合成孔径声呐原理

合集下载

三维合成孔径声呐成像系统

三维合成孔径声呐成像系统

三维合成孔径声呐成像系统所属领域:电子信息完成人:张学武等成果简介:系统主要由四个部分组成:湿端组件(拖体)、拖曳系统、信号处理机和控制台,各组成部分之间通过千兆以太网进行通信,协同完成超声波信号的发射、接收、声数据处理、和声图像的成像功能。

控制命令由干端显控台发出,通过光纤传输到湿端组件,湿端数据采集传输和控制中心通过串口与传感器进行通信;采集获得的声数据通过光纤发送到显控台进行处理。

数据采集传输和控制中心的硬件平台包含两块数据采集传输模块和一块控制中心模块。

数据采集板与接收机共用一个水密电子舱;控制中心板与系统电源共用一个水密电子舱。

主要技术指标本三维合成孔径声呐成像系统具有数据采集、传输与控制功能,其主要技术指标如下:(1)同步触发信号最高支持256路16bit AD同步采样,采样频率等于100kHz。

(2) AD采集差分输入,输入信号动态范围-1.625~1.625V。

输出通道幅度不一致性小于1dB,相位不一致性小于3度,通道噪声小于1mV(有效值)。

(3)传感器数据、控制命令与AD采集数据通过千兆以太网信号经控制中心电光转换后,进行单模光纤传输。

(4)湿端数据采集传输模块为+5. 7V直流电源供电,每个模块电流4A,电源输出纹波峰峰值电压≤100mV。

(5)数据采集功能分为两块电路板完成,每块电路板完成128通道数据采集,通过母板与接收机连接,每块板配置温度传感器芯片。

(6)通过串口接收信号采集板转发的显控台控制命令,进行命令解析和分包,再通过各串口分别发送各种对应的控制命令和设置参数给控制电机和各个传感器。

(7)提供3路线性调濒脉冲信号的发射信号源,DA频率大于200kHz。

信号形式:1路15kHz-30kHz正调频脉冲;1路6kHz-15kHz正调频脉冲;1路6kHz-15kHz 正调频脉冲或15kHz-6kHz反调频脉冲。

信号幅度3.3V, 1.65V, 0.825V,0.4125V可调,脉冲宽度5ms,10ms, 20ms可调。

合成孔径声纳说明书

合成孔径声纳说明书

合成孔径声纳是一种水声设备,利用合成孔径成像原理,通过小物理声学基阵运动,逐次发射、接收和存储信号,再把所有存储的回波信号进行相干叠加获得一个虚拟大孔径阵列,进而产生一个窄波束,实现探测高分辨力走航方向的目标。

合成孔径声纳由三个分系统组成:
声纳分系统:由合成孔径声纳基阵、发射机、接收机、数据采集传输和存储子系统、声纳信号处理机和显控台等组成。

姿态与位移测量分系统:由磁罗经和GPS等组成。

拖曳分系统:由绞车、拖缆和拖体等组成。

使用合成孔径声纳时,需要注意以下几点:
确保设备连接正确,电源充足,并按照说明书正确设置参数。

在使用前,需要进行充分的调试和校准,以确保设备的精度和可靠性。

在使用过程中,需要注意设备的运行状态和周围环境的变化,避免干扰和损坏设备。

在使用完毕后,需要及时清理设备,并妥善保管。

科技前沿▏合成孔径成像的应用及发展

科技前沿▏合成孔径成像的应用及发展

科技前沿▏合成孔径成像的应用及发展一、引言合成孔径成像自20世纪50年代提出,应用于雷达成像,历经70年的研发,已经日趋成熟,成功地用于环境资源监测、灾害监测、海事管理及军事等领域。

