人教版八年级数学上册第12章12.1全等三角形知识水平测试题含答案
新人教版八年级上12.1《全等三角形》同步练习及答案【6】

全等三角形同步练习及答案一、选择题1、下列判断不正确的是( ) .(A)形状相同的图形是全等图形(B)能够完全重合的两个三角形全等(C)全等图形的形状和大小都相同(D)全等三角形的对应角相等2、已知△ABC≌△DEF,BC=EF=6cm,△A BC的面积为18,则EF边上的高的长是[ ].A.3cm B.4cm C.5cm D.6cm3、下列各组图形中,是全等形的是()A、两个含60°角的直角三角形B、腰对应相等的两个等腰直角三角形C、边长为3和4的两个等腰三角形D、一个钝角相等的两个等腰三角形4、如图2,△ABC≌△EFD,那么下列说法错误的是()A、 FC=BDB、EF ABC、AC DED、CD=ED5、下列各组图形中,是全等形的是 ( )A、两个含60°角的直角三角形B、腰对应相等的两个等腰直角三角形C、边长为3和4的两个等腰三角形D、一个钝角相等的两个等腰三角形6、如图:,则∠D的度数为().A. B. C. D.7、如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8、如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A.80° B.70° C.60° D.50°9、若△ABC≌△DEF,点A和点D,点B和点E是对应点。
如果AB=7cm,BC=6cm,AC=5cm,则EF的长为()A. 4cmB. 5 cmC.6 cmD.7 cm10、边长都为整数的△ABC≌△DEF ,AB与DE是对应边, AB=2 ,BC=4 ,若△DEF 的周长为偶数,则 DF的取值为()(A). 3 (B). 4 (C). 5 (D). 3或4或5二、填空题11、由同一张底片冲洗出来的五寸照片和七寸照片 _____ 全等图形(填“是”或“不是”).12、已知三角形三个顶点坐标,求三角形面积通常有以下三种方法:方法1:直接法.计算三角形一边的长,并求出该边上的高.方法2:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法3:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(-1,4),B(2,2),C(4,-1),请你选择一种方法计算△ABC的面积,你的答案是S△ABC =.13、已知△ABC≌△DEF,且∠A=90°,AB=6,AC=8,BC=10,△DEF中最大边长是,最大角是度.14、已知如图1,△ABC≌△FED,且BC=DE.则∠A=__________,AD=_______.FE=_______15、如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE=________cm。
2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章三角形全等的判定》同步练习题附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在△ACD与△ABD中∠C=∠B,再添加下列哪个条件,能判定△ADC≌△ADB()A.AC=AB B.AC⊥CD C.DA平分∠BDC D.CD=BD2.如图,一块玻璃碎成三片,小智只带了第③块去玻璃店,就能配一块一模一样的玻璃,你能用三角形的知识解释,这是为什么?()A.ASA B.AAS C.SAS D.SSSBC若ΔABC的面积3.如图,AE垂直于∠ABC的平分线于点D,交BC于点E,CE=13为12,则ΔCDE的面积是()A.2B.3C.4D.64.工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分別与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≅△MOC,共依据是()A.SSS B.SAS C.ASA D.AAS5.如图,在△ABC中∠C=90°,D是AC上一点,DE⊥AB于点E,BE=BC连接BD,若AC=8cm,则AD+DE等于()A.6cm B.7cm C.8cm D.10cm6.如图,为了测出池塘两端A,B间的距离,小铱在地面上取一个可以直接到达A点和B点的点O,连接AO并延长到C,使OC=OA;连接BO并延长到D,使OD=OB,连接CD并和测量出它的长度,小铱认为CD的长度就是A,B间的距离,她是根据△OAB≌△OCD来判断的AB=CD,那么判定这两个三角形全等的依据是().A.SSS B.SAS C.ASA D.AAS7.“又是一年三月三”.在校内劳动课上,小明所在小组的同学们设计了如图所示的风筝框架.已知∠B=∠E,AB=DE,BF=EC,△ABC的周长为24cm,FC=3cm制作该风筝框架需用材料的总长度至少为()A.44cm B.45cm C.46cm D.48cm8.如图,AB⊥BC,EC⊥BC,AD⊥DE,AD=DE,AB=3,BC=8,则CE长为()A.4 B.5 C.8 D.10二、填空题9.如下图,已知AC=AB,要使△ABE≌△ACD.则需添加一个条件.10.数学实践活动课中,老师布置了“测量小口圆柱形瓶底部内径”的探究任务,某学习小组设计了如下方案:如图,用螺丝钉将两根小棒AC,BD的中点O固定,现测得C,D之间的距离为75mm,那么小口圆柱形瓶底部的内径AB=mm.11.如图,在Rt△ABC中∠BAC=90°,AB=AC分别过点B、C作经过点A的直线的垂线段BD、CE,若BD=5厘米,CE=8厘米,则DE的长为.12.如图,△ABC中,AD是中线AC=3,AB=5则AD的取值范围是.13.如图,在四边形ABEF中,AB=4,EF=6,点C是BE上一点,连接AC、CF,若AC=CF,∠B=∠E=∠ACF,则BE的长为.三、解答题14.图1是郝老师制作的风筝,图2是风筝骨架的示意图,其中AB=AC,BD=CD,∠C=23°.求∠B的度数.15.如图,已知在△ABC中,D、E是BC上两点,且∠ADE=∠AED,∠BAD=∠EAC,求证:AB=AC.16.如图,C是AB上一点,点D,E分别在AB两侧AD∥BE,且AD=BC,BE=AC求证:CD=EC.17.如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,求∠ABO度数.18.课间,小明拿着老师的直角三角尺玩,不小心掉到两堆砖块之间,如图所示,已知∠ACB= 90°,AC=BC,AD⊥DE,BE⊥DE.(1)试说明:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a(每块砖的厚度相同)参考答案1.C2.A3.A4.A5.C6.B7.B8.B9.∠C=∠B (答案不唯一)10.7511.13厘米12.1<AD <413.1014.解:在△ABD 和△ACD 中{AB =AC AD =AD BD =CD ∴△ABD ≌△ACD(SSS) ∴∠B =∠C ∵∠C =23° ∴∠B =23°.15.证明:∵∠ADE =∠AED∴AD =AE ,∠ADB =∠AEC在△ABD 与△ACE 中{∠BAD =∠EAC AD =AE ∠ADB =∠AEC∴△ABD ≌△ACE(ASA)∴AB =AC16.证明:∵AD ∥BE∴∠A =∠B在△ADC 和△BCE 中{AD =BC∠A =∠B AC =BE∴△DAC ≌△CBE∴CD =CE ;17.解:∵OM ⊥AB ,ON ⊥BC ∴∠OMB =∠ONB =90°在Rt △OMB 和Rt △ONB 中{OM =ON OB =OB∴Rt △OMB ≌Rt △ONB(HL)∴∠OBM =∠OBN∵∠ABC =30°∴∠ABO =15°.18.(1)解:∵∠ACB =90°∴∠ACD +∠BCE =90°∵AD ⊥DE∴∠ACD +∠DAC =90°∴∠BCE =∠DAC在△ADC 与△CEB 中{∠ADC =∠BEC =90°∠BCE =∠DACAC =BC∴△ADC ≌△CEB(AAS);(2)解:∵△ADC ≌△CEB∴DC =BE ,AD =CE∴DE =DC +CE =BE +AD =35cm ∵一共有7块砖∴每块砖块的厚度a 为:35÷7=5cm .。
人教版数学八年级上册第十二章《全等三角形》测试题含答案

人教版数学八年级上册第十二章《全等三角形》测试题一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.参考答案及试题解析一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EB C=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。
最新人教版八年级数学上册第12章同步测试题及答案

最新人教版八年级数学上册第12章同步测试题及答案第十二章全等三角形12.1 全等三角形基础巩固1.下列说法不正确的是( ).A.形状相同的两个图形是全等形B.大小不同的两个图形不是全等形C.形状、大小都相同的两个三角形是全等三角形D.能够完全重合的两个图形是全等形2.如图所示,△ABD≌△BAC,B,C和A,D分别是对应顶点,如果AB=4 cm,BD=3 cm,AD=5 cm,那么BC的长是( ).(第2题图)A.5 cm B.4 cmC.3 cm D.无法确定3.如图所示,△ABC≌△ADC,∠ABC=70°,则∠ADC的度数是( ).(第3题图)A.70°B.45°C.30°D.35°4.如图所示,△ABC与△DBE是全等三角形,即△ABC≌△DBE,那么图中相等的角有( ).(第4题图)A.1对B.2对C.3对D.4对5.如图所示,△ABC与△DEF是全等三角形,即△ABC≌△DEF,那么图中相等的线段有( ).(第5题图)A.1组B.2组C.3组D.4组6.(1)已知:如图,△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和对应角.(第6题图)(2)由对应边找对应角,由对应角找对应边有什么规律?能力提升7.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( ).(第7题图)A.PO B.PQC.MO D.MQ8.如图所示,△ADF≌△CBE,且点E,B,D,F在一条直线上.判断AD与BC的位置关系,并加以说明.(第8题图)9.某人想把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请你在下图中,帮他沿着虚线画出四种不同的分法.(第9题图)参考答案1.A 分析:选项A中,形状相同的两个图形,大小不一定相同,所以不一定是全等形.选项B,C,D均正确,只要两个图形形状、大小相同,放在一起能够完全重合,它们一定是全等形.全等三角形是全等形的特殊情形.2.A 分析:因为△ABD≌△BAC,所以BC=AD=5 cm.3.A 分析:因为△ABC≌△ADC,所以∠ADC=∠ABC=70°.4.D 分析:因为△ABC≌△DBE,所以根据全等三角形的对应角相等,得∠A=∠D,∠C=∠E,∠ABC=∠DBE.又由∠ABC=∠DBE,得∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=∠CBE.5.D 分析:由全等三角形的对应边相等得三组对应边相等,即AB=DE,AC=DF,BC=EF.又由BC=EF,得BC-CF=EF-CF,即BF=EC.6.解:(1)AB与AC,AE与AD,BE与CD是对应边,∠BAE与∠CAD是对应角.(2)对应边所对的角是对应角,对应边所夹的角是对应角,对应角所对的边是对应边,对应角所夹的边是对应边.7.B 分析:因为△PQO≌△NMO,根据“全等三角形对应边相等”得PQ=NM,所以测出其长度的线段是PQ.8.解:AD与BC的位置关系是:AD∥BC.(第8题答图)理由如下:如图,因为△ADF≌△CBE,所以∠1=∠2,∠F=∠E.又点E,B,D,F在一条直线上,所以∠3=∠1+∠F,∠4=∠2+∠E,即∠3=∠4.所以AD∥BC.9.解:如图所示(答案不唯一).(第9题答图)12.2 三角形全等的判定基础巩固1.如图,在△ABC中,AB=AC,BE=CE,则直接利用“SSS”可判定( ).(第1题图)A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对2.如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,请你再补充一个条件,能直接运用“SAS”判定△ABC≌△DEF,则这个条件是( ).(第2题图)A.∠ACB=∠DEF B.BE=CFC.AC=DF D.∠A=∠F3.如图,请看以下两个推理过程:(第3题图)①∵∠D=∠B,∠E=∠C,DE=BC,∴△ADE≌△ABC(AAS);②∵∠DAE=∠BAC,∠E=∠C,DE=BC,∴△ADE≌△ABC(AAS).则以下判断正确的(包括判定三角形全等的依据)是( ).A.①对②错 B.①错②对C.①②都对 D.①②都错4.如图是跷跷板的示意图,支柱OC与地面垂直,点O是横板AB的中点,AB可以绕着点O上下转动,当A端落地时,∠OAC=20°,横板上下可转动的最大角(即∠A′OA)是( ).(第4题图)A.80° B.60° C.40° D.20°5.(条件开放题)如图,在△ABC和△EFD中,当BD=FC,AB=EF时,添加条件__________,就可得到△ABC≌△EFD(只需填写一个你认为正确的条件).(第5题图)6.(实际应用题)如图是一个三角形测平架,已知AB=AC,在BC的中点D挂一个重锤DE,让其自然下垂,调整架身,使点A恰好在重锤线上,这时AD和BC的位置关系为__________.