一次函数-函数的图象3【教案】
一次函数的图像教案

一次函数的图像教案教案:一次函数的图像一、教学目标:1. 学生理解一次函数的定义和特征;2. 学生能够根据一次函数的函数式和关键点画出函数的图像;3. 学生能够根据图像找出一次函数的函数式和关键点。
二、教学准备:1. 教师准备一些一次函数的函数式和关键点,以及对应的图像;2. 教师准备白板/黑板、彩色粉笔/白板笔。
三、教学内容及过程:Step 1:引入话题(5分钟)教师通过回顾线性函数的概念,引出一次函数的概念,并解释一次函数的定义和特征:一次函数的函数式为y = kx + b,其中k、b为常数,k是斜率,表征函数图像的倾斜程度;b是截距,表征函数图像与y轴的交点。
Step 2:展示图像(10分钟)教师依次展示几个一次函数的函数式和对应的图像,要求学生观察图像的特点,并简单描述图像的特征。
例如:y = 2x + 1,y = -3x + 2等。
Step 3:通过函数式画图(15分钟)教师选取一个一次函数的函数式,例如y = 2x + 1,提醒学生注意斜率和截距的含义,然后引导学生根据函数式画出对应的图像。
教师提醒学生考虑以下步骤:1. 确定截距:将x = 0代入函数式,求得y的值,找到图像与y轴的交点;2. 确定斜率:由于斜率表示了图像的倾斜程度,可以通过求取两个点的纵坐标之差与横坐标之差的比值来得到。
教师通过示范的方式,将函数式y = 2x + 1画出来,并与学生一起讨论改变函数式对图像的影响。
Step 4:通过关键点画图(15分钟)教师将一次函数的关键点的概念引入,解释关键点是指图像上的重要点,包括图像与坐标轴的交点,以及图像上的极值点等。
教师提醒学生考虑以下步骤:1. 确定截距:将x = 0代入函数式,求得y的值,找到图像与y轴的交点;2. 确定斜率:由于斜率表示了图像的倾斜程度,可以通过求取两个关键点的纵坐标之差与横坐标之差的比值来得到。
3. 找到其他关键点:通过确定更多的关键点,来描绘出更完整的图像。
一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。
◆2、会根据数量关系,求正比例函数、一次函数的解析式。
◆3、会求一次函数的值。
〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。
◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。
〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。
定义:一般地,函数叫做一次函数。
当时,一次函数就成为叫做正比例函数,常数叫做比例系数。
强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。
(2)正方形周长与面积之间的关系。
(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。
本钱与所存月数之间的关系。
此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。
解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。
得,是的一次函数,也是正比例函数。
(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。
(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。
练习:1.已知若是的正比例函数,求的值。
2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。
(2)求当时,的值。
例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。
北师大版八年级上册数学4.3《一次函数的图象》教案

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数图象相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过描点法绘制一次函数的图象。
北师大版八年级上册数学4.3《一次函数的图象》教案
一、教学内容
本节课选自北师大版八年级上册数学第四章第三节《一次函数的图象》。教学内容主要包括以下方面:
1.理解一次函数图象的定义,掌握一次函数图象的特点;
2.学会使用描点法绘制一次函数的图象;
3.掌握一次函数图象与系数的关系,分析一次函数图象的增减性;
4.加强课后辅导,对学生在课堂上学到的知识进行巩固,及时发现并解决他们在学习过程中遇到的问题。
2.教学难点
-理解并掌握一次函数图象与系数的关系,尤其是斜率k和截距b对图象的影响;
-能够在实际问题中灵活运用一次函数图象进行分析和解决。
举例解释:
(1)难点在于让学生理解斜率k和截距b对一次函数图象的影响。教师可以通过动态演示或实物举例,让学生直观地感受k、b值变化时图象的动态变化;
(2)在解决实际问题时,学生可能难以将问题转化为一次函数图象进行分析。教师应引导学生学会提取关键信息,建立数学模型,并运用一次函数图象进行问题求解。
4.能够运用一次函数图象解决实际问题,提高学生的应用能力。
二、核心素养目标
1.培养学生的逻辑推理能力,通过探索一次函数图象的绘制方法,理解图象与系数之间的关系,提高学生的数据分析与抽象思维能力;
2.培养学生的空间想象能力,能够根据一次函数的解析式,想象并绘制出相应的图象,加强对一次函数图象的理解;
第07讲一次函数-—图象与性质(教案)

