数值分析第三章解线性方程组的直接方法演示文稿

合集下载

数值分析实验三 线性方程组的直接接法2

数值分析实验三  线性方程组的直接接法2

数值分析实验三 线性方程的直接解法组号 班级 学号 姓名 分数一:实验目的1、掌握求解线性方程组的不同方法。

二:实验内容及基本知识介绍本实验中利用高斯消去法和矩阵的直接三角分解法求解线性方程组。

用消去法解方程组的基本思想:是用逐次消去未知数的方法把原方程组Ax=b 化为与其等价的三角形方程组,而求解三角形方程组可用回代的方法求解。

即上述过程就是用行的初等变换将原方程组系数矩阵化为简单形式(上三角矩阵),从而将求解原方程组的问题转化为求解简单方程组问题。

或者说对系数矩阵A 施行一些做变换将其约化为上三角矩阵。

直接三角分解法的原理:在高斯消去法的基础上,高斯消去法实质上产生了一个将A 分解为两个三角形矩阵相乘的因式分解,即矩阵的LU 分解——设A 为n 阶矩阵,如果A 的顺序主子式i D ≠0(i=1,2,…n-1),则A 可分解为一个单位下三角矩阵L 和一个上三角矩阵U的乘积,且这种分解是唯一的。

将高斯消去法改写为紧凑形式,可以直接从矩阵A 的元素得到计算L,U 元素的递推公式,而不需要任何中间步骤,这就是直接三角分解法。

一旦实现了矩阵A 的LU 分解,那求解Ax=b 的问题就等价于求解两个三角形方程组 ① Ly=b,求y;② Ux=y,求x.其中用直接三角分解法解Ax=b 的分解矩阵A 的计算公式:①111111(1,2,...),/(2,3,...),i i i i i n i n u a l a u ====计算U 的第r 行,L 的第r 列元素(r=2,3,…n ).②11r ri ri rk ki k ua l u -==-∑ (i=r,r+1,…n); ③11)/(r ir ik kr rr ir k a l l u u -==-∑ (i=r+1,…,n;且r ≠n) 三:实验问题及方法、步骤分别用直接三角分解法和高斯消元法解方程组Ax=b,其中 2111339,23353A b --⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。

数值分析第三章 解线性方程组的直接方法 ppt课件

数值分析第三章 解线性方程组的直接方法 ppt课件

对算每一一次行。计以算后每s注i一意数步m 1:学考j这上a虑n两|严x子a个格i列j |方等。 a程价为...kk 组。省中在时as间iki 最,s大i 只的在ai初k 为始主时元计。
a nk
注:稳定性介于列主元法和全主元法之间。
§2 三角分解法 /* Matrix Factorization */
A(2) b(2)
其中
a(2) ij
b(2) i
a(1) ij
b(1) i
mi
a(1)
1 1j
mi1b1(1)
(i, j 2, ...,n)
Step
k:设
a(k) kk
, 0计算因子
m ik a i(k k )/a k (k )k(i k 1 ,..n ) .,
且计算
a(k1) ij
➢ 高斯消元法的矩阵形式 /* Matrix Form of G.E. */:
Step 1: m i1a i1/a 11(a 1 10 )
1
记 L1 =
m 21 ...
1
m n1
a1(1)1...a1(1n) b1(1)
A b ,则 L 1 [A (1 ) b (1 )]
(2) (2)
1
Step n 1:
Ln1Ln2 ...L1
Ab
a1(11)
a(1) 12
a(2) 22
...
a(1) 1n
...
a(2) 2n
... ...
bb12((12))
...
其中 Lk =
1
a(n) nn
bn(n)
1
m k 1,k ...
m n ,k
1
1

第3章线性方程组的直接解法1PPT课件

第3章线性方程组的直接解法1PPT课件

(3.5)
u x n1,n1 n1 un1,nxn bn1
unnxn bn
n
u iixi b i (u i,i 1 xi 1 u inxn) b i u ijxj
j i 1
xnbn/unn,
xi bijn i1uijxj/uii8,in1,n2,
返回LU
,2,1. 返回(3.20)
3.2.2 消去法的基本思想
(3.4)
返回式3.19
i1
liixi bi (li1x1li2x2 li,i1xi1)bi lijxj j1
i1
xi bi lijxj /lii, i 1,2, ,n.
j1
7
三、上三角方程组(返回Gauss)
u11x1 u12x2 u13x3 u1nxn b1
uiixi ui,i1xi1 uinxn bi
x3
78 26
3
x2 -28 10x3 -28 10(3)
x 1
16
(x2
2
4x 3 )
2
10
16
2 2
4(3)
1
3.2.3 高斯消元过程(即初等行变换) 记方程组(3.1)为
返回矩阵的三角分解
aa12((1111))xx11
a1(12)x2 a2(12)x2
an(11)x1an(12)x2
2
3.1 引 言
自然科学和工程计算中的很多问题的解决常常 归结为求解线性方程组。如三次样条插值函数问 题、用最小二乘原理确定拟合曲线、求解微分方 程的数值解等,最终都要转化为求解线性方程组。
求解线性方程组可采用:
1、直接法——经有限步算术运算可求得方 程组的精确解的方法(若计算过程无舍入误差)。

