高中数学 零点存在性定理教学设计 新人教版必修1

高中数学 零点存在性定理教学设计 新人教版必修1
高中数学 零点存在性定理教学设计 新人教版必修1

2014年高中数学零点存在性定理教学设计新人教版必修1

一、内容及其解析

(一)内容:零点存在性定理.

(二)解析:本节课是关于函数零点的一节概念及探究课,是高中新课改人教A版教材第三章的第一节课的第二小节,因此教学时应当站在函数应用的高度,从函数与其它知识的联系的角度来引入较为适宜。

函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图象表示看,函数的零点就是函数f(x)与x轴交点的横坐标。函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形、函数与方程有机的联系在一起。

函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则。从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。

函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。

二、目标及其解析

(一)教学目标

(1)知识与技能:结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。

(2)过程与方法:培养学生观察、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程思想。渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。

(3)情感态度与价值观:在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。

(二)解析

1.对于常见函数的图象学生要有印象,要能用描点法画出一些复杂函数的图象,同时,研究函数的单调性、奇偶性等性质,来判断方程的根的存在与否和个数;

2.函数的零点、方程的根、函数图象与X轴交点的横坐标具备等价关系,这种等价关系实质上是数学本质一致,只是各自有不同的描述对象而已,从而向学生渗透转化的数学思想;

3.本节课对函数零点存在性(即方程的根的存在性)的探究是借助实际问题抽象出来的,由此推广到一次函数、二次函数这两类特殊的函数,进一步推广到一般的情形,要注意推广的可行性、借助于函数图象的直观性,只要求学生理解其合理性并能对具体的函数进行简单应用。教学中,教师可以引导学生借助函数图象分析其逆定理的正确与否,由此达到充分理解此定理的目的。

三、问题诊断分析

通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初

步树立起函数应用的意识。并从此出发,通过问题的设置,引导学生思考,再通过实例的确认与体验,从直观到抽象,从特殊到一般的学习方式,捅破学生认识上的这层“窗户纸”。

对于零点存在的判定定理,教材不要求给予其证明,这需要教师提供一定量的具体案例让学生操作感知,同时鼓励学生举例来验证,最终能自主地获得并确认该定理的结论。对于定理的条件和结论,学生往往考虑不够深入,需要教师通过具体的问题,引导学生从正面、反面、侧面等不同的角度重新进行审视。

函数的零点,体现了函数与方程之间的密切联系,教学中应遵循高中数学以函数为主线的这一原则进行联结,侧重在从函数的角度看方程,同时为二分法求方程的近似解作知识和思想上的准备。

四、学习重难点

重点:体会函数零点与方程根之间的联系,掌握零点的概念及零点存在性定理

难点:探究并发现零点存在性定理及其应用

五、学法指导

以问题为载体,学生活动为主线,以多媒体辅助教学为手段利用探究式教学法,构建学生自主探究、合作交流的平台

教学过程设计

一、探究零点存在定理

思考:下面有两组简笔画,哪一组说明人一定过河了?

第Ⅰ组能说明他的行程中一定曾渡过河,而第Ⅱ组中他的行程就不一定曾渡过河。

设计意图:从现实生活中的问题,让学生体会动与静的关系,系统与局部的关系。

问题1:将河流抽象成x轴,将前后的两个位置视为A、B两点。请问当A、B与x轴怎样的位置关系时,AB 间的一段连续不断的函数图象与x轴一定会有交点?

设计意图:将现实生活中的问题抽象成数学模型,进行合情推理,将原来学生只认为静态的函数图象,理解为一种动态的过程。

问题2:A、B与x轴的位置关系,如何用数学符号(式子)来表示?

A、B两点在x轴的两侧。可以用f(a)·f(b)<0来表示。

设计意图:由原来的图象语言转化为数学语言。培养学生的观察能力和提取有效信息的能力。体验语言转化的过程。

问题3:满足条件的函数图象与x轴的交点一定在(a,b)内吗?即函数的零点一定在(a,b)内吗?