-一次函数图象的变换与识别
4.练习与巩固
-判断一次函数的增减性
-根据斜率和截距绘制一次函数图象
-解答与一次函数相关的问题,运用图象分析解决实际问题
二、核心素养目标
1.培养学生的数感与符号意识,通过一次函数的学习,使学生能够理解数学符号表示的实际意义,提高运用符号进行表达和交流的能力。
-图象的变换:难点在于掌握一次函数图象的平移、压缩、拉伸等变换规律,以及这些变换对斜率和截距的影响。
-例如:当一次函数图象进行平移时,斜率k保持不变,截距b发生变化,学生需要理解这种变换背后的数学原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数—图象与性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体以固定速度移动的情况?”(如骑自行车匀速前进)。这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数图象与性质的奥秘。
2.教学难点
-一次函数图象的理解:难点在于理解一次函数图象的几何意义,如何从图象中获取信息,以及如何将实际问题转化为一次函数图象。
-例如:学生可能难以理解图象上某点的坐标如何对应实际问题中的具体情境。
-一次函数性质的深入理解:难点在于理解斜率和截距对一次函数图象的精确影响,以及如何通过性质预测图象的形态。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率和截距这两个重点。对于难点部分,如斜率的意义和截距的物理含义,我会通过举例和图象分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如物体的匀速运动。
一次函数的图象和性质教案

一次函数的图象和性质教案一、教学目标1. 让学生理解一次函数的图象和性质,掌握一次函数的图象特征和函数值的计算方法。
2. 培养学生运用一次函数解决实际问题的能力,提高学生的数学应用意识。
3. 培养学生合作学习、积极探究的学习态度,提高学生的自主学习能力。
二、教学内容1. 一次函数的图象特征2. 一次函数的性质3. 一次函数在实际问题中的应用三、教学重点与难点1. 教学重点:一次函数的图象特征,一次函数的性质,一次函数在实际问题中的应用。
2. 教学难点:一次函数的图象与系数的关系,一次函数在实际问题中的灵活应用。
四、教学方法1. 采用问题驱动法,引导学生探究一次函数的图象和性质。
2. 利用数形结合法,让学生直观地理解一次函数的图象特征。
3. 运用实例分析法,培养学生运用一次函数解决实际问题的能力。
五、教学过程1. 导入新课:引导学生回顾一次函数的一般形式,提出本节课要研究的一次函数的图象和性质。
2. 探究一次函数的图象特征:让学生分组讨论,总结一次函数图象的斜率和截距与函数图象的关系。
3. 讲解一次函数的性质:结合图象,讲解一次函数的单调性、增减性、对称性等性质。
4. 应用练习:给出几个实际问题,让学生运用一次函数解决问题,巩固所学知识。
5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。
6. 布置作业:布置一些有关一次函数图象和性质的练习题,巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答的准确性以及与同学的互动情况,评价学生的学习态度和理解程度。
2. 练习完成情况评价:通过学生完成的练习题,评估学生对一次函数图象和性质的理解及应用能力。
3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作态度、问题探究能力和创新思维。
七、教学资源1. 教学PPT:制作包含一次函数图象和性质的PPT,用于课堂演示和讲解。
2. 练习题库:准备一系列一次函数图象和性质的练习题,用于课堂练习和学生课后自学。
鲁教版七年级数学上册《一次函数的图像》教案