受物理环境制约,合成孔径在声呐成像中的研发与应用起步稍迟,滞后于雷达,近年来在民用及军事领域的研究与应用进展加速。

此外,近年来合成孔径成像在声学无损检测、医学超声成像等领域的研发也有长足进步,并扩展到其他领域如光学、微波成像等。

本文简要介绍了条带合成孔径成像的原理及其在雷达、声呐、无损检测及医学影像等方面的应用及发展。

二、合成孔径成像原理条带合成孔径成像利用小孔径基阵,在直线运动轨迹上均速移动,并在确定位置顺序发射,接收并存储回波信号。

根据空间位置和相位关系对不同位置的回波信号进行相干叠加处理,合成虚拟大孔径的基阵,从而获得沿运动方向的高分辨率。

在1985年的先驱奖故事中,合成孔径雷达(SAR)的发明者Wiley 谦逊地说:我有幸想到了一个基本想法,我称之为多普勒波束锐化(DBS),而不是合成孔径雷达。

和所有信号处理一样,有一个双重理论:一个是频域解释,这是多普勒分析;在时域内分析系统,这就是合成孔径雷达。

在时间域对合成孔径成像的“合成阵列”的解释如图1所示。

图1 合成阵列原理其中,阵元或天线水平长度为L,水平波束开角为θ==λ/L。

工作频率时,波长为λ。

阵元行进轨迹为直线,点目标与行进轨迹的垂直距离为R。

阵元在位置1时,目标进入波束;阵元在位置N时,目标退出波束。

合成孔径阵元数为N,合成孔径长为D=R×θ==R×λ/ L,合成孔径波束开角为θsyn=λ/D=λ/(R×(λ/L))=L/R。

采样结束,合成孔径波束形成后处理时,对不同位置的回波信号进行相干叠加,需要计算阵元发射信号至目标、目标反射信号返回阵元的往返声程2R。

因此,合成孔径波束开角实际应为θsyn=λ/2D=λ/(2R×(λ/L)) =L/2R。

声学所合成孔径声呐奖项

声学所合成孔径声呐奖项

声学所合成孔径声呐奖项合成孔径声呐(Synthetic Aperture Sonar,简称SAS)是一种利用声波进行水下探测和成像的先进技术。

它通过在声呐传感器上安装多个接收元件,利用传感器与目标之间的相对运动,实现高分辨率的成像效果。

合成孔径声呐技术的发展为水下任务的执行提供了重要的支持,因此在该领域取得卓越成就的个人或团队往往会获得声学所合成孔径声呐奖项的认可和嘉奖。

声学所合成孔径声呐奖项的设立旨在表彰在合成孔径声呐技术研究、应用和推广方面做出杰出贡献的个人或团队。

该奖项的设立不仅有助于激励科研人员在该领域进行深入研究,还能促进学术交流和合作,推动合成孔径声呐技术的不断发展。

合成孔径声呐技术的研究与应用是声学所合成孔径声呐奖项的重要评选标准。

在科学研究方面,获奖者应具备扎实的理论基础,深入探索合成孔径声呐技术的原理和方法,提出创新的研究思路和解决方案。

在应用方面,获奖者应能将合成孔径声呐技术应用于实际水下任务中,取得显著的成果和效益。

他们的研究和应用成果应具备一定的创新性和实用性,能够为水下探测和成像领域的进一步发展提供有益借鉴和启示。

声学所合成孔径声呐奖项还注重对团队协作和合作创新的肯定。

合成孔径声呐技术的研究和应用需要多领域、多学科的交叉融合,需要不同研究团队之间的密切合作和互相支持。

因此,获奖者应具备良好的团队合作精神和创新能力,能够在团队中发挥协同作用,实现合成孔径声呐技术的整体突破和提升。

声学所合成孔径声呐奖项还特别强调获奖者在合成孔径声呐技术推广和普及方面的贡献。

合成孔径声呐技术的研究成果应该能够为水下探测和成像领域的广大从业人员提供参考和借鉴,促进技术的推广和应用。

获奖者应具备良好的科普能力和沟通能力,能够将复杂的技术概念和方法以简明易懂的方式传达给非专业人士,提高合成孔径声呐技术在社会中的认知度和影响力。

声学所合成孔径声呐奖项的评选也注重获奖者在学术界和行业中的影响力和声誉。

圆周合成孔径声呐技术综述

圆周合成孔径声呐技术综述

圆周合成孔径声呐技术综述
杜选民;曾赛
【期刊名称】《声学技术》
【年(卷),期】2022(41)3
【摘要】圆周合成孔径声呐(Circular Synthetic Aperture Sonar,CSAS)具有亚波长量级的二维分辨率、三维成像能力和全方位观测能力,在水下威胁目标查证、战场环境侦察等领域具有广阔的应用前景。

