二次函数与一元二次方程教案 (2)

合集下载

人教版九年级数学上册22.2二次函数与一元二次方程(教案)

人教版九年级数学上册22.2二次函数与一元二次方程(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这两个知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
5.培养学生的合作意识和团队精神,通过小组讨论、合作完成抛物线与坐标轴围成图形面积等问题的探讨,增强学生之间的沟通与协作。
三、教学难点与重点
1.教学重点
(1)二次函数的定义及其图像性质:理解并掌握二次函数的基本形式,明确a、b、c的取值对二次函数图像的影响,特别是a的正负决定图像开口方向,顶点坐标的求法等。
举例:y=x²+2x+1与y=-2x²+3x+1的图像区别及顶点坐标的求解。
(2)一元二次方程的解法:熟练掌握因式分解法、配方法、求根公式法等解一元二次方程的方法,并能够根据方程特点选择合适解法。
举例:解方程x²-5x+6=0,通过因式分解法求解;解方程x²-4x+3=0,通过配方法求解。
(3)二次函数与一元二次方程的关系:理解二次函数图像与x轴交点坐标即为相应一元二次方程的解,并能应用于实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数与一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如抛掷物体时的轨迹)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数与一元二次方程的奥秘。

九年级数学下册《二次函数与一元二次方程的关系》教案、教学设计

九年级数学下册《二次函数与一元二次方程的关系》教案、教学设计
3.提高题:这部分作业主要针对学有余力的学生,设计一些具有一定难度的题目,帮助学生拓展思维,提高解题能力。
-例如:“已知二次函数y=ax^2+bx+c的图像开口向上,且顶点坐标为(-1,2),求该二次函数的解析式。”
4.小组合作探究题:这部分作业要求学生在小组内共同完成,培养学生的合作精神和探究能力。
(三)学生小组讨论
在讲授新知之后,我会组织学生进行小组讨论。我将设计一些具有探究性的问题,如:“二次函数的开口方向和顶点坐标是如何影响一元二次方程的解的?”、“在实际问题中,如何运用二次函数的性质求解一元二次方程?”等。学生通过小组合作,共同探讨这些问题,培养他们的合作精神和探究能力。
(四)课堂练习
-教师设计具有现实背景的实际问题,引导学生运用二次函数知识进行分析和解决。
-学生在解决问题的过程中,掌握数学建模、问题求解等数学方法。
3.通过对二次函数图像的观察与分析,培养学生的观察能力、逻辑思维能力和空间想象能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生主动参与学习的积极性。
五、作业布置
为了巩固学生对二次函数与一元二次方程关系的理解,提高学生的应用能力和解决问题的策略,我设计了以下几类作业:
1.基础知识巩固题:这部分作业主要针对课堂所学的基本概念和性质进行设计,包括填空题、选择题和简答题,旨在帮助学生巩固二次函数与一元二次方程的基本知识。
-填空题:如“二次函数y=ax^2+bx+c(a≠0)的图像开口向上,当a<0时,图像开口______。”
2.掌握一元二次方程的求解方法,了解一元二次方程与二次函数之间的关系,并能运用二次函数解决实际问题。
-学生能够运用直接开平方法、配方法、求根公式等求解一元二次方程。

二次函数与一元二次方程--教学设计

二次函数与一元二次方程--教学设计

二次函数与一元二次方程--教学设计教学设计主题:二次函数与一元二次方程教学目标:1.理解二次函数的定义和性质;2.掌握一元二次方程的求解方法;3.能够将实际问题转化为二次函数或一元二次方程进行求解。

教学重点:1.二次函数的定义和性质;2.一元二次方程的求解。

教学难点:1.实际问题的建模;2.一元二次方程的求解。

教学准备:1.教师准备:教师课件、教学演示;2.学生准备:学生课本、笔记本。

教学过程:一、导入(5分钟)1.教师通过课件展示一张图,引导学生思考二次函数的图像特点;2.教师提问:你们在高中学过哪些与二次函数相关的知识?请举例说明。

二、概念讲解(20分钟)1.教师通过课件讲解二次函数的定义,并给出例题让学生进行分析和讨论;2.教师引导学生总结二次函数的性质,并进行讨论交流。

三、习题练习(15分钟)1.教师布置若干练习题,要求学生互相讨论解题方法和结果。

练习题可以涉及二次函数的图像、顶点坐标、对称轴等内容。

四、实际问题建模(15分钟)1.教师通过课件呈现一些实际问题,并提问学生如何将这些问题转化为二次函数或一元二次方程;2.学生进行小组讨论,寻找问题的解决方法和步骤。