一定在区间(a,b)上。若交点不在(a,b)上,则它不是函数图象。

设计意图:让学生体验从现实生活中抽象成数学模型时,需要一定修正。加强学生对函数动态的感受,对函数的定义有进一步的理解。

展示ppt问题1、2,由一次函数、二次函数这两类特殊的函数,进一步推广到一

般的情形,通过举例应用,Ppt 思考三、四得零点存在性定理。

新知:如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()()f a f b <0,那么,函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 设计意图:引导学生探究零点存在性定理.

一般地,我们有:如果函数y =f (x )在区间[a ,b]上的图象是连续不断的一条曲线并且有f (a )·f(b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.

(二)新知应用与深化

例题1 观察下表,分析函数

在定义域内是否存在零点? -2 -1 0

1 2 -109 -10 -1 8 107 分析:函数

图象是连续不断的,又因为,所以在区间(0,1)上必存

在零点。 设计意图:初步应用零点的存在性定理来判断函数零点的存在性问题。并引导学生探索判断函数零点的方法,通过作出x ,的对应值表,来寻找函数值异号的区间,还可以借助计算机来作函数的图象分析零点问题。而且对函数有一个零点形成直观认识.

例题2 求函数

的零点个数. 分析:用计算器或计算机作出x ,

的对应值表和图象。 1

2 3 4 5 6 7 8 9 -4.0 -1.3 1.1 3.4 5.6 7.8 9.9 12.1 14.2 由表可知,f (2)<0,f (3)>0,则

,这说明函数在区间(2,3)内有零点。结合函数的单调性,进而说明零点是只有唯一一个.

设计意图:学生应用例题1方法来解决例题2的零点存在性问题,并结合函数的单调性,从图象的直观上去判断零点的个数问题。

师生活动:引导学生探究得到零点存在性定理之后,进一步引导学生讨论:零点个数一定是一个吗? 逆定理成立吗?

练习:已知函数f(x)的图象是连续不断的,且有如下的x,f(x)对应值表:

x 1 2 3 4 5 6 7

f(x) 23 9 –7 11

–5 –12 –26

判断这个函数是否存在零点,指出零点所在的大致区间?

(三)总结归纳设计

通过引导让学生回顾零点概念、意义与求法,以及零点存在性判断,鼓励学生积极回答,然后老师再从数学思想方面进行总结.

(四)目标检测设计

1. x x f 32)(x +=函数的零点所在的区间为( )

A. (-1,0)

B.(0,1)

C. (1,2)

D. (2,3)

2.若y=f(x)在R 上递增,则函数y=f(x)的零点( )

A .至少有一个 B.至多有一个

C.有且只有一个

D.可能有无数个

3.求函数()ln 26f x x x =+-的零点的个数.

4. 求函数23x y =-的零点所在的大致区间.

(五)板书设计

1、函数f(x)的零点

2、零点存在的判定定理

3、举例

函数零点存在性定理

?函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. ?函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有______(写出所有正确结论的序号).

函数零点存在性定理.

? ? 函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. ?函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有______(写出所有正确结论的序号).

函数零点存在性定理

函数零点存在性定理标准化管理部编码-[99968T-6889628-J68568-1689N]

函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. 函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有 ______(写出所有正确结论的序号). 答案 由题意可确定f(x)唯一的一个零点在区间(0,2)内,故在区间[2,16)内无零点. (3)正确, (1)不能确定, (2)中零点可能为1, (4)中单调性也不能确定.

根的存在性证明(零点定理)

根的存在性定理:如果)(x f 在闭区间[a,b]上连续 0)(,,0)()(=∈<ξξf b a b f a f )使得(则存在。 证明 利用构造法的思想,将)(x f 的零点范围逐步缩小。先将[a,b]二等分为],2[],2, [b b a b a a ++,如果0)2 (=+b a f 。则定理获证。如果0)2(≠+b a f ,则f(a)和f(b)中必然有一个与)2 (b a f +异号,记这个小区间为[11,b a ],它满足2-0)()(1111a b a b b f a f -=<且区间的长度。又将[11,b a ]二等分,考虑中点的函数值,要么为零,要么不为零。如果中点的函数值为零,则定理获证。如果中点的函数值不为零,那么必然可以选出一个小区间,使得f(x)在这个区间的端点值异号,记这个小区间为 ],[22b a ,它满足[a,b]?[11,b a ]],[22b a ?,0)()(2222 22<-=-a f b f a b a b 且。采用这样的方法一直进行下去,或者到有限步时,某个区间的中点的函数值为零,这样定理的结论成立。或者所有区间的中点的函数值不为零,那么我们就会得到一个无穷的区间序列{],[n n b a },它满足:① [a,b]?[11,b a ]?????],[22b a ;②n n n a b a b 2-=-;③0)()(δ,使得f(x)在],[),(b a ?+-δξδξ上与)(ξf 同号。根据所构造的区间的性质②,存在正整数N ,当n>N 时, ],[),(],[b a b a n n ?+-?δξδξ。根据区间的性质③,0)()(