文章分析了CSAS成像原理及分辨率,对国内外CSAS试验研究进展进行了综述,对CSAS成像算法、运动补偿、三维成像和后置处理等关键技术进行了分析,总结归纳了CSAS成像技术存在的问题,并对CSAS未来的发展进行了展望。

【总页数】11页(P323-333)
【作者】杜选民;曾赛
【作者单位】上海船舶电子设备研究所;水声对抗技术重点实验室
【正文语种】中文
【中图分类】TN957
【相关文献】
1.合成孔径声呐技术研究(综述)
2.深海多波束系统、深拖系统及合成孔径声呐系统的技术性能对比
3.有缺陷的多接收阵合成孔径声呐成像技术
4.多波束合成孔径声呐技术研究进展
5.合成孔径声呐技术的现状及未来趋势
因版权原因,仅展示原文概要,查看原文内容请购买。

声纳是什么工作原理的应用

声纳是什么工作原理的应用

声纳是什么工作原理的应用什么是声纳声纳(Sonar)是一种利用声波在水中传播的原理来进行测距、探测和通信的技术。

通过发射声波脉冲并接收其回波,声纳可以获取目标物体的位置、形态等信息。

声纳在海洋探测、水下导航、捕鱼、测量水深等领域有着广泛的应用。

下面将详细介绍声纳的工作原理及其应用。

声纳的工作原理声纳系统主要由发射器、接收器和设备控制系统三部分组成。

工作过程如下:1.发射器发射声波脉冲:声纳系统中的发射器会产生一系列高频声波脉冲。

这些声波脉冲往往以固定的频率和振幅进行发送。

声波脉冲通过压电晶体或电磁换能器转换成机械能后,进一步转化为声能并发射出去。

2.声波脉冲在介质中传播:发射出的声波脉冲在水中以声速传播,直到遇到目标物体或水下地形。

声波在水中传播的速度取决于水的密度和温度等因素。

3.回波被接收器接收:当声波脉冲碰撞到目标物体或水下地形时,一部分声波会被反射回来,形成回波。

接收器接收并转化回波信号,将其转化为电信号。

4.回波信号的处理和分析:接收器将接收到的回波信号传输给设备控制系统进行分析、处理和解码。

设备控制系统可以根据回波信号的强度、时间和频率等信息,计算出目标物体的位置、形态、运动状态等。

声纳的应用声纳技术在海洋、水下探测、通信和测量等领域有着广泛的应用。

海洋探测声纳技术在海洋探测中起着关键的作用。

通过声纳系统可以对海底地形、海洋生物和海洋环境进行精确测量和探测,有助于地质勘探、海底管线敷设、海洋资源调查等工作的开展。

此外,在海洋科学研究中,声纳技术也被广泛应用于鱼群数量估计、海底植被调查等方面。

水下导航声纳技术在水下导航及海底遥感中也发挥着重要作用。

通过声纳技术,可以实时获取水下地形、水下物体及水下障碍物的信息,为水下机器人、潜水员等提供准确的导航和障碍物避难的能力。

在水下勘探、水下考古、海底机器人等领域,声纳技术为相关研究和工作提供了有效的技术支持。

捕鱼声纳技术在捕鱼业中有着广泛的应用。

被动合成孔径

被动合成孔径
被动合成孔径技术是一种利用阵列的运动特性,将时间增益转化为空间增益,解决因为孔径或阵元数等物理因素导致系统性能受限的问题,从而提高系统性能的技术。

其基本原理是利用多个接收阵元的信号处理技术,将接收到的信号进行适当的延时、加权、累加等处理,以形成虚拟孔径,从而实现远距离目标的成像和定位。

被动合成孔径技术在水下探测、雷达、声呐等领域具有广泛的应用前景,尤其在水下探测领域,已经取得了很多的研究成果。

其独具的高空间增益和高方位分辨力特性,使其在民用和军用领域都有着广泛的应用前景。

以上信息仅供参考,建议咨询专业人士获取更多信息。

声呐法律规定(3篇)