五、一元二次方程的求解(20分钟)1.教师通过课件讲解一元二次方程的定义、一般形式和求解方法,引导学生理解方程解的含义;2.教师给出一些例题,引导学生进行求解过程,并解释每个步骤的含义和思路。

六、总结归纳(10分钟)1.教师带领学生总结二次函数与一元二次方程的相关知识点和求解方法;2.学生进行讨论和补充。

七、拓展与应用(15分钟)1.教师设计一些拓展题目,要求学生运用所学知识解决实际问题;2.学生进行小组讨论和解答,教师给予指导和点评。

八、课堂总结(5分钟)教师对本节课的重点内容进行总结,并提醒学生复习和预习下节课的内容。

教学反思:通过本节课的教学,学生可以对二次函数与一元二次方程的定义、性质和求解方法有更深入的理解。

通过实际问题的建模和解答,学生可以将所学知识应用到实际生活中,提高问题解决能力。

2023最新-二次函数与一元二次方程教案设计(优秀6篇)

2023最新-二次函数与一元二次方程教案设计(优秀6篇)

二次函数与一元二次方程教案设计(优秀6篇)在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。

这次帅气的小编为您整理了6篇二次函数与一元二次方程教案设计,希望能够给您提供一些帮助。

元二次方程的应用篇一一、素质教育目标(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题。

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识。

二、教学重点、难点1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题。

2.教学难点:找等量关系。

列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解。

例如线段的长度不为负值,人的个数不能为分数等。

三、教学步骤(一)明确目标。

(二)整体感知(三)重点、难点的学习和目标完成过程1.复习提问(1)列方程解应用题的步骤?(2)长方形的周长、面积?长方体的体积?2.例1 现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,据题意:(19-2x)(15-2x)=77.整理后,得x2-17x+52=0,解得x1=4,x2=13.∴ 当x=13时,15-2x=-11(不合题意,舍去。