张荣军判断零点的存在性定理

课题:判断函数零点的存在性 ---------根的存在性定理 学习目标: (一)知识与技能: 2.理解并会用函数在某个区间上存在零点的判定方法. (二)过程与方法: 自主发现、探究实践,理解函数零点存在的条件. (三)情感、态度、价值观: 1.在函数与方程的联系中体验数学转化思想的意义和价值 2.数行结合思想在探索数学问题的重要性. 2.了解方程求解方法的简单发展史.. 重点难点: 重点:体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件. 难点:探究发现函数零点的存在性. 课题引入:在人类用智慧架设的无数从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今 天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月. 我国古代数学家已比较系统地解决了部分方程的求解的问题。如约公元50年—100年编成的《九章算术》,就给出了求一次方程、二次方程和三次方程根的具体方法… 问题·探究 (一)回顾旧知,“温故知新”。 1、函数的零点:对于函数)(x f ,我们把使0)(=x f 的实数x 叫做)(x f 的零点(zero point ). 2、等价关系: 方程0)(=x f 有实数根 ?函数)(x f y =的图像与x 轴有交点?函 数)(x f y =有零点. 巩固练习:求下列方程的根. (1)0652 =+-x x (2) )1lg()(-=x x f (3)062ln =-+x x (二)提出问题,“星河探秘”。(零点存在性) 问题1:函数y =f(x)在某个区间上是否一定有零点?

怎样的条件下,函数y =f(x)一定有零点? (1)观察二次函数32)(2 --=x x x f 的图象,分析其图像在零点两侧如何分布? ○ 1 在区间]1,2[-上有零点______;=-)2(f _______,=)1(f _______, )2(-f ·)1(f _____0(<或>) . ○2 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>). (2)观察下面函数)(x f y =的图象,分析其图像在零点两侧如何分布? ○1 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>). ○2 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>). ○3 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>). (4)观察上面(3)的函数图象: 若函数在某区间内存在零点,则函数在该区间上的图象是 ____ (间断/连续);含零点的某一较小区间中以零点左右两边的实数为自变量,它们各自所对应的函数值的符号是____(相同/互异) (三)讨论探索,发现“新大陆”。 根的存在性定理:如果函数)(x f y =在区间][b a ,上的图像是连续不断的一条曲线,并且有 0)()(

函数零点存在性定理图文稿

函数零点存在性定理文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有 f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. 函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1:

若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有 ______(写出所有正确结论的序号). 答案 由题意可确定f(x)唯一的一个零点在区间(0,2)内,故在区间[2,16)内无零点. (3)正确, (1)不能确定, (2)中零点可能为1, (4)中单调性也不能确定. 故答案为:(3) 例题2: 已知函数有零点,则实数的取值范围是() 答案: 例题3: 例题4: 函数f(x)=3ax-2a+1在[-1,1]上存在一个零点,则实数a的取值范围是()A. a ≥ 1/5; B. a ≤ -1 ; C. -1 ≤ a ≤ 1/5 ; D. a ≥ 1/5 或 a ≤ -1答案:由题意可得f(-1)×f(1)≤0,解得 ∴(5a-1)(a+1)≥0 ∴a≥ 1/5 或a≤-1 故选D .

