机构中对运动不起作用的对称部分
四、机构具有确定运动的条件
主动件数等于机构自由度数
虚约束1
虚约束2
5。