(第6题图)7.如图,AC⊥BD,垂足为点B,点E为BD上一点,BC=BE,∠C=∠AEB,AB=6 cm,则图中长度为6 cm的线段还有__________.(第7题图)8.如图,为了固定门框,木匠师傅把两根同样长的木条BE,CF两端分别固定在门框上,且AB=CD,则木条与门框围成的两个三角形(图中阴影部分)__________全等(填“一定”“不一定”或“一定不”).(第8题图)9.如图是小华用半透明的纸制作的四边形风筝.制好后用量角器测量发现,无论支架AB与CD有多长,只要满足DA=DB,CA=CB,则∠CAD与∠CBD始终相等.请你帮他说明其中的道理.(第9题图)能力提升10.如图是一块三角形模具,阴影部分已破损.(第10题图)(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A′B′C′?请简要说明理由.(2)作出模具△A′B′C′的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).11.(一题多变题)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE⊥DE于点E,AD=CE.(1)若B,C在DE的同侧(如图①)且AD=CE,求证:AB⊥AC.(2)若B,C在DE的两侧(如图②),其他条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.(第11题图)参考答案1.C 分析:因为AB=AC,BE=CE,由图形知AE=AE,则直接利用“SSS”可判定△ABE≌△ACE.故选C. 2.B 分析:若添加BE=CF,可得BE+EC=CF+EC,即BC=EF.又因为AB=DE,∠B=∠DEF,所以能直接运用“SAS”判定△ABC≌△DEF.故选B.3.B 分析:①中的判定根据为ASA,不是AAS,①错误;②是正确的.故选B.4.C 分析:因为点O是横板AB的中点,AB可以绕着点O上下转动,所以OB′=OA,OC=OC.由HL得Rt △OAC≌Rt△OB′C,所以∠OB′C=∠OAC=20°.所以∠A′OA=40°.故选C.5.∠B=∠F(或CA=DE) 分析:用“SAS”证全等可添加∠B=∠F;用“SSS”证全等可添加CA=DE. 6.垂直分析:由“边边边”可得△ADB≌△ADC,得∠ADB=∠ADC.又因为∠ADB+∠ADC=180°,所以∠ADB=∠ADC=90°.因此AD和BC垂直.7.BD 分析:由AC⊥BD,垂足为点B,BC=BE,∠C=∠AEB,得△ABE≌△DBC,所以BD=AB=6 cm.8.一定分析:由“HL”可证得△ABE≌△DCF.9.解:在△CAD和△CBD中,∵,,, DA DB CA CB CD CD=⎧⎪=⎨⎪=⎩∴△CAD≌△CBD(SSS).∴∠CAD=∠CBD.10.解:(1)只要度量残留的三角形模具片的∠B,∠C的度数和边BC的长即可.根据“ASA”可证明△ABC ≌△A′B′C′.(2)图略.11.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠CEA=90°,∠BAD+∠ABD=90°.在Rt△ADB和Rt△CEA中,∵,, AB CA AD CE=⎧⎨=⎩∴Rt△ADB≌Rt△CEA(HL).∴∠ABD=∠CAE.∴∠BAD+∠CAE=90°.∴∠BAC=180°-(∠BAD+∠CAE)=90°. ∴AB⊥AC.(2)解:仍有AB⊥AC.∵BD⊥DE,CE⊥DE,∴∠ADB=∠CEA=90°,∠BAD+∠ABD=90°.在Rt△ADB和Rt△CEA中,∵,, AB CA AD CE=⎧⎨=⎩∴Rt△ADB≌Rt△CEA(HL).∴∠ABD=∠CAE.∴∠BAD+∠CAE=90°.∴∠BAC=90°.∴AB⊥AC.12.3 角的平分线的性质1. 如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF相交于点D,有以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.其中正确的是( )(第1题图)A. ①B. ②C. ①②D. ①②③2. 如图所示的是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )(第2题图)A. △ABC 的三条中线的交点上B. △ABC 三条角平分线的交点上C. △ABC 三边的中垂线的交点上D. △ABC三条高所在直线的交点上3. 如图所示,M,N分别是OA,OB边上的点,点P在射线OC上,则下列条件中不能说明OC平分∠AOB的是( )(第3题图)A. PM⊥OA,PN⊥OB,PM=PNB. PM=PN,OM=ONC. PM⊥OA,PN⊥OB,OM=OND. PM=PN,∠PMO=∠PNO4. 如图所示,已知BE=CF,BF⊥AC于点F,CE⊥AB于点E,BF和CE相交于点D,下列说法中错误的是( )(第4题图)A. AD是∠BAC的平分线B. DE=DFC. BD=CDD. BD=DF5. 如图,BD是∠ABC的平分线,P是BD上的一点,PE⊥BA于点E,PE=4 cm,则点P到边BC的距离为_________cm.(第5题图)6. 三角形中的角平分线的性质与一个角的平分线的性质相同.如图,在△ABC中,AD是∠BAC的平分线,且BD=CD,DE,DF分别垂直于AB,AC,垂足为E,F.请你结合条件认真研究,然后写出三个正确的结论.(第6题图)7. 如图所示,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE与BD相交于点C.求证:AC=BC.(第7题图)8. 如图所示,PA=PB,∠1+∠2=180°.求证:OP平分∠AOB.(第8题图)参考答案1.D2.B3.D4.D5. 46.解:答案不唯一,如:(1)△BDE≌△CDF;(2)BE=CF;(3)∠B=∠C.证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,又∵BD=CD,∴Rt△BDE≌Rt△CDF,∴BE=CF,∠B=∠C.7.证明:∵∠1=∠2,BD⊥OA,AE⊥OB,∴CD=CE.∵CD⊥OA,CE⊥OB,∴∠ADC=∠BEC=90°.在△ADC与△BEC中,∠ADC=∠BEC,CD=CE, ∠3=∠4.∴△ADC≌△BEC.∴AC=BC.8.证明:过点P作PE⊥AO,PF⊥BO,垂足分别为E,F,则∠AEP=∠BFP=90°.∵∠1+∠2=180°,∠2+∠PBF=180°,∴∠1=∠PBF.在△APE与△BPF中,∠1=∠PBF,∠AEP=∠BFP,PA=PB,∴△APE≌△BPF,∴PE=PF.∴点P在∠AOB的平分线上,即OP平分∠AOB.。
8年级数学人教版上册同步练习全等三角形三角形全等的判定(含答案解析)

8年级数学人教版上册同步练习全等三角形三角形全等的判定(含答案解析)12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△ABE≌△CDF.2.如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二全等三角形的判定与性质4.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A6B.4 C.23D.55.【2013·襄阳】如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.NMEDB CA6.【2012·泸州】如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E﹨A在直线DC的同侧,连接AE.求证:AE∥BC.专题三全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°8.有一座小山,现要在小山A﹨B的两端开一条隧道,施工队要知道A﹨B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A﹨B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边﹨直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等.3.“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等.【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E,C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF 是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——参考答案:1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠ABE=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒ (2)以DC BD =为例进行证明: ∵CF ∥BE ,∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC =∠EDB , ∴△BDE ≌△CDF . 3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明. 证明:∵AE=CD ,BE=BD , ∴AB=CB .又∠ABD=∠CBE ,BE=BD , ∴△ADB ≌△CEB . (2)③④.4.B 解析:∵∠ABC =45°,AD ⊥BC ,∴AD =BD ,∠ADC =∠BDH , ∠AHE =∠BHD =∠C .∴△ADC ≌△BDH .∴BH =AC =4.故选B . 5.证明:如图所示,M∵△AEB由△ADC旋转而得,∴△AEB≌△ADC.∴∠3=∠1,∠6=∠C.∵AB=AC,AD⊥BC,∴∠2=∠1,∠7=∠C.∴∠3=∠2,∠6=∠7.∵∠4=∠5,∴∠ABM=∠ABN.又∵AB=AB,∴△AMB≌△ANB.∴AM=AN.6.证明:∵△ABC和△EDC是等边三角形,∴∠BCA=∠DCE=60°.∴∠BCA-∠ACD=∠DCE-∠ACD,即∠BCD=∠ACE.在△DBC和△EAC中,BC=AC,∠BCD=∠ACE,DC=EC,∴△DBC≌△EAC(SAS).∴∠DBC=∠EAC.又∵∠DBC=∠ACB=60°,∴∠ACB=∠EAC.∴AE∥BC.7.B 解析:∵滑梯﹨墙﹨地面正好构成直角三角形,又∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF.∴∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.故选B.8.解:在△ABC和△CED中,AC=CD,∠ACB=∠ECD,EC=BC,∴△ABC≌△CED.∴AB=ED.即量出DE的长,就是A﹨B两端的距离.9.解:对.理由:∵AC ⊥AB,∴∠CAB=∠CAB′=90°. 在△ABC 和△AB′C 中,ACB ACB AC AC CAB CAB =⎧⎪=⎨⎪=⎩∠∠′,,∠∠′, ∴△ABC ≌△AB′C (ASA ). ∴AB′=AB .。
人教版数学八年级上册 12.1全等三角形基础检测含答案

人教版数学八年级上册第12章基础检测含答案12.1全等三角形一.选择题1.已知△ABC的三边的长分别为3,5,7,△DEF的三边的长分别为3,7,2x﹣1,若这两个三角形全等,则x的值是()A.3 B.5 C.﹣3 D.﹣52.如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.∠ABD=∠CBD B.△ABD和△CDB的周长相等C.AD=BC D.△ABD和△CDB的面积相等3.如图两个直角三角形,若△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直4.如图,△ABC与△DEF是全等三角形,则图中相等的线段有()A.1对B.2对C.3对D.4对5.△ABC≌△DEF,AB=2,BC=4,若△DEF的周长为偶数,则DF的取值为()A.3 B.4 C.5 D.3或4或5 6.下列说法正确的是()A.面积相等的两个图形全等B.周长相等的两个图形全等C.形状相同的两个图形全等D.全等图形的形状和大小相同7.已知△ABC≌△FED,若∠E=37°,∠C=100°,则∠A的度数是()A.100°B.80°C.43°D.37°8.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠E的度数为()A.30°B.50°C.60°D.100°9.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形10.已知,如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DF B.AD=BE C.DF=EF D.BC=EF二.填空题11.已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是厘米.12.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE 和△ACB全等,写出所有满足条件的E点的坐标.13.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC=.14.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=5,则AC=.15.