)答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子。

练习1.章节前引例。

学生笔答、板书、评价。

练习2.教材P.42中4.学生笔答、板书、评价。

注意:全面积=各部分面积之和。

剩余面积=原面积-截取面积。

例2 要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程。

《22.2 二次函数与一元二次方程》教案、教学设计、导学案

《22.2 二次函数与一元二次方程》教案、教学设计、导学案

《22.2 二次函数与一元二次方程》教案【教学目标】1.通过探索,理解二次函数与一元二次方程之间的联系.2.能运用二次函数及其图象确定方程和不等式的解或解集.3.根据函数图象与x轴的交点情况确定未知字母的值或取值范围.【教学过程】一、情境导入如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?二、合作探究探究点一:二次函数与一元二次方程【类型一】二次函数图象与x轴交点情况判断下列函数的图象与x只有一个交点的是( )A.y=x2+2x-3 B.y=x2+2x+3C.y=x2-2x+3 D.y=x2-2x+1解析:选项A中b2-4ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac=(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D的函数图象与x轴只有一个交点,故选D.【类型二】利用二次函数图象与x轴交点坐标确定抛物线的对称轴如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x=2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x轴交点情况确定字母取值范围若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为( )A.0 B.0或2C.2或-2 D.0,2或-2解析:若m≠0,二次函数与x轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m=0,原函数是一次函数,图象与x轴也有一个交点.由(m+2)2-4m(12m+1)=0,解得m=2或-2,当m=0时原函数是一次函数,图象与x轴有一个交点,所以当m=0,2或-2时,图象与x轴只有一个交点.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x 轴没有交点.【类型四】利用抛物线与x轴交点坐标确定一元二次方程的解小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax +b=0的解是( )A.无解B.x=1C.x=-4D.x=-1或x=4解析:∵二次函数y=x2+ax+b的图象与x轴交于(-1,0)和(4,0),即当x=-1或4时,x2+ax+b=0,∴关于x的方程x2+ax+b=0的解为x1=-1,x=4,故选D.2方法总结:本题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1解析:观察图象,可知当-3<x<1时,抛物线在x轴上方,此时y>0,即ax2+bx+c>0,∴关于x的不等式ax2+bx+c>0的解集是-3<x<1.故选C.方法总结:抛物线y=ax2+bx+c在x轴上方部分的点的纵坐标都为正,所对应的x的所有值就是一元二次不等式ax2+bx+c>0的解集;在x轴下方部分的点的纵坐标均为负,所对应的x的所有值就是一元二次不等式ax2+bx+c<0的解集.【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x >3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.三、板书设计【教学反思】教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x轴的交点个数,讨论一元二次方程的根的情况.体会知识间的相互转化和相互联系.《22.2 二次函数与一元二次方程》教学设计【教学目标】知识与技能1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.【教学重点和难点】重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.【教学过程设计】(一)问题的提出与解决问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t—5t2考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2.所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值.解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2=3.当球飞行1s和3s时,它的高度为15m.(2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.当球飞行2s时,它的高度为20m.(3)解方程 20.5=20t-5t2. t2-4t+4.1=0因为(-4)2-4×4.1<0.所以方程无解.球的飞行高度达不到20.5m.(4)解方程 0=20t-5t2. t2-4t=0. t1=0,t2=4.当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出.4s时球落回地面播放课件:函数的图像,画出二次函数h=20t-5t2的图象,观察图象,体会以上问题的答案.从上面可以看出.二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?例如:已知二次函数y=-x2+4x的值为3.求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.(二)问题的讨论二次函数(1)y=x2+x-2;(2) y=x2-6x+9;(3) y=x2-x+0.的图象如图26.2-2所示.(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题.可播放课件:函数的图像,输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.可以看出:(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.总结:一般地,如果二次函数y=2ax bx c++的图像与x轴相交,那么交点的横坐标就是一元二次方程2ax bx c++=0的根.(三)归纳一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x,那么当x=x0时,函数的值是0,因此x=x就是方程ax2+bx+c=0的一个根.(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.(四)例题例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).解:作y=x2-2x-2的图象(图26.2-3),它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.(五)小结总结本节的知识点.(六)作业:(七)板书设计《22.2 二次函数与一元二次方程(第一课时)》教案【教学目标】:1.知识与技能:通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系.2.方法与过程:使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识.3.情感、态度与价值观:进一步培养学生综合解题能力,渗透数形结合思想.【教学重点】:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题是教学的重点.【教学难点】:进一步培养学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、引言在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义.本节课,请同学们共同研究,尝试解决以下几个问题二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+4 5 .(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?问题2:画出函数y=x2-x-3/4的图象,根据图象回答下列问题.(1)图象与x轴交点的坐标是什么;(2)当x取何值时,y=0?这里x的取值与方程x2-x-34=0有什么关系?(3)你能从中得到什么启发?对于问题(2),教师组织学生分组讨论、交流,各组选派代表发表意见,全班交流,达成共识:从“形”的方面看,函数y=x2-x-34的图象与x轴交点的横坐标,即为方程x2-x-34=0的解;从“数”的方面看,当二次函数y=x2-x-34的函数值为0时,相应的自变量的值即为方程x2-x-34=0的解.更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系.三、课堂练习: P23练习1、2.五、小结:1.通过本节课的学习,你有什么收获?有什么困惑?2.若二次函数y=ax2+bx+c的图象与x轴无交点,试说明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情况.六、作业:《22.2 二次函数与一元二次方程(第二课时)》教案【教学目标】:1.知识与能力:复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解.2.方法与过程:让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图象交点的方法求方程ax2=bx+c的解.3.情感、态度与价值观:提高学生综合解题能力,渗透数形结合思想.【教学重点】;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点.【教学难点】:提高学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、复习巩固1.如何运用函数y=ax2+bx+c的图象求方程ax2+bx+c的解?2.完成以下两道题:(1)画出函数y=x2+x-1的图象,求方程x2+x-1=0的解.(精确到0.1)(2)画出函数y=2x2-3x-2的图象,求方程2x2-3x-2=0的解.二、探索问题已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m).(1)求这两个函数的关系式;(2)当x取何值时,抛物线与直线相交,并求交点坐标.解:(1)因为点P(3,4m)在直线y2=mx+1上,所以有4m=3m+1,解得m =1所以y1=x+1,P(3,4). 因为点P(3,4)在抛物线y1=2x2-8x+k+8上,所以有4=18-24+k +8 解得 k =2 所以y 1=2x 2-8x +10(2)依题意,得⎩⎪⎨⎪⎧y =x +1y =2x 2-8x +10 解这个方程组,得⎩⎪⎨⎪⎧x 1=3y 1=4 ,⎩⎪⎨⎪⎧x 2=1.5y2=2.5所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5).五、小结: 如何用画函数图象的方法求方程的解?六、作业:《22.2二次函数与一元二次方程》导学案【学习目标】:1.探索二次函数与一元二次方程、一元二次不等式之间的关系.2.掌握一元二次方程(组)的图象解法.【重点、难点】1.重点:探索二次函数与一元二次方程、一元二次不等式之间的关系.2.难点:掌握一元二次方程(组)的图象解法.【导学过程】:阅读教材P16 — 19 , 完成课前预习【课前预习】1:准备知识(1) 一元二次方程根的情况:(2)一次函数与一元一次方程的关系:2:探究1以40米/秒的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线。