各个点( x, y);
教师提示
注:点( x, y)中横坐标 x、纵坐标 y 分别是表中 x、
y 对应的一对值.
2、活动二:画函数 y=2x+1 的图象. 画一个直角坐标系,并在直角坐标系中画出课本上面的 学生独立完成
各个点( x, y);
3、想一想、议一议:
问题一:观察两个坐标系中的点,有什么发现?
函数 y 的值分别作为点的横坐标和纵坐标,在直角坐标系中
通过理性思
描出它的对应点,所有这些点组成的图形叫这个函数的图象; 学生观察可得 考,建立数形
2、一次函数的图象特征:一次函数 y=kx+b(k,b 为常 所,且 k≠0)可以用直角坐标系中的一条直线来表示,这条 条直线上,教师 维.同时也培
3、一次函数的图象特征是什么?
学生自学
4、怎样求函数的图象与坐标轴交点的坐标?有哪些方
法?
学生先学,感 受本节课的 主要内容,有
三、探究活动
一个初步的
1、活动一:画函数 y=2x 的图象. (1)填表:
认识
x
…-
-
0
1
2
…
2
1
师生共同完成
y=2x
…
…
点
…
…
( x, y)
(2)画一个直角坐标系,并在直角坐标系中画出上面的
.
练习,有进一
5、已知点(a,4)在直线 y=x-2 上,则 a=
.
步提高.
6、不论 k 取何值,直线 y=kx+5 一定经过的点是
.
八、巩固练习
在同一条道路上,甲每小时走 1 千米,出发 0. 5 小时后,
乙以每时 2 千米的速度追甲.设乙行走的时间为 t 时.
七年级数学上册6.3一次函数的图像教案鲁教版五四制

【课 题】一次函数的图像(3)
【教学目标】
1、了解确定一次函数表达式所需要的条件.2、会根据已知条件求出一些简单的一次函数表达式.
3、能利用所学知识解决有关一次函数的实际问题.
【教学重点】
用待定系数法确定一次函数表达式
【教学难点】
用一次函数表达式解决有关的实际问题.
【教学过程】
教学过程
函数表达式为____。
2、若一次函数y=kx+3的图象过A(1,-2),则k= ____
3、若直线y=2x+b过点(1,-2),则b=_____,
4、已知一次函数y=kx+b的图象经过点(-1,2)和(1,4)求此一次函数表达式
六、链接中考:
2、如图:一次函数图象经过点A,且与正比例函数的图象交于点B,则该一次函数的表达式为( )
七、课堂小结:
你在本节课当中收获了哪些知识?与同伴交流一下。
八、作业:
课本109页习题:1、2、
预习作业:《次函数图象的应用》
了解目标及要求,增强学习的目的性
让学生分析思考由图象得到什么信息。如何利用信息得出结果。
教师板书解题过程
通过引例初步感知确定正比例函数表达式的步骤。
理解确定一次函数表达式的一般步骤
解:设y=kx+b,根据题意,得
14.5=b (1)
16=3k+b (2)
将b=14.5代入(2),得k=0.5
所以在弹性限度内,y=0.5x+14.5
当x=4时,y=0.5×4+14.5=16.5
即物体的质量为4千克时,弹簧长度为16.5厘米.
想一想:
1、确定正比例函数的表达式需要几个条件?
一次函数的图像教案