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′=°,∠A =°,B′C′=,AD=.三.解答题16.已知:如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的对应边上的高.求证:AM=DN.17.如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,求∠CDE的度数.18.如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.19.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.参考答案与试题解析一.选择题1.【解答】解:∵这两个三角形全等,∴2x﹣1=5,解得,x=3,故选:A.2.【解答】解:A、∵△ABD≌△CDB,∴∠ABD=∠CBD,选项说法错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,选项说法正确;C、∵△ABD≌△CDB,∴AD=BC,选项说法正确;D、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,选项说法正确;故选:A.3.【解答】解:∵Rt△ABC≌Rt△CDE,∴AC=CE,∠A=∠ECD,∠B=∠D,∠ACB=∠E.∵△ABC是直角三角形,∠A+∠ACB=90°,∴∠ACB+∠ECD=∠ACB+∠A=90°,∴∠ACE=180°﹣90°=90°,∴AC⊥CE,∴AC和CE相等且互相垂直,故选:D.4.【解答】解:∵△ABC与△DEF是全等三角形,∴AB=DE,AC=DF,BC=EF,∴BC﹣EC=EF﹣EC,∴BE=CF,即相等的线段有4对,故选:D.5.【解答】解:∵△ABC≌△DEF,AB=2,BC=4,∴DE=AB=2,EF=BC=4,∴4﹣2<DF<4+2,∴2<DF<6,∵DE=2,EF=4,△DEF的周长为偶数,∴DF=4,故选:B.6.【解答】解:A、面积相等的两个图形全等,说法错误;B、周长相等的两个图形全等,说法错误;C、形状相同的两个图形全等,说法错误;D、全等图形的形状和大小相同,说法正确;故选:D.7.【解答】解:∵△ABC≌△FED,∠E=37°,∴∠B=∠E=37°,∵∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣37°﹣100°=43°,故选:C.8.【解答】解:∵△ABC≌△DEF,∠A=50°,∠C=30°,∴∠F=∠C=30°,∠D=∠A=50°,∴∠E=180°﹣∠D﹣∠F=180°﹣50°﹣30°=100°,故选:D.9.【解答】解:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选:B.10.【解答】解:A、∵△ABC≌△DEF,∴AC=DF,故此结论正确;B、∵△ABC≌△DEF,∴AB=DE;∵DB是公共边,∴AB﹣BD=DE﹣BD,即AD=BE;故此结论正确;C、∵△ABC≌△DEF,∴AC=DF,故此结论DF=EF错误;D、∵△ABC≌△DEF,∴BC=EF,故此结论正确;故选:C.二.填空题(共5小题)11.【解答】解:设△ABC边BC上的高为h,则△ABC的面积=BCh=×6h=9,解得h=3,∵△ABC≌△DEF,BC=EF,∴EF边上的高是3cm.故答案为:3.12.【解答】解:如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,点E的坐标是:(1,5),(1,﹣1),(5,﹣1),故答案为:(1,5)或(1,﹣1)或(5,﹣1).13.【解答】解:∵∠BAE=120°,∠BAD=40°,∴∠DAE=∠BAE﹣∠BAD=120°﹣40°=80°,∵△ABC≌△ADE,∴∠BAC=∠DAE=80°.故答案为:80°.14.【解答】解:∵△ABC≌△DEF,EF=5,∴BC=EF=5,∵△ABC的周长为12,AB=3,∴AC=12﹣5﹣3=4.故答案为:4.15.【解答】解:由题意得:∠A′=70°,∠A=∠A′=70°,B′C′=BC=12,AD=A′D′=6.故答案为:70°,70°,12,6.三.解答题(共4小题)16.【解答】方法一:证明:∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM,DN分别是△ABC,△DEF的对应边上的高,即AM⊥BC,DN⊥EF,∴∠AMB=∠DNE=90°,在△ABM和△DEN中,∴△ABM≌△DEN(AAS),∴AM=DN.方法二:∵△ABC≌△DEF,∴BC=EF,∵AM、DN分别是△ABC、△DEF的对应边上的高,∴BCAM=EFDN,∴AM=DN.17.【解答】解:∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∠C=∠E,∴∠ABD=∠CBE=132°÷2=66°,∵∠CPD=∠BPE,∴∠CDE=∠CBE=66°.18.【解答】解:∵△ABC≌△DBC,∴∠ACB=∠DCB,∵∠ACD=88°,∴∠ACB=44°,∵∠A=40°,∴∠ABC=180°﹣40°﹣44°=96°.19.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s或cm/s12.2三角形全等的判定一.选择题1.如图,在△ABC中,AB=AC,E、D分别为AB、AC边上的中点,连接BD、CE交于O,此图中全等三角形的对数为()对.A.4 B.3 C.2 D.12.如图,AB=AD,∠1=∠2,则不一定使△ABC≌△ADE的条件是()A.∠B=∠D B.∠C=∠E C.BC=DE D.AC=AE3.如图,A、B、C、D在一条直线上,MB=ND,∠MBA=∠D,添加下列某一条件后不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN4.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8 D.∠A=40°,∠B=50°,∠C=90°5.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC6.如图,给出的四组条件中,不能证明△ABC≌△DEF的是()A.AB=DE,BC=EF,AC=DF B.AB=DE,∠B=∠E,BC=EFC.AB=DE,AC=DF,∠B=∠E D.∠B=∠E,BC=EF,∠C=∠F.7.如图所示,为了测量出A,B两点之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定D,使CD=BC,那么只要测量出AD的长度也就得到了A,B两点之间的距离,这样测量的依据是()A.AAS B.SAS C.ASA D.SSS8.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是()A.SAS B.SSS C.ASA D.AAS9.如图所示为打碎的一块三角形玻璃,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①去B.带②去C.带③去D.带①和②去10.在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A.①②③B.①②⑤C.①②④D.②⑤⑥二.填空题11.△ABC中,AB=5,AC=a,BC边上的中线AD=4,则a的取值范围是.12.如图,已知CA=DB,要使△ABC和△ABD全等,请补充条件(填上一种即可).13.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.若AC =5,则DF=.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AF2=EC2﹣EF2;④BA+BC=2BF.其中正确的是.15.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB =m,PC=n,AB=c,AC=b,则m+n b+c.三.解答题16.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A =∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.17.已知:如图,E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC的长.18.如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周长.19.已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.(1)若BD⊥AC,CF⊥AB,如图1所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,试说明此时∠BAC与∠BEC的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.参考答案与试题解析一.选择题1.【解答】解:∵AB=AC,∴∠EBC=∠DCB,∵AE=BE,AD=DC,∴BE=DC,∵BC=CB,∴△EBC≌△DCB,∴∠ECB=∠DBC,∴∠EBO=∠DCO,∵BE=CD,∴∠BOE=∠COD,∴△BOE≌△COD,∵∠A=∠A,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE,共有3对全等三角形,故选:B.2.【解答】解:∵∠1=∠2,∵∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,A、符合ASA定理,即能推出△ABC≌△ADE,故本选项错误;B、符合AAS定理,即能推出△ABC≌△ADE,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ABC≌△ADE,故本选项正确;D、符合SAS定理,即能推出△ABC≌△ADE,故本选项错误;故选:C.3.【解答】解:A、根据ASA可以判定△ABM≌△CDN;B、根据SAS可以判定△ABM≌△CDN;C、SSA无法判定三角形全等;D、根据AAS即可判定△ABM≌△CDN;故选:C.4.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.5.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.6.【解答】解:A、由全等三角形的判定定理SSS能证明△ABC≌DEF,故此选项错误;B、由全等三角形的判定定理SAS能证明△ABC≌DEF,故此选项错误;C、由SSA不能证明△ABC≌DEF,故此选项正确;D、由全等三角形的判定定理ASA能证明△ABC≌DEF,故此选项错误;故选:C.7.【解答】解:∵AC⊥BD,∴∠ACB=∠ACD=90°,在△ACB和△ACD中,,∴△ACB≌△ACD(SAS),∴AB=AD(全等三角形的对应边相等).故选:B.8.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA)故选:C.9.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选:C.10.【解答】解:∵在△ABC和△A′B′C′中,有边边角、角角角不能判定三角形全等,∴①②④是边边角,∴不能保证△ABC≌△A′B′C′.故选:C.二.填空题(共5小题)11.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC=a,在△AEB中,AB﹣BE<AE<AB+BE,即5﹣a<2AD<5+a,∴<AD<.,∵AD=4,∴a的取值范围是3<a<13,故答案为:3<a<1312.【解答】解:当CB=DA时,△ABC≌△ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(SSS),故答案为:CB=DA.13.【解答】解:∵BE=CF,∴BE+EC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF=5(全等三角形对应边相等).故答案为:5.14.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵EF⊥AB,∴AF2=EC2﹣EF2;∴③正确;④如图,过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AFE(HL),∴AF=CG,∴BA+BC=BF+F A+BG﹣CG=BF+BG=2BF,∴④正确.故答案为:①②③④.15.【解答】解:如图,在BA的延长线上取点E,使AE=AC,连接EP,∵AD是∠A的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,,∴△ACP≌△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.故答案为:>.三.解答题(共4小题)16.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=(180°﹣40°)=70°.17.【解答】(1)证明:在△ABE中,∠ABE=180°﹣∠BAE﹣∠AEB,在△ABC中,∠C=180°﹣∠BAC﹣∠ABC,∵∠AEB=∠ABC,∠BAE=∠BAC,∴∠ABE=∠C;(2)解:∵FD∥BC,∴∠ADF=∠C,又∠ABE=∠C,∴∠ABE=∠ADF,∵AF平分∠BAE,∴∠BAF=∠DAF,在△ABF和△ADF中,,∴△ABF≌△ADF(AAS),∴AB=AD,∵AB=8,AC=10,∴DC=AC﹣AD=AC﹣AB=10﹣8=2.18.