第三章-数值分析(08)用矩阵分解法解线性代数方程组

第三章-数值分析(08)用矩阵分解法解线性代数方程组

OO O
M M
an1
bn1
cn1
xn1
d
n1
an bn xn dn
矩阵表示 Ax d
数值分析
数值分析
2 x1 x2
1
例:求解方程组:
x1
2 x2
1
x2 2 x3 x4 0
x3
2
x4
1
2 1
1
u1 r1
解:A
1
2
LU
l2
1
u2 r2
1 2 1
1 2
l3
1 l4
1
u3
r3 u4
1
2 1
1
2
1 23
1 12
1
32 0 2
1
3
2
ck rk ,
k 2, 3,L , n 1
数值分析
数值分析
b1 u1 , c1 r1, a2 l2u1
b2 l2r1 u2 l2c1 u2, c2 r2 ,
ak lk uk1 ,
k 2, 3,L , n
bk lk rk1 uk lkck1 uk , k 2, 3,L , n
y1
f
,

y2
y3 y4
113327
117
2 解Ux
1 7
2 0
0
0 0 1 0
1
1 2
13 7
11 7
x1 x2 x3 x4
=
-1
13 2
13 7 117
,得
x1 x2 x3 x4
=
较常见带状矩阵为带宽为3(p=q=2,w=3)的矩阵。
a11
a12

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。

线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。

线性方程组的解法包括直接解法和迭代解法两种方法。

一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。

这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。

1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。

这种方法可以减少计算量,提高计算效率。

1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。

它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。

Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。

二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。

它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。

Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。

2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。

它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。

Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。

2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。

它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。

SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。

三、总结线性方程组解法是数值分析中的一个重要内容。

直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。

数值分析解线性方程组的直接方法 PPT

数值分析解线性方程组的直接方法 PPT

a1(11) D1 ak(kk) Dk / Dk1, k 2,3,, n.
(2、12)
§5、2、2 三角分解法 /* Matrix Factorization */
➢ 高斯消元法的矩阵形式 /* Matrix Form of G、E、 */:
Step 1: mi1 ai1 / a11 (a11 0)
A的谱半径为 ( A) 7.
5、1、4 特别矩阵 A (aij ) Rnn. (1)对角矩阵 如果当i j时,aij 0. (2)三对角矩阵 如果当| i j | 1时,aij 0. (3)上三角矩阵 如果当i j时,aij 0. (4)上海森伯格阵 如果当i j 1时,aij 0. (5)对称矩阵 如果AT A. (6)埃尔米特矩阵 设ACnn ,如果AH A( AH AT ) (7)对称正定矩阵 如果(a)AT A,(b)对任意非零向量 x Rn , ( Ax, x) xT Ax 0. (8)正交矩阵 如果A-1=AT
an1x1 an2 x2 ... ann xn bn
的直截了当解法。方程组(5、1)的矩阵形式为
其中
a11
A
a 21 2
... ... ... ...
Ax=b
a1n a2n ... a nn
x1
,
x
x2 ...
x n
b1
(3) 相似矩阵 B=S-1AS有相同的特征多项式、
1 2 2
例1 求 A 2 2 4 的特征值及谱半径、
2 4 2
解: A的特征方程为
1 2 2
det(I A) 2 2 4
2
4 2
3 32 24 28 ( 2)2 ( 7) 0,
故A的特征值为 1 2 2, 3 7