一次函数的图像教案第一章:一次函数的定义与表达式1.1 一次函数的定义引导学生回顾初中数学中的一次函数的定义。
解释一次函数是形如y=kx+b的函数,其中k和b是常数,x的次数为1。
1.2 一次函数的表达式介绍一次函数的一般形式y=kx+b,其中k是斜率,b是截距。
解释斜率和截距的概念,并给出具体的例子进行说明。
第二章:一次函数的图像2.1 直线图像的性质解释直线图像的几个重要性质,如直线是无限延伸的,直线上的点满足一次函数关系等。
通过具体的例子,让学生观察和理解直线的斜率和截距对图像的影响。
2.2 斜率和截距的计算教授斜率和截距的计算方法,并给出具体的例子进行示范。
让学生进行一些练习题,巩固他们对斜率和截距的理解和计算能力。
第三章:一次函数图像的性质3.1 斜率的含义解释斜率是直线上任意两点的纵坐标之差与横坐标之差的比值。
解释斜率的正负性和直线的倾斜程度之间的关系。
3.2 截距的含义解释截距是直线与y轴的交点的纵坐标。
解释截距的意义,并给出具体的例子进行说明。
第四章:一次函数图像的绘制4.1 利用斜率和截距绘制直线教授如何根据斜率和截距的值绘制直线的方法。
给出一些具体的例子,让学生练习绘制直线。
4.2 利用两点绘制直线解释如何根据已知的两点来绘制直线。
给出一些具体的例子,让学生练习绘制直线。
第五章:一次函数图像的应用5.1 实际问题中的一次函数图像通过一些实际问题,让学生理解一次函数图像在实际中的应用。
让学生尝试解决一些实际问题,如计算物品的成本、距离和速度等问题。
5.2 一次函数图像的解析教授如何通过一次函数图像来解析一些问题,如求解方程、求解最值等。
给出一些具体的例子,让学生练习解析一次函数图像。
第六章:一次函数图像的交点6.1 交点的定义解释一次函数图像的交点是指两条直线相交的点。
给出两个一次函数图像的例子,让学生观察和理解交点的含义。
6.2 求解交点的方法教授如何求解两条一次函数图像的交点的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级八年级课题函数的图像课型新授教学媒体多媒体
教学目标知识
技能
1.通过实例总结函数三种表示方法。
2.了解三种表示方法的优缺点。
3.会根据具体情况选择适当方法。
过程
方法
1.经历回顾思考,训练提高归纳总结能力。
2.利用数形结合思想,根据具体情况选用适当方法解决问题的能力。
情感
态度
积极参与活动,提高学习兴趣。
教学重点函数的三种表示方法及应用。
教学难点函数的三种表示方法及应用。
教学过程设计
教学程序及教学内容师生行为设计意图一、情境引入
1、函数的三种表示方法是什么?
2、你认为函数的三种表示方法各有什么优缺点。
根据自己的看法填表。
表示方法全面性准确性直观性形象性
列表法×√√×
解析式法√√××
图像法××√√
3、归纳从所填表中可清楚看到三种表示方法的优缺点,在遇到实际问题时,如何选择适当的表示方法呢?下面我们通过实际问题来研究。
二、探究新知
1、出示教材例4
一水库的水位在最近5小时内持续上涨,下表记录了这5个小时的水位高度:
t / 时0 1 2 3 4 5
y/ 米10
** ** ** ** **
(1)由记录表推出这5个小时中水位高度y(单位:米)随时间t(单位:时)变化的函数解析式,并画出函数图象;
(2)据估计按这种上涨规律还会持续上涨2小时,预测再过2小时水位高度可达到多少米.
分析:(1)由表中的数据可知,5小时前的水位高度为10米,5小时内每小时上涨0.05米,由此推断,当时间为t时,应上涨0.05t米,所以t时对应的水位高度y=10+0.05t。
因题中要求推出的是这5个小时中的函数关系,故应加上自变量取值范围,所以函数解析式为y=10+0.05t (0≤t≤5).
(画图象略)
(2)根据图象或表中数据规律都能估计出再过2小时的水位高度为10.35米,但不如利用解析式更为简便、准确:把t=7代入解析式,求得y=10.35米. 教师出示问题,学生讨论
后板书。
1、列表法;2、
图像法;3、解析式法;
教师根据学生回答情况
举例说明。
如:火车时
刻表、圆周长、公式、
心电图等。
教师根据问题设计引导
学生找两变量的关系。
写
出函数解析式。
教师画出图像。
学生思考,分析。
2小时
后水位通过解析式求准
确。
通过图像估算直接方
便。
为了准确,通过解析
式求出较好。
归纳优缺点有利于
后面的应用。
培养学生的发现能
力。
学生利用函数知识
推测事物的变化趋
势。
板 书 设 计
点拨:解决函数问题,应优先考虑求解析式,解析式确定后许多问题便迎刃而解.
2、归纳:题目中只给出了列表法,我们通过分析求出解析式并画出了图象,从这个例子可以看出函数的三种不同表示法可以转化。
三、课堂训练
1.下表中的数据反映的函数解析式是___________.
x -3 -2 -1 0 1 2 3 4 y
10
9
8
7
6
5
4
3
2.我国北方人的标准体重y (kg)与其身高x (cm)有函数关系406.0-=x y ,根据解析式,把函数关系用列表法表示出来. 4、教材106页练习1、2
四、小结归纳
通过本节课学习,我们认识了函数的三种 不同的表示方法,并归纳总结出三种表示 方法的优缺点,学会根据实际情况和具体 要求选择适当的方法来解决问题,为下面 学习数形结合的函数做好了准备。
五、作业设计
1、教材107页习题.14.1第7题
2、右图是函数)0(2
>=x x S 的图象.
而函数2x S =的自变量取值范围是所有 实数,其图象是关于y 轴对称的,请你在 右图中利用轴对称画出2x S =的图象.
一、函数的三种表示方法 例: 练习: 二、不同表示方法的优缺点 三、不同表示方法的具体选择
教 学 反 思。