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)解:∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=BD,∵BE=2,∴BD=4,∴BC=2BD=8,∴△ABC的周长为24.19.【解答】解:(1)∵BD⊥AC,CF⊥AB,∴∠DCE+∠DEC=∠DCE+∠F AC=90°,∴∠DEC=∠BAC,∠DEC+∠BEC=180°,∴∠BAC+∠BEC=180°;(2)∵BD平分∠ABC,CF平分∠ACB,∴∠EBC=ABC,∠ECB=ACB,∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90°∠BAC;(3)作∠BEC的平分线EM交BC于M,∵∠BAC=60°,∴∠BEC=90°+BAC=120°,∴∠FEB=∠DEC=60°,∵EM平分∠BEC,∴∠BEM=60°,在△FBE与△EBM中,12.3《角平分线性质》一、选择题1.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°2.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是( )A.∠CEO=∠DEO B.CM=MD C.∠OCD=∠ECD D.S四边形OCED=CD•OE3.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:54.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,若BC=7,则AE的长为()A.4B.5C.6D.75.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个6.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A. 6B. 3C. 2D. 1.57.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cmB.4cmC.10cmD.以上都不对8.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定9.如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25°B.30° C.35° D.40°10.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D,∠ABD1与∠ACD1的角1平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.56° B.60° C.68° D.94°11.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BG C.AE=CE D.AF=FD12.如图,BD为∠ABC的角平分线,且BD=BC,E为BD的延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①∠ABE=∠ACE;②∠BCE+∠BCD=180°;③AE=EC;④BE+BD=2BF,其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题13.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB,AC=8cm,AE=4cm,则DE的长是.14.如图,AD是△ABC的角平分线,DE⊥AB于E,若AB=18,AC=12,△ABC的面积等于36,则DE= .15.若△ABC的周长为41 cm,边BC=17 cm,AB<AC,角平分线AD将△ABC的面积分成3:5的两部分,则AB= cm.16..如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC= .17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为.三、解答题19.如图所示,已知AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF.20.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:CO平分∠ACD;(2)求证:AB+CD=AC.21.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.22.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.23.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.24.(1)如图1,△ABC中,作∠ABC、∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于E、F.①求证:OE=BE;②若△ABC 的周长是25,BC=9,试求出△AEF的周长;(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,试探求∠BAC 与∠PAC的数量关系式.参考答案1.D2.答案为:C.3.C4.D5. 答案为:A;6. 答案为:D;7.A.8.C9.C10.A11.B12.答案为:D.13.答案为:3cm.14.答案为:2.4.15.答案为:9;16.答案为:125°.17.答案为:36.18.答案为:6;19.证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.20.证明:(1)过O点作OE⊥AC于点E.∵∠ABD=90°且OA平分∠BAC∴OB=OE,又∵O是BD中点∴OB=OD,∴OE=OD,∵OE⊥AC,∠D=90°∴点O在∠ACD 的角平分线上∴OC平分∠ACD.(2)在Rt△ABO和Rt△AEO中∵∴Rt△ABO≌Rt△AEO(HL),∴AB=AE,在Rt△CDO和Rt△CEO中∵∴Rt△CDO≌Rt△CEO(HL),∴CD=CE,∴AB+CD=AE+CE=AC.21.(1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.22.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B23.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.24.(1)∵BO平分∠ABC,∴∠EBO=∠OBC,∵EF∥BC,∴∠EDB=∠OBC,∴∠EOB=∠EBO,∴OE=BE(2)△AEF的周长=AE+AF+EF=AE+AF+EB+FC=AB+AC=25-9=16(3)延长BA,证明P点在∠BAC外角的角平分线上,从而得到2∠PAC+∠BAC=180°。
人教版八年级数学上册12.1--12.3测试题含答案
人教版八年级数学上册12.1--12.3测试题含答案12.1全等三角形一、选择题1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.如图,已知△ABC≌△CDA,下列结论:(1)AB=CD,BC=DA;(2)∠BAC=∠DCA,∠ACB=∠CAD;(3)AB//CD,BC//DA.其中正确的结论有( ) 个.A.0 B.1C.2 D.33.如图,△ABC≌△CDA,下列结论:①AB=CD,BC=DA;②∠BAC=∠DCA,∠ACB=∠CAD;③AB//CD,BC//DA.其中,正确的结论有()A. 0个B. 1个C. 2个D. 3个4.如图,已知△ABD≌△DCA,点A与点D,点C与点B 分别是对应顶点,且AB=8cm,AD=6cm,BD=5cm,则CD的长为()A. 6cmB. 8cmC. 5cmD. 5cm或6cm或8cm5.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°6.如图,已知△ABO≌△CDO,则下列结论不正确的是()A.AB=OD B.∠A=∠CC.AD=BC D.∠AOB=∠COD7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE8.如图所示的图形中全等图形共有()A. 1对B. 2对C. 3对D. 4对9.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A. AC =CEB. ∠BAC =∠ECDC. ∠ACB =∠ECDD. ∠B =∠D10.如图,△ABC ≌△CDA ,其中A 与C ,B 与D 是对应顶点,则下列结论中错误的是( )A .∠B =∠D B .AB =CDC .AB =BCD .AD ∥BC11.若△ABC ≌△DEF ,AB =6,BC =8,FD =10,则△DEF 的周长为( ) A .12 B .16C .20D .24二、填空题12.如图,ABC A B C ''△≌△,点B '在边AB 上,线段A B ''与AC 交于点D ,若40A ∠=︒,60B ∠=︒,则A CB '∠的度数为________.13.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为_________.14.在直角坐标系中,如图有△ABC,现另有一点D满足以A、B、D为顶点的三角形与△ABC全等,则D点坐标为.15.如图,△ABC≌△DEF,∠A=80°,∠E=62°,那么∠C的度数是°.三、解答题16.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD= 40°,求∠BAC的度数.17.如图,已知△ABC≌△DEB,点E在AB上,DE与AC 相交于点F.(1)当8DE=,5BC=时,线段AE的长为________;(2)已知35∠=°,C∠=︒,60D①求DBC∠的度数;②求AFD∠的度数.18.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.19.如图,A、B、C、D在同一直线上,且△ABF≌△DCE,那么AF∥DE、BF∥CE、AC=BD吗?为什么?答案1. C2. D3. D4. B5. D6. A7. D8. D9. C10. C11. D12. 140°13. 30°14.(-2,-3)、(4,3)、(4,-3).15. 38.16. 解:∵∠BAE=120°,∠BAD=40°,∴∠DAE=∠BAE−∠BAD=120°−40°=80°,∵△ABC≌△ADE,∴∠BAC=∠DAE=80°.17.(1)ABC DEB△≌△,8DE=,5BC=,BE BC==,∴=,5AB AC∴=-=-=.853AE AB BE(2)①ABC DEB△≌△,∠=∠=︒.∴∠=∠=︒,60DBE CA D35∠+∠+∠=︒,180A ABC C︒︒,∴∠=-∠-∠=ABC A C18085∴∠=∠--∠==︒.︒︒DBC ABC DBE856025②AEF∠是△DEB的外角,∴∠=∠+∠=︒+︒=︒.AEF D DBE356095AFD∠是△AEF的外角,AFD A AEF∴∠=∠+∠=︒+︒=︒.359513018.解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.19.∵△ABF≌△DCE,∴∠A=∠D,∠ABF=∠DCE,AB=CD,∴AF//DE,∠FBC=∠ECB(等角的补角相等),AB+BC=CD+BC,∴BF//CE,AC=BD.12.2 全等三角形的判定一、选择题(本大题共10道小题)1. 如图所示,∠C=∠D=90°,若要用“HL”判定Rt △ABC与Rt△ABD全等,则可添加的条件是( )A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD2. 如图所示,AC,BD是长方形ABCD的对角线,过点D 作DE∥AC交BC的延长线于点E,则图中与△ABC全等的三角形共有( )A.1个B.2个C.3个D.4个3. 如图所示,已知AB∥DE,点B,E,C,F在同一直线上,AB=DE,BE=CF,∠B=32°,∠A=78°,则∠F等于( )A.55°B.65°C.60°D.70°4. 如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF 的是( )A.AB=DE B.AC=DFC.∠A=∠D D.BF=EC5. 如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC6. 如图,添加下列条件,不能判定△ABD≌△ACD的是( )A.BD=CD,AB=ACB.∠ADB=∠ADC,BD=CDC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=CD7. 如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,且左边的滑梯与地面的夹角∠ABC=35°,则右边的滑梯与地面的夹角∠DFE等于( )A.60°B.55°C.65°D.35°8. 已知△ABC的六个元素,下列甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是( )A.只有乙B.只有丙C.甲和乙D.乙和丙9. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )A.a+c B.b+cC .a -b +cD .a +b -c10. 如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A . 1个B . 2个C . 3个D . 3个以上二、填空题(本大题共6道小题)11. 如图,在△ABC 中,AD ⊥BC 于点D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需要添加条件:____________.12. 如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=︒,则BCD ABD S S =△△__________.13. (2019•襄阳)如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC △≌△DCB △的是__________(只填序号).14. 如图所示,已知AD ∥BC ,则∠1=∠2,理由是________________;又知AD =CB ,AC 为公共边,则△ADC ≌△CBA ,理由是______,则∠DCA =∠BAC ,理由是__________________,则AB ∥DC ,理由是________________________________.15. 如图所示,点B的坐标为(4,4),作BA⊥x轴,BC ⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P 从点A出发,在线段AB,BC上沿A→B→C运动. 当OP=CD 时,点P的坐标为.16. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D 为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.三、解答题(本大题共4道小题)17. 如图,AB=AD,BC=DC,点E在AC上.求证:(1)AC平分∠BAD;(2)BE=DE.18. 已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.(1)如图①,若点O在边BC上,求证:AB=AC;(2)如图②,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.图①图②19. 如图,AC ∥BE ,点D 在BC 上,AB =DE ,∠ABE =∠CDE .求证:DC =BE -AC .20. (2019•枣庄)在ABC △中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M在AD的延长线上,点N在AC上,且90BMN∠=︒,求证:AB AN+=.12.3 角平分线考点 1 角平分线的性质定理1.如图,在Rt ABC∆中,90C∠=︒,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若15AB=,ABD∆的面积是30,则CD的长为()A.1B.2C.4D.6 2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD 过点P,且与AB垂直.若AD=12,则点P到BC的距离是()A.8 B.6 C.4 D.2 3.如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B 为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC,连接AB.若OA=5,AB=6,则点B到AC的距离为()A.4.8 B.4 C.2.4 D.5 4.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD ⊥OA于点D,PC=4,则PD=( ).A.2 B.2.5 C.3D.3.55.在正方形网格中,∠AOB的位置如图所示,则点P、Q、M、N中在∠AOB的平分线上是()A.P点B.Q点C.M点D.N 点考点2 角平分线的判定定理6.如图,△ABC的两个外角平分线相交于点P,则下列结论正确的是()A.AB=AC B.BP平分∠ABC C.BP平分∠APC D.PA=PC7.下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A.1个B.2个C.3个D.4个8.如图,点D在BC上,DE⊥AB,DF⊥AC,且DE=DF,∠BAD=25°,则∠CAB=()A.20°B.25°C.30°D.50°9.△ABC中,AB=AC,在△ABC内求作一点O,使点O到三边的距离相等.甲同学的作法如图1所示,乙同学的作法如图2所示,对于两人的作法,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.乙对,甲不对10.如图,已知点P到BE,BD,AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC的平分线上;③在∠ECA的平分线上;④恰是∠B,∠DAC,∠ECA 三条角平分线的交点,上述结论中,正确结论的个数有()A.1个B.2个C.3个D.4个考点3 角平分线性质的实际应用11.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点.12.如图,四个点 P1, P2 ,P3 ,P4 中,到 OM,ON 的距离相等,且到 A,B 两点的距离也相等的点是()A .P1B .P2C .P3D .P413.如图,ABC ∆的面积为6,3AC =,现将ABC ∆沿AB 所在直线翻折,使点C 落在射线AD 上的'C 处,P 为射线AD 上的任一点,则线段BP 的长不可能是( )A .3.8B .4C .5.5D .100 14.如图,在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC 交CD 于点E ,BC=6,DE=2,则△BCE 的面积等于( )A .8B .12C .5D .615.如图,要在三条交错的公路区域附近修建一个物流公司仓库,使仓库到三条公路的距离相等,则可以选择的地址有( )处A .1B .2C .3D .4 考点4 角平分线的尺规作图16.如图,在ABC 中,,80BA BC B =∠=︒,观察图中尺规作图的痕迹,则DCE ∠的度数为( )A .60B .65C .70D .75 17.如图,用直尺和圆规作已知角的平分线的示意图,则说明三角形全等的依据是( )A .SASB .ASAC .AASD.SSS18.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB、BC于点M、N分别以点M、N为圆心,以大于12MN的长度为半径画弧两弧相交于点P过点P作线段BD,交AC于点D,过点D作DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12∠ABC;③BC=BE;④AE=BE中,一定正确的是()A.①②③B.①②④C.①③④D.②③④19.如图,AB∥CD,以点A为圆心,小于AC的长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,以大于12EF长为半径作圆弧,两条弧交于点G,作射线AG交CD于点H,若∠C=120°,则∠AHD=()A.120° B.30°C.150° D.60°答案1.C2.B3.A4.A5.B6.B7.B8.D9.A10.D 11.C 12.B 13.A 14.D 15.D 16.B 17.D 18.A 19.C。
人教版八年级数学上册第十二章基础过关测试题含答案
人教版八年级数学上册第十二章基础过关测试题含答案12.1全等三角形一、选择题1.如图,△ABC≌△DEF,∠A=50°,∠B=100°,则∠F的度数是()A. 30°B. 50°C. 60°D. 100°2.如图,△ACB≌△A′CB,点A和点A′,点B和点B′是对应点,∠BCB′=30°,则∠ACA′的度数为()A. 20°B. 30°C. 35°D. 40°3.如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=28°,∠CGF=85°,则∠E的度数是()A. 38°B. 36°C. 34°D. 32°4.如图,△ACE≌△DBF,若∠E=∠F,AD=8,BC=2,则AB等于()A. 6B. 5C. 3D. 不能确定5.如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB为()A. 40°B. 50°C. 55°D. 60°6.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A. 70°B. 75°C. 60°D. 80°7.如图,△ACB≌△A′CB′,∠A′CB=30°,∠ACB′=110°,则∠ACA′的度数是()A. 20°B. 30°C. 35°D. 40°8.已知图中的两个三角形全等,则∠1等于()A. 72°B. 60°C. 50°D. 58°9.如图,已知△ABC≌△CDA,则下列结论:①AB=CD,BC=DA.②∠BAC=∠DCA,∠ACB=∠CAD.③AB//CD,BC//DA.其中正确的是()A. ①B. ②C. ①②D. ①②③10.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A. AC=CEB. ∠BAC=∠ECDC. ∠ACB=∠ECDD. ∠B=∠D二、填空题11.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______.12.如图,已知△ABC≌△A′BC′,AA′//BC,∠ABC=70°,则∠CBC′=______.13.如图,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为______ ,BD的对应边为______ .三、计算题14.如图所示,△ABC≌△ADE,且∠CAD=10°,∠D=25°,∠EAB=120°,则∠DFB=.四、解答题15.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为______;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.16.如图,已知△ACE≌△DBF.CE=BF,AE=DF,AD=8,BC=2.(1)求AC的长度;(2)试说明CE//BF.答案1.【答案】A2.【答案】B3.【答案】A4.【答案】C5.【答案】D6.【答案】A7.【答案】D8.【答案】D9.【答案】D10.【答案】C 11.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°−∠A−∠C=120°,故答案为120°.12.【答案】【解答】解:∵AA′//BC,∴∠A′AB=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC=∠ABC=70°,∴∠A′AB=∠AA′B=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故答案为40°.13.【答案】解:∵△ABC≌△DEB,AB=DE,∠E=∠ABC,∴∠C的对应角为∠DBE,BD的对应边为CA.14.【答案】【解答】解:∵△ABC≌△ADE,∠D=25°,∴∠B=∠D=25°,∠EAD=∠CAB.∵∠EAB=∠EAD+∠CAD+∠CAB=120°,∠CAD=10°,∴∠CAB=(120°−10°)÷2=55°,∴∠FAB=∠CAB+∠CAD=55°+10°=65°.又∵∠DFB是△ABF的外角,∴∠DFB=∠B+∠FAB,∴∠DFB=25°+65°=90°.故答案为90°.15.【答案】(1)3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°−∠A−∠C=85°,∴∠DBC=∠ABC−∠DBE=85°−60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.16.【答案】解:(1)∵△ACE≌△DBF,∴AC=BD,则AB=DC,∵BC=2,∴2AB+2=8,解得:AB=3,故AC=3+2=5;(2)∵△ACE≌△DBF,∴∠ECA=∠FBD,∴CE//BF.12.2三角形全等的判定一.选择题1.给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,AC=EF,∠B=∠E;③∠B=∠E,AB=DF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能确定△ABC和△DEF全等的条件共有()A.1组B.2组C.3组D.4组2.下列各组条件中,不能判定△ABC≌△DEF全等的是()A.AC=DF,AB=DE,BC=EF B.∠A=∠D,AC=DF,AB=DEC.∠B=∠E,∠C=∠F,BC=EF D.∠A=∠D,BC=DF,∠B=∠E 3.如图,∠ABD=∠EBC,BC=BD,再添加一个条件,使得△ABC≌△EBD,所添加的条件不正确的是()A.∠A=∠E B.BA=BE C.∠C=∠D D.AC=DE 4.已知,在△ABC与△ADC中,AB=AD,那么添加一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DACC.∠BCA=∠DCA D.△ADC与△ABC的周长相等5.