零点存在定理的教案

教案 课题:零点存在定理 授课人: 一、内容及内容解析: 本章位于全书的第3章,零点主要是解决方程求解的问题,应用函数思想的方法,把方程与函数相结合,它在较难方程的求根方面有巨大的贡献,而零点存在定理能确定零点的存在范围,从而近似的确定零点的值,也即方程的近似根. 各个内容之间的联系: 方程的根?零点?零点存在定理 ? 二分法 二、三维目标: 知识与技能:会使用零点存在定理解决问题,准确确定根的范围,并且使用二分法找到相应方程的近似解. 过程与方法:通过分析零点附近的值的关系,得到0)()(

零点存在定理的应用

葛沽一中整体建构教学模式导学案 高一 年级 数学 学科 主备人: 备课或教研组长审核签字 使用人签字 使用时间 第 11 周 第 5 课 课题: 零点存在定理的应用 教学过程 一、例题精析 应用迁移 拓展提升 1.函数f(x)=23x x +的零点所在的一个区间是( ) (A)(-2,-1) (B)(-1,0) (C)(0,1) (D)(1,2) 2.(2014·天津模拟)方程log 4x-=0的根所在区间为( ) A. B. C.(3,4) D.(4,5) 3.(2014·北京模拟)已知方程lgx=2-x 的解为x 0,则下列说法正确的是( ) ∈(0,1) ∈(1,2) ∈(2,3) ∈[0,1] 小结: 5.(2014·济南模拟)函数f(x)= 的零点个数为( ) 6.函数的零点个数是_________________ 小结: 提示:建议:注意:要求: 二.拓展练习 7.已知函数f(x)= 在下列区间中,包含f(x)零点的区间是( ) A.(0,1) B.(1,2) C.(2,4) D.(4,+∞) 8.函数f(x)=ln(x+1)- 的零点所在的大致区间是( ) A.(0,1) B.(1,2) C.(2,e) D.(3,4) 9.设函数1 ()ln (0),3f x x x x =->则()y f x = A 在区间1 (,1),(1,)e e 内均有零点。 B 在区间1 (,1),(1,)e e 内均无零点。 C 在区间1 (,1)e 内有零点,在区间(1,)e 内无零点。 D 在区间1 (,1)e 内无零点,在区间(1,)e 内有零点。 10. 函数3()=2+2x f x x -在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .3 11. 函数f(x)=|x-2|-lnx 在定义域内零点的个数为( ) B.1 12.函数0.5()2|log |1x f x x =-的零点个数为 (A) 1 (B) 2 (C) 3 (D) 4 13.已知函数f(x)=x+2x ,g(x)=x+lnx 的零点分别为x 1,x 2,则x 1,x 2的大小关系是( ) x 2 =x 2 D.不能确定 ()ln 26f x x x =+-4.求函数的零点个数。 1x 2 1 x ()2 -26 log x x -, 2 x

高中数学必修一 零点存在性定理及典例

零点存在性定理 如果函数y = f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0那么,函数y = f (x )在区间[a ,b ]内有零点,即存在c ∈(a ,b ),使得f (c ) = 0这个c 也就是方程f (x ) = 0的根 定理的理解 (1)函数在区间[a ,b ]上的图象连续不断,又它在区间[a ,b ]端点的函数值异号,则函数在[a ,b ]上一定存在零点 (2)函数值在区间[a ,b ]上连续且存在零点,则它在区间[a ,b ]端点的函数值可能异号也可能同号 (3)定理只能判定零点的存在性,不能判断零点的个数 例:函数y = f (x ) = x 2 – ax + 2在(0,3)内,①有2个零点. ②有1个零点,分别求a 的取值范围. 解析:①f (x )在(0,1)内有2个零点,则其图象如下 则(0)0(3)00032 f f a b a >??>????≥??<-??>?