初中数学初三数学上册《二次函数与一元二次方程》教案、教学设计

初中数学初三数学上册《二次函数与一元二次方程》教案、教学设计
二、学情分析
在本章节的教学中,我们需要面对的是初三学生,他们在前两年的数学学习中,已经积累了一定的数学基础,掌握了函数、一元一次方程等基本知识。然而,二次函数与一元二次方程作为数学知识的一个难点,对学生而言,理解和运用上可能存在一定困难。
学生在学习过程中可能出现以下情况:对二次函数图像特征的理解不够深入,对一元二次方程求解方法的掌握不够熟练,以及在解决实际问题时不能灵活运用所学知识。因此,在教学过程中,我们要关注以下几点:
(3)鼓励学生进行合作学习,培养学生的团队协作能力和交流表达能力。
3.教学步骤:
(1)导入新课:通过生活中的实际问题,引出二次函数与一元二次方程的概念。
(2)探究新知:引导学生观察二次函数的图像,总结图像特征;教授一元二次方程的求解方法,并分析各种求解方法的适用条件。
(3)巩固练习:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。
(2)一元二次方程的求解方法有哪些?它们之间的优缺点是什么?
2.小组汇报
各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
(1)求解给定二次函数的顶点、开口方向和对称轴。
(2)利用一元二次方程求解实际问题的最优解。
2.教师巡回指导,解答学生在练习过程中遇到的问题。
3.鼓励学生分组讨论和合作学习,培养学生的团队协作能力和交流表达能力。
4.通过一元二次方程的求解过程,让学生体会数学的转化思想,培养学生解决问题的策略和方法。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生积极主动学习的态度。
2.引导学生体会数学在实际生活中的应用价值,增强学生的数学意识。
1.充分了解学生的知识储备,针对学生的薄弱环节进行有针对性的教学。

2023最新-二次函数与一元二次方程教案设计优秀6篇

2023最新-二次函数与一元二次方程教案设计优秀6篇

二次函数与一元二次方程教案设计优秀6篇1.使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。

读书破万卷下笔如有神,下面为您精心整理了6篇《二次函数与一元二次方程教案设计》,如果对您有一些参考与帮助,请分享给最好的朋友。

数学《一元二次方程》教案设计篇一一、出示学习目标:1、继续感受用一元二次方程解决实际问题的过程;2、通过自学探究掌握裁边分割问题。

二、自学指导:(阅读课本P47页,思考下列问题)1、阅读探究3并进行填空;2、完成P48的思考并掌握裁边分割问题的特点;3、在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。

探究3:要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。

9﹕7设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:由中下层学生口答书中填空,老师再给予补充。

思考:如果换一种设法,是否可以更简单?设正中央的长方形长为9acm,宽为7acm,依题意得9a·7a=(可让上层学生在自学时,先上来板演)2.P48-49第8、9题中下层学生在自学完之后先板演效果检测时,由同座的同学给予点评与纠正9、如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)注意点:要善于利用图形的平移把问题简单化!三、当堂训练:1、如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画。

如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?(只要求设元、列方程)2、要设计一个等腰梯形的花坛,上底长100m,下底长180m。

高中数学教案《二次函数与一元二次方程、不等式》

高中数学教案《二次函数与一元二次方程、不等式》

教学计划:《二次函数与一元二次方程、不等式》一、教学目标1、知识与技能:学生能够理解并掌握二次函数、一元二次方程及一元二次不等式的概念、性质及其相互关系;能够熟练求解一元二次方程和一元二次不等式,并能根据二次函数的图像判断不等式的解集。

2、过程与方法:通过案例分析、图形辅助、探究学习等方法,培养学生的观察、分析和解决问题的能力;通过小组合作、讨论交流,提升学生的协作学习能力和语言表达能力。

3、情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学规律的精神和严谨的科学态度;通过解决实际问题,让学生感受到数学在现实生活中的应用价值。