根据下列已知条件,不能唯一画出△ABC的是()A.AB=5,BC=3,AC=6 B.AB=4,BC=3,∠A=50°C.∠A=50°,∠B=60°,AB=4 D.AB=10,BC=20,∠B=80°6.如图,两个三角形全等,且∠A=∠D,BC对应FE.则()A.∠B=∠E B.∠C=∠E C.AB对应FD D.△ABC≌△DEF7.在△ABC和△DEF中,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④∠A=∠D,∠B=∠E,∠C=∠F;其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组8.下列各图中a、b、c为△ABC的边长,根据图中标注数据,判断甲、乙、丙、丁四个三角形和如图△ABC不一定全等的是()A.B.C.D.9.已知:如图,AC=DE,∠1=∠2,要使△ABC≌△DFE,需添加一个条件,则添加的条件以及相应的判定定理合适的是()A.∠A=∠D(ASA)B.AB=DF(SAS)C.BC=FE(SSA)D.∠B=∠F(ASA)10.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE并且测出DE的长即为A,B间的距离,这样实际上可以得到△ABC≌△DEC,理由是()A.SSS B.AAS C.ASA D.SAS二.填空题11.已知平面直角坐标系中A(﹣2,1)、B(﹣2,﹣2)、C(4,﹣2),以A、B、P为顶点的三角形与△ABC全等,写出所有符合条件的点P的坐标.(点P不与点C重合)12.如图,AB=AD,只要再添加一个条件:,就可以通过“SSS”判定△ABC≌△ADC.13.如图,已知:AD与BC交于O点,OA=OB,要使△AOC≌△BOD,添加一个你认为合适的条件为.14.如图,已知CB⊥AD,AE⊥CD,垂足分别为B,E,AE,BC相交于点F,AB=BC.若AB=8,CF=2,则BD=.15.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3、…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2 3∥B3C3…,则正方形A2020B2020C2020D2020的边长是.三.解答题16.已知:如图,点A、B、C在同一条直线上,AE与BD相交于M,CD与BE相交于点N,∠E=∠D,AM=CN,ME=ND.求证:△ABE≌△CBD.17.如图,点A、D、C、F在同一条直线上,AC=DF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=90°,求∠F的度数.18.把下面的说理过程补充完整:已知:如图,BC∥EF,BC=EF,AF=DC,线段AB和线段DE平行吗?请说明理由.答:AB∥DE理由:∵AF=DC(已知)∴AF+FC=DC+∴AC=DF()(填推理的依据)∵BC∥EF(已知)∴∠BCA=∠(两直线平行,内错角相等)又∵BC=EF(已知)∴△ABC≌△DEF()(填推理的依据)∴∠A=∠(全等三角形的对应角相等)∴AB∥(内错角相等,两直线平行)19.已知∠BAM+∠MDC=180°,AB=AM,DC=DM,连接BC,N为BC的中点.(1)①定理“等边对等角”即:对于任意△ABC若满足AB=AC,则∠ABC =∠;②如图1若A、M、D共线,若∠BAM=70°,求∠NDC的大小;(2)如图2,A、M、D不共线时,求∠ANB+∠DNC的值.参考答案与试题解析一.选择题1.【解答】解:①AB=DE,BC=EF,AC=DF,可根据SSS判定△ABC≌△DEF;②AB=DE,AC=EF,∠B=∠E,不能判定△ABC≌△DEF;③∠B=∠E,AB=DF,∠C=∠F,不能判定△ABC≌△DEF;④AB=DE,AC=DF,∠B=∠E,不能判定△ABC≌△DEF;故选:A.2.【解答】解:A、∵AC=DF,AB=DE,BC=EF,∴利用SSS能推出△ABC≌△DEF,故本选项不符合题意;B、∵∠A=∠D,AC=DF,AB=DE,∴利用SAS能推出△ABC≌△DEF,故本选项不符合题意;C、∵∠B=∠E,∠C=∠F,BC=EF,∴利用ASA能推出△ABC≌△DEF,故本选项不符合题意;D、∵∠A=∠D,BC=DF,∠B=∠E,BC和DF不是对应边,∴不能推出△ABC≌△DEF,故本选项符合题意.故选:D.3.【解答】解:∵∠ABC=∠EBD,BC=BD,∴当添加BA=BE时,可根据“SAS”判断△ABC≌△EBD;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△EBD;当添加∠A=∠E时,可根据“AAS”判断△ABC≌△EBD.故选:D.4.【解答】解:A、∵在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),故本选项不合题意;B、∵在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故本选项不合题意;C、根据AB=AD,AC=AC,∠BCA=∠DCA不能推出△ABC≌△ADC,故本选项符合题意;D、∵△ADC与△ABC的周长相等,AB=AD,AC=AC,∴CB=CD,由选项A可知△ABC≌△ADC,本选项不符合题意.故选:C.5.【解答】解:A、已知三边,且AB与BC两边之和AC,故能作出三角形,且能唯一画出△ABC;B、∠A不是AB,BC的夹角,故不能唯一画出△ABC;C、AB是∠A,∠B的夹边,故可唯一画出△ABC;D、∠B是AB,BC的夹角,故不能唯一画出△ABC;故选:B.6.【解答】解:∵两个三角形全等,且∠A=∠D,BC对应FE,按照规范的书写顺序:对应点写在对应位置上,∴∠B=∠F,∠C=∠E,AB对应DF,△ABC≌△DFE,故选:B.7.【解答】解:①AB=DE,BC=EF,AC=DF,可根据SSS判定△ABC≌△DEF;②AB=DE,∠B=∠E,BC=EF,可根据SAS判定△ABC≌△DEF;③∠B=∠E,BC=EF,∠C=∠F,可根据ASA判定△ABC≌△DEF;④∠A=∠D,∠B=∠E,∠C=∠F,不能判定△ABC≌△DEF;故选:C.8.【解答】解:∵∠B=70°,∠C=50°,∴∠A=180°﹣70°﹣50°=60°,根据“SAS”判断图乙中的三角形与△ABC全等;根据“AAS”判断图丙中的三角形与△ABC全等;根据“SSS”判断图丙中的三角形与△ABC全等.根据“SSA”无法判断图甲中的三角形与△ABC全等.故选:A.9.【解答】解:A、添加条件∠A=∠D判定△ABC≌△DFE用的判定方法是ASA,故原题说法正确;B、添加条件AB=DF不能判定△ABC≌△DFE,故原题说法错误;C、添加条件BC=FE判定△ABC≌△DFE用的判定方法是SAS,故原题说法错误;D、添加条件∠B=∠F判定△ABC≌△DFE用的判定方法是AAS,故原题说法错误;故选:A.10.【解答】证明:在△ABC和△DEC中,∴△ABC≌△DEC(SAS).故选:D.二.填空题11.【解答】解:如右图所示,∵以A、B、P为顶点的三角形与△ABC全等,A(﹣2,1)、B(﹣2,﹣2)、C(4,﹣2),∴点P的坐标为(4,1),(﹣8,1)或(﹣8,﹣2),故答案为:(4,1),(﹣8,1)或(﹣8,﹣2).12.【解答】解:∵AB=AD,AC=AC,∴只要条件条件BC=DC,即可通过“SSS”判定△ABC≌△ADC,故答案为:BC=DC,13.【解答】解:OC=OD,理由是:∵在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),故答案为:OC=OD或∠A=∠B或∠C=∠D.14.【解答】证明:∵CB⊥AD,AE⊥CD,∴∠ABF=∠CBD=∠AED=90°,∴∠A+∠D=∠C+∠D=90°,∴∠A=∠C,在△ABF和△CBD中,,∴△ABF≌△CBD(ASA),∴BF=BD,∵BC=AB=8,BF=BC﹣CF=8﹣2=6,∴BD=BF=6;故答案为:6.15.【解答】解:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=====()1,同理可得:B3C3==()2,∴正方形A n B n∁n D n的边长是:()n﹣1,则正方形A2020B2020C2020D2020的边长为:()2019,故答案为:()2019.三.解答题(共4小题)16.【解答】证明:在△BME和△BND中,,∴△BME≌△BND(AAS),∴BE=BD,∵AM=CN,ME=DN,∴AE=CD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS).17.【解答】(1)证明:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)解:由(1)可知,△ABC≌△DEF,∴∠F=∠ACB,∵∠A=60°,∠B=90°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣(60°+90°)=30°,∴∠F=∠ACB=30°.18.【解答】解:AB∥DE,理由如下:∵AF=DC,∴AF+FC=DC+FC,∴AC=DF(等式性质),∵BC∥EF,∴∠BCA=∠EFD(两直线平行,内错角相等),又∵BC=EF,∴△ABC≌△DEF(SAS),∴∠A=∠D(全等三角形的对应角相等),∴AB∥DE(内错角相等,两直线平行),故答案为:FC,等式的性质,EFD,SAS,D,DE.19.【解答】解:(1)∵在△ABC中,AB=AC,∴∠ABC=∠ACB,故答案为:ACB;(2)如图1,连接AN,并延长交DC的延长线于H,∵∠BAM+∠MDC=180°,∴AB∥CD,∠ADC=180°﹣∠BAM=110°,∴∠BAN=∠CHN,在△ABN和△HCN中,,∴△ABN≌△HCN(AAS),∴AB=CH,AN=HN,∵AB=AM,DC=DM,∴AM+MD=CH+DC,即AD=DH,又∵AN=NH,∴∠ADN=∠HDN==55°;(3)如图2,延长DN至I使,NI=DN,连接AI,AD,在△DNC和△INB中,,∴△DNC≌△INB(SAS),∴DC=IB=MD,∠C=∠IBN,IN=DN,∵∠BAM+∠MDC=180°,∠M+∠BAM+∠MDC+∠C+∠ABC=540°,∴∠M+∠ABC+∠C=360°,又∵∠ABC+∠IBN+∠ABI=360°,∴∠M=∠ABI,又∵AB=AM,MD=CD=BI,∴△AMD≌△ABI(SAS),∴AI=AD,又∵NI=DN,∴∠AND=∠ANI=90°12.3 角平分线的性质一、选择题1. 用直尺和圆规作一个角的平分线,示意图如图,则能说明OC是∠AOB的平分线的依据是( )A.SSS B.SAS C.AASD.ASA2. 到三角形三边距离相等的点是( )A.三条中线的交点B.三条高(或三条高所在直线)的交点C.三边垂直平分线的交点D.三条内角平分线的交点3. 如图,AO是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N.若ON=8 cm,则OM的长为( )A.4 cm B.5 cm C.8 cmD.20 cm4. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A.3B.-3C.2D.-25. 如图,在Rt△ABC中,∠C=90°,AD是角平分线,若BC=10 cm,BD CD=3 2,则点D到AB的距离是()A.6 cmB.5 cmC.4 cmD.3 cm6. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是 ()A.SSSB.SASC.ASAD.AAS7. 如图,△ABC的外角平分线BD,CE相交于点P,若点P到AC的距离为3,则点P到AB的距离为( )A .1B .2C .3D .48. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,AB=6 cm,DE=4 cm,S △ABC =30 cm 2,则AC 的长为( )A .10 cmB .9 cmC .4.5 cmD .3 cm9. 如图,AB ∥CD ,以点A 为圆心,小于AC 的长为半径画弧,与AB ,AC 分别交于点E ,F ,再分别以点E ,F 为圆心,大于EF 的长为半径画弧,两弧在∠CAB 的内部交于点G ,作射线AG 交CD 于点H.若∠C=140°,则∠AHC 的大小是( )A .20°B .25°C .30°D .40°10. 如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD ;②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE ;③连接OE 交CD 于点M .下列结论中错误的是A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形二、填空题11. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.12. 将两块大小一样的含30°角的三角尺ABD和ABC如图所示叠放在一起,使它们的斜边AB重合,直角边不重合,当OD=4 cm时,点O到AB的距离为________ cm.13. 如图,已知∠C=90°,AD平分∠BAC交BC于点D,BD=2CD,DE⊥AB于点E.若DE=5 cm,则BC=________cm.14. 如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为________.15. 如图,点O在△ABC的内部,且到三边的距离相等.若∠BOC=130°,则∠A=________°.16. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC=2,则S△ABC= .三、解答题17. 已知:如图12-3-12,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.18. 如图所示,BE=CF,DE⊥AM于点E,DF⊥AN于点F,点B,C分别在AM,AN上,且BD=CD,AD是∠BAC的平分线吗?为什么?19. 如图,现有一块三角形的空地,其三条边长分别是20 m,30 m,40 m.现要把它分成面积比为2∶3∶4的三部分,分别种植不同种类的花,请你设计一种方案,并简单说明理由.(要求:尺规作图,保留作图痕迹,不写作法)人教版八年级数学上册 12.3 角平分线的性质同步训练-答案一、选择题1. 【答案】A2. 【答案】D3. 【答案】C4. 【答案】A[解析] 如图,过点D作DE⊥AB于点E.∵点D的坐标是(0,-3),∴OD=3.∵AD是△OAB的角平分线,∴ED=OD=3,即点D到AB的距离是3.5. 【答案】C[解析] ∵BC=10 cm,BD CD=3 2,∴CD=×10=4(cm).∵AD是角平分线,∴点D到AB的距离等于CD,即点D到AB的距离为4 cm.故选C.6. 【答案】A7. 【答案】C [解析] 如图,过点P作PQ⊥AC于点Q,PW⊥BC于点W,PR ⊥AB于点R.∵△ABC的外角平分线BD,CE相交于点P,∴PQ=PW,PW=PR.∴PR=PQ.∵点P到AC的距离为3,∴PQ=3.∴PR=3,则点P到AB的距离为3.∵AD是△ABC的角平分线,DE⊥AB, ∴DE=DF=4.∵AB=6,∴S△ABC =S△ABD+S△ACD=×6×4+AC×4=30,解得AC=9(cm).故选B.9. 【答案】A[解析] 由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180°,∠HAB=∠AHC.∵∠ACD=140°,∴∠CAB=40°.∵AH平分∠CAB,∴∠HAB=20°.∴∠AHC=20°.10. 【答案】C【解析】由作图步骤可得:OE是AOB∠的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=111222OE CM OE DM CD OE ⋅+⋅=⋅,但不能得出OCD ECD∠=∠,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.二、填空题11. 【答案】3 【解析】如解图,过点P作PD⊥OA于点D,∵OP为∠AOB 的平分线,PC⊥OB于点C,∴PD=PC,∵PC=3,∴PD=3,即点P到点OA 的距离为3.12. 【答案】4 [解析] 过点O作OH⊥AB于点H.∵∠ODA=90°,∴OD⊥AD.又∵OH⊥AB,∴OH=OD=4 cm.13. 【答案】15 [解析] ∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DC=DE =5 cm.∴BD=2CD=10 cm,则BC=CD+BD=15 cm.14. 【答案】65°15. 【答案】80 [解析] ∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB.∴∠A=180°-(∠ABC+∠ACB)=180°-2(∠OBC+∠OCB)=180°-2(180°-∠BOC)=80°.16. 【答案】7[解析] 过点P作PF⊥BC于点F,PG⊥AB于点G,连接AP.∵△ABC的两条外角平分线BP,CP相交于点P,∴PF=PG=PE=2.∵S△BPC=2,∴BC·2=2,解得BC=2.∵△ABC的周长为11,∴AC+AB=11-2=9.∴S△ABC =S△ACP+S△ABP-S△BPC=AC·PE+AB·PG-S△BPC=×9×2-2=7.三、解答题17. 【答案】解:PD⊥OA,PE⊥OB,垂足分别为D,EPD=PE证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∴△PDO≌△PEO(AAS).∴PD=PE.18. 【答案】解:AD是∠BAC的平分线.理由:∵DE⊥AM于点E,DF⊥AN于点F,∴∠DEB=∠DFC=90°.在Rt △DBE 与Rt △DCF 中,⎩⎨⎧BE =CF ,BD =CD ,∴Rt △DBE ≌Rt △DCF(HL). ∴DE =DF.又∵DE ⊥AM ,DF ⊥AN , ∴AD 是∠BAC 的平分线.19. 【答案】解:(答案不唯一)如图,分别作∠ACB 和∠ABC 的平分线,相交于点P ,连接PA ,则△PAB ,△PAC ,△PBC 的面积之比为2∶3∶4.理由如下:如图,过点P 分别作PE ⊥AB 于点E ,PF ⊥AC 于点F ,PH ⊥BC 于点H. ∵P 是∠ABC 和∠ACB 的平分线的交点, ∴PE =PF =PH.∵S △PAB =12AB ·PE =10PE ,S △PAC =12AC ·PF =15PF ,S △PBC =12BC ·PH =20PH ,∴S △PAB ∶S △PAC ∶S △PBC =10∶15∶20=2∶3∶4.。
12.1 全等三角形 初中数学人教版八年级上册课后习题(含答案)
12.1 全等三角形一、能力提升1.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A.AC=DEB.∠BAD=∠CAEC.AB=AED.∠ABC=∠AED2.如图,若△NMQ≌△MNP,且MN=8 cm,NP=6 cm,PM=7 cm,则MQ的长为( )A.8 cmB.7 cmC.6 cmD.5 cm3.如图,在△ABC中,D,E分别是AC,BC上的点.若△ADB≌△EDC≌△EDB,则∠C的度数是( )A.15°B.20°C.25°D.30°4.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'等于( )A.20°B.30°C.35°D.40°5.如图,已知△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB的度数是 .6.如图,△ABD≌△AEC,∠B和∠E是对应角,AB与AE是对应边.求证:BC=ED,∠BAC=∠EAD.7.如图,△ABC≌△ABD,∠DAC=90°.(1)求∠C的度数;(2)判断AB与CD的位置关系,并说明理由.8.如图,已知△ABC≌△DEF,∠B=∠E=90°,∠A=61°,AB=5,BC=9,CF=6.(1)求∠D,∠DFE的度数;(2)求线段DE,CE的长.二、创新应用★9.阅读下面的文字,然后回答相关问题:如图①,若把△ACD沿着直线AC平行移动,它就能和△CBE重合,像这种变换图形位置的方法,叫做平移变换;如图②,若把△ABC沿着直线BC翻折,它就能和△DBC重合,像这种变换图形位置的方法,叫做翻折(或翻转)变换;如图③,若把△AOC绕着点O旋转一定的角度,它将与△EOD重合,像这种变换图形位置的方法,叫做旋转变换.想一想:(1)如图④,若△ABC≌△DEF,且点B与点E,点C与点F是对应顶点,则进行怎样的图形变换可以使这两个三角形重合?(2)如图⑤,已知△ABF≌△DCE,点E与点F是对应顶点,则△DCE可以看成是由△ABF通过怎样的图形变换得到的?一、能力提升1.B ∵△ABC≌△ADE,∴AB=AD,AC=AE,∠ABC=∠ADE,∠BAC=∠DAE.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.故选B.2.C 因为△NMQ≌△MNP,所以MQ与NP是对应边,即MQ=NP=6cm.3.D ∵△EDB≌△EDC,∴∠DEB=∠DEC=90°.∵△ADB≌△EDB,∴∠DAB=∠DEB=90°.∵△ADB≌△EDB≌△EDC,∴∠C=∠ABD=∠CBD=30°.4.B 因为△ACB≌△A'CB',所以∠ACB=∠A'CB',所以∠ACB-∠A'CB=∠A'CB'-∠A'CB,即∠ACA'=∠BCB'=30°.5.120° 因为△OAD≌△OBC,所以∠D=∠C=25°.根据三角形外角的关系,得∠DBE=∠C+∠O=25°+70°=95°,所以∠AEB=∠D+∠DBE=25°+95°=120°. 6.证明∵△ABD≌△AEC,∴BD=EC,∠BAD=∠EAC.∴BD-CD=EC-CD,∠BAD-∠CAD=∠EAC-∠CAD,即BC=ED,∠BAC=∠EAD.7.解(1)因为△ABC≌△ABD,所以∠C=∠D.因为在△ACD中,∠C+∠D+∠DAC=180°,×(180°-90°)=45°.又∠DAC=90°,所以∠C=∠D=12(2)AB⊥CD.理由:因为△ABC≌△ABD,所以∠ABC=∠ABD.又∠ABC+∠ABD=180°,所以∠ABC=90°.所以AB⊥CD.8.解(1)∵△ABC≌△DEF,∴∠A=∠D=61°.在△DEF中,∵∠E=90°,∠D=61°,∴∠DFE=90°-∠D=90°-61°=29°.(2)∵△ABC≌△DEF,∴AB=DE=5,BC=EF=9.∴CE=EF-CF=9-6=3.二、创新应用9.解(1)先将△ABC沿着直线BF平移,使点B与点E重合,点C与点F重合,再将此三角形沿着EF所在直线翻折便能与△DEF重合.(2)先将△ABF沿着直线BC平移,使点F与点E重合,再将此三角形绕着点E逆时针旋转180°,便可得到△DCE.(答案均不唯一)。
人教版八年级上册数学第12章《全等三角形》测试题【含答案】
一、选择题(每小题3分,共24分)1.如图1,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD及△APE全等的理由是()A.SSS B.SASC.SSA D.AAS2.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图2),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.①B.②C.③ D.④3.有下列条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等.其中能判定两直角三角形全等的有()A.1个B.2个C.3个D.4个4.用直尺和圆规作一个角等于已知角的示意图如图3,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SASC.ASA D.AAS5.如图4,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形共有()A.1对B.2对C.3对D.4对6.如图5,点P是AB上任意一点,∠ABC=∠ABD,补充下列条件中的一个,不能得出△APC≌△APD的是()A.BC=BD B.AC=ADC.∠ACB=∠ADB D.∠CAB=∠DAB7.如图6,△ABC≌△EFD,则()A.AB=DE,AC=EF,BC=DFB.AB=DF,AC=DE,BC=EFC.AB=EF,AC=DE,BC=DFD.AB=EF,AC=DF,BC=DE8.如图7,用“AAS”直接判定△ACD≌△ABE,需要添加的条件是()A.∠ADC=∠AEB,∠C=∠BB.∠ADC=∠AEB,CD=BEC.AC=AB,AD=AED.AC=AB,∠C=∠B二、填空题(每小题4分,共32分)9.已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是__________厘米.10.如图8,已知AB=CD,∠ABD=∠CDB,则图中共有__________对全等三角形.11.在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件__________,便可得Rt△ABC≌Rt△DEF.12. 如图9,如果△ABC≌△DEF,△DEF的周长是32 cm,DE=12 cm,EF=13 cm,则AC=__________.13.如图10,在△ABC中,∠C=90°,CB=4,延长CB至点D,使BD=AC,作∠BDE=90°,∠DBE=∠A,两角的另一边相交于点E,则DE的长为__________.14.如图11,点P到∠AOB两边的距离相等,若∠POB=30°,则∠AOB=__________.15.如图12,点D在AB上,点E在AC上,CD及BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=__________.16.如图13,已知△ABC,且点A(0,1),点C(4,3),如果要使△ABD及△ABC全等,则点D 的坐标是__________.三、解答题(共64分)17.(10分)如图14,已知AB=AE,∠1=∠2,∠B=∠E,BC及ED相等吗说明理由.18.(10分)如图15,若BE=CD,∠1=∠2,则BD及CE相等吗为什么19.(10分)如图16,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.△BEC及△CDA全等吗请说明理由.20.(10分)如图17,CF⊥AB于点F,BE⊥AC于点E,且CF,BE交于点D,BD=CD.求证:AD平分∠BAC.21.(12分)如图18,已知△ABC≌△ADE,BC及DE相交于点F,连接CD,EB.请你找出图中其他的全等三角形,并说明理由.22.(12分)如图19,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并说明理由.第十二章全等三角形测试题一、1.D 2.A 3.D 4.A 5.C 6.B 7.C 8.B二、9.3 10.311.答案不唯一,如AC=DF等12.7 cm 13.4 14.60° 15.20°16.(4,-1)或(-1,3)或(-1,-1)三、17.