数值分析解线性代数方程组的直接解法省公开课一等奖全国示范课微课金奖PPT课件

数值分析解线性代数方程组的直接解法省公开课一等奖全国示范课微课金奖PPT课件

i 2, , n, j 2, , n
b (2) i
b (1) i
mi1b1(1) ,
i 2, , n
对方程组A(1) x b(1)从左边乘以L1 L1 A(1) x L1b(1)
数值分第析18页
数值分析
第二步:设a2( 22 )
0,取mi 2
a(2) i2
a(2) 22
,i
3, ..., n
数值分第析4页
数值分析
数值求解方法有以下三条路径(三种框架)
直接法:利用Gauss消元或矩阵分解,经过有限次运 算可求出准确解。
迭代法:结构迭代格式,产生迭代序列,经过无限 次迭代过程求解。有限次截断得近似解。
极小化方法:结构二次模函数,用迭代过程求二次
模函数极小化问题,即变分法(经
n次运算,理论上得准确解)要求A
数值分析
将方程组Ax=b系数矩阵与右端项合并为
a11 a12
A, b
a21
a22
an1
an2
a1n b1
a2n
b2
A
ann
bn
记A
(1)
A
a1(11)
...
a(1) 1n
b(1) 1
1(1)
,
(1) 2
,
...,
(1) n
,
b(1)
an(11)
...
a(1) nn
b(1) n
第一步:设a1(11) 0, 取mi1 aa( (1i1111) ),
6 3 3
x1
2x2 x2
3x3 2x3 3x3
6 3 3
回代求得 x3 3 / 3 1
x2 (3 2 x3 ) (3 2 1) 1

数值分析--第三章--迭代法

数值分析--第三章--迭代法

数值分析--第三章--迭代法迭代⼀般⽅程:本⽂实例⽅程组:⼀.jacobi迭代法从第i个⽅程组解出xi。

线性⽅程组Ax=b,先给定⼀组x的初始值,如[0,0,0],第⼀次迭代,⽤x2=0,x3=0带⼊第⼀个式⼦得到x1的第⼀次迭代结果,⽤x1=0,x3=0,带⼊第⼆个式⼦得到x2的第⼀次迭代结果,⽤x1=0,x2=0带⼊第三个式⼦得到x3的第⼀次迭代结果。

得到第⼀次的x后,重复第⼀次的运算。

转化成⼀般的形式:(其中L是A的下三⾓部分,D是A的对⾓元素部分,U 是上三⾓部分)得到迭代公式:其中的矩阵B和向量f如何求得呢?其实,矩阵B的计算也很简单,就是每⾏的元素/该⾏上的对⾓元素⼆.Gauss-Seidel迭代法【收敛速度更快】这个可以和jacobi法对⽐进⾏理解,我们以第⼆次迭代为例(这⾥的第⼀次迭代结果都⽤⼀样的,懒得去换)从上表对⽐结果可以看出,Jacobi⽅法的第⼆次迭代的时候,都是从第⼀次迭代结果中,获取输⼊值。

上⼀次迭代结果[2.5,3.0,3.0],将这个结果带⼊上⾯式⼦1,得到x1=2.88,;将[2.5,3.0,3.0]替换成[2.88,3.0,3.0]带⼊第⼆个式⼦的运算,这⾥得到x2=1.95,所以把[2.88,3.0,3.0]替换成[2.88,1.95,3.0]输⼊第三个式⼦计算X3=1.0.这就完成了这⼀次的迭代,得到迭代结果[2.88,1.95,1.0],基于这个结果,开始下⼀次迭代。

特点:jacobi迭代法,需要存储,上⼀次的迭代结果,也要存储这⼀次的迭代结果,所以需要两组存储单元。

⽽Gauss-Seidel迭代法,每⼀次迭代得到的每⼀个式⼦得到的值,替换上⼀次迭代结果中的值即可。

所以只需要⼀组存储单元。

转化成⼀般式:注意:第⼆个式⼦中的是k+1次迭代的第⼀个式⼦的值,不是第k次迭代得值。

计算过程同jacobi迭代法的类似三.逐次超松弛法SOR法上⾯仅仅通过实例说明,Jacobi和Seidel迭代的运算过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