第1篇一、引言声呐,作为一项重要的水下探测技术,广泛应用于海洋资源开发、海洋科学研究、海洋环境保护、海上安全等领域。

然而,声呐在探测过程中产生的噪声对海洋生态环境和生物资源造成了严重的影响。

为了保护海洋生态环境,维护海洋生物资源,我国制定了相应的声呐法律规定,以确保声呐技术的合理使用。

二、声呐的定义与分类1. 定义声呐,全称为声波探测与测距,是利用声波在水中的传播特性,通过声波发射、接收、处理等过程,实现对水下目标探测、定位、测距等功能的装置。

2. 分类根据声呐的工作原理,可分为以下几种类型:(1)主动声呐:通过发射声波,接收反射回来的声波信号,实现对目标的探测、定位、测距等功能。

(2)被动声呐:仅接收目标发出的声波信号,通过对声波信号的频率、时间、强度等参数进行分析,实现对目标的探测、定位、测距等功能。

(3)多波束声呐:通过多个发射器和接收器,实现对水下地形、地貌的精细探测。

(4)合成孔径声呐:利用多个发射器和接收器,通过信号处理技术,实现对目标的探测、定位、测距等功能。

三、声呐法律规定的主要内容1. 《中华人民共和国海洋环境保护法》《中华人民共和国海洋环境保护法》是我国海洋环境保护的基本法律,其中对声呐的使用进行了规定。

根据该法,声呐的使用应当符合以下要求:(1)声呐使用单位应当取得相应的许可证。

(2)声呐使用单位应当采取有效措施,减少声呐使用对海洋生态环境的影响。

(3)声呐使用单位应当对声呐使用过程中的噪声进行监测,确保噪声符合国家规定。

2. 《中华人民共和国海洋渔业法》《中华人民共和国海洋渔业法》是我国渔业管理的基本法律,其中对声呐在渔业活动中的应用进行了规定。

根据该法,声呐在渔业活动中的应用应当符合以下要求:(1)声呐使用单位应当取得相应的许可证。

(2)声呐使用单位应当采取措施,避免对渔业资源造成损害。

(3)声呐使用单位应当对声呐使用过程中的噪声进行监测,确保噪声符合国家规定。

3. 《中华人民共和国水下考古条例》《中华人民共和国水下考古条例》是我国水下考古管理的基本法律,其中对声呐在水下考古活动中的应用进行了规定。

合成孔径声纳概述

合成孔径声纳合成孔径声纳的研究起源于五十年代末期,但直到八十年代以后,合成孔径声纳的研究才逐步全面展开。

目前国际上只有少数国家和地区研制出了合成孔径声纳原型机并进行了海上试验。

合成孔径声纳是一种新型高分辨水下成像声纳,合成孔径雷达原理推广到水声领域,就出现了合成孔径声纳。

其基本原理是利用小孔径基阵的移动,通过对不同位置接收信号的相关处理,来获得移动方向(方位方向)上大的合成孔径,从而得到方位方向的高分辨力。

从理论上讲,这种分辨力和探测距离无关。

直观地说,距离越大,合成孔径长度就越长,合成阵的角分辨率就越高,从而抵消了距离增大的影响,保持了分辨力不变。

但合成孔径声纳作为一种水下成像设备,受水下复杂条件的影响,有不同于合成孔径雷达的特点。

首先是声传播信道的非理想性比合成孔径雷达中电磁波传播的严重;其次是声纳拖体的运动稳定性比合成孔径雷达要差得多;再者因为声速大大低于电磁波在空间的传播速度,从而大大限制了拖体运动的速度;最后由于声纳中常采用宽带信号而使雷达中的一些窄带信号处理方法在合成孔径声纳中不再适用,需对已有的算法进行改进或研究新的算法。

这正是合成孔径声纳研究极富挑战性之所在。

合成孔径声纳系统一般由三个分系统组成:1)声纳分系统,由合成孔径声纳基阵、发射机、接收机、数据采集、传输和存储子系统、声纳信号处理机和显控台等组成;2)姿态与位移测量分系统,由姿态、位移测量系统和GPS等组成;3)拖曳分系统,由绞车、拖缆和拖体等组成。