专题05 零点存在定理中取点问题

max min max 专题五 零点存在定理中取点问题 如果函数 y = f ( x ) 在区间[a , b ] 上的图象是连续不断的一条曲线,并且有 f (a ) f (b ) < 0 ,那么,函数 y = f ( x ) 在区间(a , b ) 内有零点,即存在c ∈(a , b ) ,使得 f (c ) = 0 ,这个c 也就是方程 f ( x ) = 0 的根. 在实际应用中,如何取 a , b ,是解决问题的难点. 类型一 利用方程的根或部分代数式的根取点 x 典例 1 已知函数 f ( x ) = e - ax +1. (1) 当 a = 1 时,求 y = f ( x ) 在 x ∈[-1,1] 上的值域; (2) 试求 f ( x ) 的零点个数,并证明你的结论. 【答案】(1) [2 - e ,1](2)当a ≤ 0 时, f ( x ) 只有一个零点;当 a > 0 时, f ( x ) 有两个零点. 【解析】 (1)当 a = 1 时, f ( x ) = x e x - ax +1,则 f '( x ) = 1- x -1 = g ( x ) , e x 而 g '( x ) = x - 2 < 0 在[-1,1]上恒成立,所以 g ( x ) = e x f '( x ) 在[-1,1]上递减, f '( x ) = f '(-1) = 2e -1 > 0 , f '( x ) = f '(1) = -1 < 0 , 所以 f '( x ) 在[-1,1]上存在唯一的 x 0 = 0 ,使得 f '(0) = 0 ,而且 当 x ∈(-1, 0) 时, f '( x ) > 0 , f ( x ) 递增;当 x ∈(0,1) 时 f '( x ) < 0 , f ( x ) 递减; 所以,当 x = 0 时, f ( x ) 取极大值,也是最大值,即 f ( x ) = f (0) = 1, x

高中数学 零点存在性定理教学设计 新人教版必修1

2014年高中数学零点存在性定理教学设计新人教版必修1 一、内容及其解析 (一)内容:零点存在性定理. (二)解析:本节课是关于函数零点的一节概念及探究课,是高中新课改人教A版教材第三章的第一节课的第二小节,因此教学时应当站在函数应用的高度,从函数与其它知识的联系的角度来引入较为适宜。 函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图象表示看,函数的零点就是函数f(x)与x轴交点的横坐标。函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形、函数与方程有机的联系在一起。 函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则。从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。 函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 二、目标及其解析 (一)教学目标 (1)知识与技能:结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。 (2)过程与方法:培养学生观察、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程思想。渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。 (3)情感态度与价值观:在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。 (二)解析 1.对于常见函数的图象学生要有印象,要能用描点法画出一些复杂函数的图象,同时,研究函数的单调性、奇偶性等性质,来判断方程的根的存在与否和个数; 2.函数的零点、方程的根、函数图象与X轴交点的横坐标具备等价关系,这种等价关系实质上是数学本质一致,只是各自有不同的描述对象而已,从而向学生渗透转化的数学思想; 3.本节课对函数零点存在性(即方程的根的存在性)的探究是借助实际问题抽象出来的,由此推广到一次函数、二次函数这两类特殊的函数,进一步推广到一般的情形,要注意推广的可行性、借助于函数图象的直观性,只要求学生理解其合理性并能对具体的函数进行简单应用。教学中,教师可以引导学生借助函数图象分析其逆定理的正确与否,由此达到充分理解此定理的目的。 三、问题诊断分析 通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初

函数零点存在性定理

函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a, b]上的图象是连续不断的一条曲线,并且有 f(a) . f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3) 若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a) . f(b)<0,则fx)在(a,b)上有唯一的零点. 函数零点个数的判断方法 (1) 几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找岀零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0 在[0,2]上有两个等根,而函数f (x) =x 2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. ⑵代数法:求方程f(x) =0的实数根. 例题1: 若函数f (x)唯一的一个零点同时在区间(0 ,16 )、( 0,8)、( 0,4 )、( 0,2)内,下列结论: (1)函数f (x)在区间(0, 1)内有零点; (2)函数f (x)在区间(0 , 1)或(1,2)内有零点; (3)函数f (x)在区间[2,16 )内无零点; (4)函数f (x)在区间(0 ,16 )上单调递增或递减. 其中正确的有________ (写岀所有正确结论的序号).