二、教学重点和难点重点:一元二次方程的求解方法(公式法、因式分解法、配方法);一元二次不等式的解法及与二次函数图像的关系;二次函数的性质(开口方向、顶点、对称轴)。

难点:一元二次不等式解法中根据判别式判断解的存在性;将一元二次不等式转化为二次函数图像下的区域问题;灵活运用二次函数的性质解决实际问题。

三、教学过程1. 导入新课(5分钟)生活实例引入:以医院中病人的病情随时间变化的例子(如体温变化、药物浓度变化),引导学生思考这些变化可能呈现出的二次函数形态,从而引出二次函数的概念。

提出问题:当病情达到某个临界点时(如体温过高或过低),医生需要采取相应措施。

这实际上涉及到一元二次方程和不等式的求解问题。

明确目标:介绍本节课将要学习的内容,即二次函数与一元二次方程、不等式的相互关系及其求解方法。

2. 讲解新知(20分钟)二次函数概念:回顾一次函数的概念,通过类比引出二次函数的一般形式及其图像特征(开口方向、顶点、对称轴)。

一元二次方程求解:详细介绍一元二次方程的三种求解方法(公式法、因式分解法、配方法),并通过实例演示每种方法的应用。

一元二次不等式:结合二次函数图像,讲解一元二次不等式的解法及其与函数图像的关系。

强调根据判别式判断不等式的解集情况,并引导学生掌握将不等式转化为图像下区域问题的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学九年级上册
二次函数与一元二次方程
教学目标
1. 从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系.
2. 探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念.能够利用二次函数的图象求一元二次方程的近似根.
3. 通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.
教学重点
二次函数的最大值,最小值及增减性的理解和求法.
教学难点
二次函数的性质的应用.
教学过程
一、导入新课
我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+
c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.
二、新课教学
1.问题讲解.
如下图,以40 m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系
h=20t-5t2.
考虑以下问题:
(1)小球的飞行高度能否达到15 m?如果能,需要多少飞行时间?
(2)小球的飞行高度能否达到20 m?如果能,需要多少飞行时间?
(3)小球的飞行高度能否达到20.5 m?为什么?
(4)小球从飞出到落地要用多少时间?
教师引导学生阅读例题,请大家先发表自己的看法,然后解答.
1
分析:由于小球的飞行高度h与飞行时间t有函数关系h=20t-5t2,所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程.如果方程有合乎实际的解,则说明小球的飞行高度可以达到问题中h的值;否则,说明小球的飞行高度不能达到问题中h的值.
解:(1)解方程
15=20t-5t2,
t2-4t+3=0,
t1=1,t2=3.
当小球飞行1s和3s时,它的飞行高度为15m.
(2)解方程
20=20t-5t2,
t2-4t+4=0,
t1=t2=2.
当小球飞行2s时,它的飞行高度为20m.
(3)解方程
20.5=20t-5t2,
t2-4t+4.1=0,
因为(-4)2-4×4.1<0,所以方程无实数根.这就是说,小球的飞行高度达不到20.5m.
(4)解方程
0=20t-5t2,
t2-4t=0,
t1=0,t2=4.
当小球飞行0 s和4s时,它的高度为0 m.这表明小球从飞行到落地要用4s.从上图来看,0 s时小球从地面飞出,4 s时小球落回地面.
从上面可以看出,二次函数与一元二次方程联系密切.
2.拓展延伸.
思考:下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数值是多少?由此,你能得出相应的一元二次方程的根吗?
(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.
教师引导学生画出函数的图象(可见教材第45页),然后说说有什么特点和性质.(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.
(3)抛物线y=x2-x+1与x轴没有公共点.由此可知,方程x2-x+1=0没有实数根.
3.归纳总结.
从二次函数y=ax2+bx+c的图象可以得出什么结论呢?
归纳:一般地,从二次函数y=ax2+bx+c的图象可得如下结论.
(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x =x0时,函数值是0,因此x=x0是方程ax2+bx+c=0的一个根.
(2)二次函数y=ax2+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.
2
人教版数学九年级上册
三、巩固练习
1.教材第46页例题.
教师让学生小组为单位讨论、解答.必要时教师可进行指导.
2.习题22.2 第14题.
四、课堂小结
今天你学习了什么?有什么收获?
五、布置作业
习题22.2 第2、4题.
3。

相关文档
最新文档