省去换列的步骤,每次仅选一列中最大的元。
| aik ,k
|
max
kin|aik Nhomakorabea|
0
§1 Gaussian Elimination – Pivoting Strategies
例:
109
1
1 1
1 2
1 109
1 1
2 1
1 0
1 1
2 1
x2 1 , x1 1 ✓
注:列主元法没有全主元法稳定。
➢ 选主元消去法
例:单精度解方程组
109
x1
x2
1
x1 x2 2
/*
精确解为
x1
1 1 109
8个
1.00...0100...和
x2 2
x1
8个
0.99 ...9899...*/
用Gaussian Elimination计算:
m21 a21 / a11 109 8个 a22 1 m21 1 0.0 ...01109 109 109
b (1)
b
b1(1) ...
bn(1)
Step 1:设a1(11) ,0计算因子
mi1
a (1) i1
/
a (1) 11
(i 2, ..., n)
将增广矩阵/* augmented matrix */ 第 i 行 mi1 第1行,
得到
a (1) 11
a (1) 12
...
a (1) 1n
b(1) ]
a(1) 11
...
a(1) 1n
b1(1)
A b (2) (2)
1
Step n 1:
Ln1Ln2 ... L1
Ab
a1(11)
a(1) 12
a(2) 22
...
a(1) 1n
...
a(2) 2n
... ...
b(1) 1
b(2) 2
...
1
其中
Lk =
a(n) nn
① 选取 | aik jk
|
max
ki, jn
|
aij
|
0;
② If ik k then 交换第 k 行与第 ik 行; If jk k then 交换第 k 列与第 jk 列;
③ 消元
注:列交换改变了 xi 的顺序,须记录交换次序,解完后再 换回来。
列主元消去法 /* Partial Pivoting, or maximal column pivoting */
b2 2 m21 1 109
109 1
1
0
109
109
小主元 /* Small pivot element */ 可能导致计
算失败。
x2 1, x1 0
全主元消去法 /* Complete Pivoting */
每一步选绝对值最大的元素为主元素,保证 | mik | 。1
Step k:
例:11
109 1
109
2
1 0
109 109
109
109
x2 1 ,
x1
0
标度化列主元消去法 /* Scaled Partial Pivoting */
对算每一一次行。计以算后每s注i一意数步m1:学考ja这上x虑n |两严子a个格ij列|方等。a程价为...kk 组。省中在时as间iik 最,s大i 只的在ai初k 为始主时元计。
bb12((12))
...
bn(n)
§1 Gaussian Elimination – The Method
回代
xn
b(n) n
/
a(n) nn
n
b( i ) i
a(i ij
)
x
j
xi
j i 1
a(i) ii
(i n 1, ...,1)
定理
principal
TWhheantwifewmeucsatnf’itnd the
A( 2 )
b1(1) b (2)
其中
a(2) ij
b(2) i
a (1) ij
b(1) i
m
i
a (1)
1 1j
mi1b1(1)
(i, j 2, ...,n)
Step
k:设
a
(k kk
)
, 0计算因子
且计算
a ( k 1) ij
b( k 1) i
a(k) ij
b(k ) i
mik
a(k kj
)
mik
b(k ) k
(i, j k 1, ..., n)
共进行 n? 步1
mik
a(k) ik
/ ak(kk )
a1(11)
a(1) 12
a(2) 22
... ...
...
(i k 1, ..., n)
a(1) 1n
a(2) 2n ...
a(n) nn
x1
x2 ... xn
ank
注:稳定性介于列主元法和全主元法之间。
§2 三角分解法 /* Matrix Factorization */
➢ 高斯消元法的矩阵形式 /* Matrix Form of G.E. */:
Step 1: mi1 ai1 / a11 (a11 0)
1
记 L1 =
m21 ...
1
mn1
,则 L1[ A(1)
数值分析第三章解线性方程组 的直接方法演示文稿
优选数值分析第三章解线性方 程组的直接方法
求解
A
x
b
➢ 高斯消元法:
思 首先将A化为上三角阵 /* upper-triangular matrix */, 路 再回代求解 /* backward substitution */。
=
消元

A(1) A (ai(j1) )nn ,
b(n) n
1
mk1,k ...
mn,k
1
1
Lk1
1
mk 1,k ...
mn,k
§2 Matrix Factorization – Matrix Form of G.E.
1
L11
L21
...
L1 n1
1
mi, j
记为 L
1
1
a(1) 11
记U=
s若ubAm的at所ric有eWWtsshas顺mhesh*ko( ii/oaaa)lN序fku均iltltN-nolutteiiio主hdfft0o不suioanautrs,n子onni为n(uia(iiennniqwnic)e)xtq式u0hdexiuwesg,ikiest0i0ne/stt*?hrt则s.??ed.ktreh高ctehei斯ariwm-ntih消gitnhea元nt无of需le换adi行ng即可
进行到底,得到唯r一ow解. 。
注:消事元实及上行,交只换要d,eAt(将A非i 方)奇程异a.1.组1.,化即.. .. ..为Aa.三.1.i1 角存形在方,程则组可,通求过出逐唯次
一解。
ai1 ... aii
定理(矩阵的 LU分解) 设A为n阶矩阵,如果A的顺序主子式Di 0(i 1, 2, , n 1), 则A可分解为一个下三角矩阵L和一个上三角矩阵U的乘积, 且这种分解是唯一的.
相关文档
最新文档