函数零点存在的判定与证明

零点存在的判定与证明 一、基础知识: 1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。 2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ?<,那么函数()y f x =在区间(),a b 内必有零点,即 ()0,x a b ?∈,使得()00f x = 注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在 3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。因此分析一个函数零点的个数前,可尝试判断函数是否单调 4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续) (1)若()()0f a f b ?<,则()f x “一定”存在零点,但“不一定”只有一个零点。要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点 (2)若()()0f a f b ?>, 则()f x “不一定”存在零点,也“不一定”没有零点。如果()f x 单调,那么“一定”没有零点 (3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ?的符号是“不确定”的,受函数性质与图像影响。如果()f x 单调,则()()f a f b ?一定小于0 5、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数, 0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时, ()0f x >

零点存在定理

导数专题系列 零点存在定理 主备人:杨海霞 【定理内容】 零点存在定理:_____________________ _____________________________________________________________________________________________________。 应用:①确定零点的范围; ②零点所满足的方程,可用来简化求值。 .,01)(')(01)2()()1(2)(的最大值求时,为整数,且当,若的单调区间;求设函数新课标卷】【例k x x f k x x k a x f ax e x f x >++->=--=?) (2012 1 .2ln 2)(0)2()(')()1(ln )(2a a a x f a x f x f x a e x f I x +≥>-=??时,证明:当零点的个数;的导数讨论设函数文卷新课标】【例) (2015 2

最大值。 的恒成立,求对于任意,且若的切线方程;处 求函数的图像在点】已知函数【例k x x f x k Z k f x x x x f 2)()2()2())1(,1()1(.ln )(4><-∈+= . )('),,(:,),))((,()),(,()()2(1)(,)1(0 )(021*******成立使存在证明的斜率为记直线的图像上取定两点在函数的取值集合;求恒成立,若对一切,其中已知函数湖南卷】【例k x f x x x k AB x x x f x B x f x A x f a x f R x a ax e x f x =∈<≥∈>-=?) (2012 3

《零点存在性定理》教学设计正式版

《零点存在性定理》教学设计 临城高级中学王旭丽 一、内容及其解析 (一)内容:零点存在性定理. (二)解析:本节课是关于函数零点的一节概念及探究课,是高中新课改人教A版教材第三章的第一节课的第二小节,因此教学时应当站在函数应用的高度,从函数与其它知识的联系的角度来引入较为适宜。 函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图象表示看,函数的零点就是函数f(x)与x轴交点的横坐标。函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形、函数与方程有机的联系在一起。 函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则。从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。 函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 二、目标及其解析 (一)教学目标 (1)知识与技能:结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。 (2)过程与方法:培养学生观察、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程思想。渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。 (3)情感态度与价值观:在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。 (二)解析 1.对于常见函数的图象学生要有印象,要能用描点法画出一些复杂函数的图象,同时,研究函数的单调性、奇偶性等性质,来判断方程的根的存在与否和个数; 2.函数的零点、方程的根、函数图象与X轴交点的横坐标具备等价关系,这种等价关系实质上是数学本质一致,只是各自有不同的描述对象而已,从而向学生渗透转化的数学思想; 3.本节课对函数零点存在性(即方程的根的存在性)的探究是借助实际问题抽象出来的,由此推广到一次函数、二次函数这两类特殊的函数,进一步推广到一般的情形,要注意推广的可行性、借助于函数图象的直观性,只要求学生理解其合理性并能对具体的函数进行简单应用。教学中,教师可以引导学生借助函数图象分析其逆定理的正确与否,由此达到充分理

函数的零点存在定理

《函数的零点存在定理》一、教材内容分析 《函数的零点》第二课时,选自人教版《普通高中课程标准实验教科书》A版必修1第三章第一节。 1、教材的地位与作用 函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。方程的根与函数零点的关系研究,不仅为“用二分法求方程的近似解”的学习做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要思想方法——“函数与方程思想”的理论基础。可见,函数零点概念在中学数学中具有核心地位。 2、内容分析 本节内容有函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理。 函数零点是研究当函数) f的值为零时,相应的自变量x的取值, (x 反映在函数图象上,也就是函数图象与x轴的交点横坐标。 由于函数) x f,其本身已是方程的形式,因 (= (x f的值为零亦即0 ) 而函数的零点必然与方程有着不可分割的联系,事实上,若方程f有解,则函数)(x x f存在零点,且方程的根就是相应函数的零点,(= ) 也是函数图象与x轴的交点横坐标。顺理成章的,方程的求解问题,可以转化为求函数零点的问题。这是函数与方程关系认识的第一步。 零点存在性定理,是函数在某区间上存在零点的充分不必要条件。如果函数) y=在区间[]b f (x a,上的图象是一条连续不断的曲线,并

且满足0)()(