合成孔径声纳可以用于水下军事目标的探测和识别,最直接的应用就是进行沉底水雷和掩埋水雷的高分辨探测和识别。

在国民经济方面,可以用于海底测量、水下考古和搜寻水下失落物体等,尤其可以进行高分辨海底测绘,对数字地球研究具有重要意义。

综合声纳技术研究室"九五"期间在国家863项目支持下,研制出国内第一套合成孔径声纳湖试样机。

合成孔径声纳成像算法合成孔径声纳成像算法分为聚焦处理和非聚焦处理算法。

声纳的工作原理是什么探测法

声纳的工作原理是什么探测法
声纳是一种利用声波进行探测和定位的技术,广泛应用于海洋探测、声纳导航、矿产勘探等领域。

声纳的工作原理基本上是利用声波在介质中的传播特性来实现目标的探测和定位。

1. 声波的传播特性
声波是一种机械波,在介质中传播时,会产生压缩和稀疏的振动。

声波的传播
速度取决于介质的密度和弹性,通常在水中的传播速度约为1500m/s,而在空气
中的传播速度约为340m/s。

2. 声纳系统的组成
声纳系统包括发射器、接收器和信号处理器三部分。

发射器用于产生声波,接
收器用于接收目标反射回来的声波信号,信号处理器则对接收到的信号进行处理、分析和显示。

3. 探测法原理
声纳的工作原理是通过发射器产生的声波在介质中传播,当声波遇到目标物体时,会发生反射。

接收器接收到目标反射回来的声波信号,并通过信号处理器将声波信号转换为电信号进行分析。

4. 探测方法
声纳的探测方法主要有两种:主动声纳和被动声纳。

主动声纳是指通过发射器
主动产生声波,利用目标反射的声波信号进行目标探测;被动声纳是指利用目标自身产生的声波信号进行目标探测。

5. 应用领域
声纳技术在海洋探测中被广泛应用,如潜艇定位、鱼群探测等;在声纳导航中,可以利用声纳系统进行水下目标的定位和导航;在矿产勘探中,声纳技术可以用于地下水的勘探和矿藏的发现。

综上所述,声纳的探测法是利用声波在介质中传播的特性来实现目标的探测和
定位,通过主动或被动的方式进行探测,广泛应用于海洋探测、声纳导航、矿产勘探等领域。

声纳技术的不断发展和创新将为相关领域的研究和应用提供更多可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合成孔径声呐原理
合成孔径声呐(Synthetic Aperture Sonar,简称SAS)是一种
基于声纳技术的遥感系统,用于探测和成像海洋或水下的目标。

其原理如下:
1. 发射声波:合成孔径声呐通过发射声波脉冲来探测目标。

这些声波经由传感器发射至水中,并在水下传播。

2. 接收回波:当声波遇到目标或水下结构时,会产生回波。

传感器会接收到这些回波信号,并将其记录下来。

3. 信号处理:接收到的回波信号经过一系列处理,包括时延校正、滤波和去除杂音等步骤。

这些处理有助于提高信号质量和目标分辨率。

4. 合成孔径:在传感器移动时,传感器会以一定的速度沿着水下路径移动。

合成孔径声呐利用传感器相对于目标的运动,通过将多个接收到的回波信号进行叠加和相位校正,形成一个合成的孔径。

这个合成孔径相当于一个极长的声纳阵列,具有更高的分辨率和更大的侧向视场。

5. 成像处理:通过对合成孔径下的回波信号进行分析和处理,可以获得目标的高分辨率成像。

成像处理技术包括波束成像、相干积累和图像纠正等。

合成孔径声呐的原理与合成孔径雷达(Synthetic Aperture Radar,简称SAR)类似,都是通过利用传感器的运动合成一
个长的孔径,实现高分辨率成像。

由于声波在水中传播的特性和水下环境的复杂性,合成孔径声呐在水下勘探、海洋科学和水下目标检测等领域具有广泛的应用。

相关文档
最新文档