解:BC=ED.理由:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.在△BAC及△EAD中,∠B=∠E,AB=AE,∠BAC=∠EAD,所以△BAC≌△EAD.所以BC=ED.18.解:相等.理由:因为∠1=∠2,所以180°-∠1=180°-∠2,即∠ADC=∠AEB.又BE=CD,∠A=∠A,所以△ABE≌△ACD.所以AB=AC,AE=AD.所以AB-AD=AC-AE,即BD=CE.19.解:△BEC≌△CDA.理由:因为BE⊥CE,AD⊥CE,所以∠BEC=∠CDA=90°.因为∠BCE+∠CBE=90°,∠BCE+∠ACD=90°,所以∠CBE=∠ACD.在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,CB=AC,所以△BEC≌△CDA. 20.解:因为CF⊥AB,BE⊥AC,所以∠CED=∠BFD=90°.又∠CDE=∠BDF, CD=BD,所以△ECD≌△FBD.所以DE=DF.又DF⊥AB,DE⊥AC,所以AD平分∠BAC.21.解:△ACD≌△AEB,△DCF≌△BEF.理由:因为△ABC≌△ADE,所以AC=AE,AB=AD,∠CAB=∠EAD.所以∠CAB-∠BAD=∠EAD-∠BAD,即∠CAD=∠EAB.所以△ACD≌△AEB(SAS).所以∠ACD=∠AEB,CD=EB.因为△ABC≌△ADE,所以∠ACB=∠AED.所以∠ACB-∠ACD=∠AED-∠AEB,即∠DCF=∠BEF.又∠DFC=∠BFE,所以△DCF≌△BEF(AAS).22.解:OE⊥AB.理由:在△ABC和△BAD中,AC=BD,∠BAC=∠ABD,AB=BA,所以△ABC≌△BAD.所以∠CBA=∠DAB,∠C=∠D.在△AOC和△BOD中,∠AOC=∠BOD,∠C=∠D,AC=BD,所以△AOC≌△BOD.所以OA=OB.在△AOE和△BOE中,OA=OB,∠OAE=∠OBE,AE=BE,所以△AOE≌△BOE.所以∠OEA=∠OEB=90°,即OE⊥AB.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册第12章知识水平测试题含答案12.1 全等三角形一.选择题1.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°6.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°7.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2B.AC=CA C.AB=AD D.∠B=∠D 8.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D9.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°10.如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°二.填空题11.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.13.如图,△ABC≌△DEF,则EF=.14.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.三.解答题15.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB 和∠DGB的度数.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,AD=DC=2.5,BC=4.(1)求∠CBE的度数.(2)求△CDP与△BEP的周长和.18.如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA =OB;(2)AB∥CD.19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.20.如图所示,已知△ABC≌△FED,AF=8,BE=2.(1)求证:AC∥DF.(2)求AB的长.21.如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.22.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB∥DE.23.如图,△ABF≌△CDE,∠B和∠D是对应角,AF和CE是对应边.(1)写出△ABF和△CDE的其他对应角和对应边;(2)若∠B=30°,∠DCF=40°,求∠EFC的度数;(3)若BD=10,EF=2,求BF的长.参考答案一.选择题1.解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠F AC=∠EAB≠∠F AB,故②错误;EF=BC,故③正确;∠EAB=∠F AC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.2.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,故选:B.4.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.解:∵△ABC≌△AED,∴∠AED=∠B,AE=AB,∠BAC=∠EAD,∴∠1=∠BAE=40°,∴△ABE中,∠B==70°,∴∠AED=70°,故选:A.6.解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:B.7.解:∵△ABC≌△CDA,BC=DA∴AB=CD,∠1=∠2,AC=CA,∠B=∠D,∴A,B,D是正确的,C、AB=AD是错误的.故选:C.8.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D ∴第三个选项∠ACB=∠ECD是错的.故选:C.9.解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=70°﹣35°,=35°.故选:B.10.解:∵,△ABC≌△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.二.填空题11.解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.12.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.13.解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.14.解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=(180°﹣∠BAD)=70°,故答案为:70°.三.解答题15.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=.∴∠DFB=∠F AB+∠B=∠F AC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.16.解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=(90°﹣28°)÷2=31°.17.解:(1)∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∴∠ABD=∠CBE=132°÷2=66°,即∠CBE的度数为66°;(2)∵△ABC≌△DBE,∴DE=AC=AD+DC=5,BE=BC=4,∴△CDP与△BEP的周长和=DC+DP+PC+BP+PE+BE=DC+DE+BC+BE=2.5+5+4+4=15.5.18.证明:(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.(2)∵△ABC≌△BAD,∴AC=BD,又∵OA=OB,∴AC﹣OA=BD﹣OB,即:OC=OD,∴∠OCD=∠ODC,∵∠AOB=∠COD,∠CAB=,∠ACD=,∴∠CAB=∠ACD,∴AB∥CD.19.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.20.证明:(1)∵△ABC≌△FED,∴∠A=∠F.∴AC∥DF.(2)∵△ABC≌△FED,∴AB=EF.∴AB﹣EB=EF﹣EB.∴AE=BF.∵AF=8,BE=2∴AE+BF=8﹣2=6∴AE=3∴AB=AE+BE=3+2=521.解:∵△OAD≌△OBC,∴∠C=∠D,∠OBC=∠OAD,∵∠0=65°,∴∠OBC=180°﹣65°﹣∠C=115°﹣∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360°,∴65°+115°﹣∠C+135°+115°﹣∠C=360°,解得∠C=35°.22.解:(1)∵∠A=85°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=8﹣2=6;(2)证明:∵△ABC≌△DEF,∴∠DEF=∠B,∴AB∥DE.23.解:(1)其他对应角为:∠BAF和∠DCE,∠AFB和∠CED;其他对应边为:AB和CD是对应边,BF和DE是对应边;(2)∵△ABF≌△CDE,∠B=30°,∴∠D=∠B=30°,∵∠DCF=40°,∴∠EFC=∠D+∠DCF=30°+40°=70°;(3)∵△ABF≌△CDE,∴BF=DE,∴BF﹣EF=DE﹣EF,∴DF=BE,∵BD=10,EF=2,∴DF=BE=4,∴BF=BE+EF=4+2=6.12.2 全等三角形一、选择题1. 如图,要用“SAS”证明△ABC≌△ADE,若已知AB=AD,AC=AE,则还需添加条件()A.∠B=∠D B.∠C=∠EC.∠1=∠2 D.∠3=∠42. 如图,已知∠1=∠2,欲证△ABD≌△ACD,还需从下列条件中补选一个,则错误的选项是()A .∠ADB =∠ADC B .∠B =∠CC .DB =DCD .AB =AC3. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .24. 如图,点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠DD .BF =EC5. 如图所示,在△ABC 和△ABD 中,∠C=∠D=90°,要利用“HL”判定Rt △ABC ≌Rt △ABD成立,还需要添加的条件是 ( )A.∠BAC=∠BADB.BC=BD或AC=ADC.∠ABC=∠ABDD.AC=BD6. 如图,BE⊥AC,CF⊥AB,垂足分别是E,F.若BE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对7. 如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC8. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c9. 观察图中的尺规作图痕迹,下列说法错误的是()A.∠DAE=∠EAC B.∠C=∠EACC.AE∥BC D.∠DAE=∠B10. 如图,AB⊥BC,BE⊥AC,垂足分别为B,E,∠1=∠2,AD=AB,则下列结论正确的是()A.∠1=∠EFDB.BE=ECC.BF=CDD.FD∥BC二、填空题11. 要测量河岸相对两点A ,B 之间的距离,已知AB 垂直于河岸BF ,先在BF上取两点C ,D ,使CD =CB ,再过点D 作BF 的垂线段DE ,使点A ,C ,E 在一条直线上,如图,测出DE =20米,则AB 的长是________米.12. 如图K -10-10,CA =CD ,AB =DE ,BC =EC ,AC 与DE 相交于点F ,ED与AB 相交于点G .若∠ACD =40°,则∠AGD =________°.13. 如图,小明和小丽为了测量池塘两端A ,B 两点之间的距离,先取一个可以直接到达点A 和点B 的点C ,沿AC 方向走到点D 处,使CD =AC ;再用同样的方法确定点E ,使CE =BC .若量得DE 的长为60米,则池塘两端A ,B 两点之间的距离是______米.14. 如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若30A∠=︒,则BCDABDSS=△△__________.15. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE =________cm.三、解答题16. 如图,AB=AD,BC=DC,点E在AC上.求证:(1)AC平分∠BAD;(2)BE=DE.17. 已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB =OC. (1)如图①,若点O 在边BC 上,求证:AB =AC;(2)如图②,若点O 在△ABC 的内部,求证:AB =AC ;(3)若点O 在△ABC 的外部,AB =AC 成立吗?请画图表示.图① 图②18. (2019•桂林)如图,AB AD BC DC ==,,点E 在AC 上.(1)求证:AC 平分BAD ∠;.(2)求证:BE DE19. 如图,点A,E,F,B在直线l上,AE=BF,AC∥BD,且AC=BD.求证:CF=DE.20. 如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.(1)在同一平面内,△ABC与△ADE按图②所示的方式放置,其中∠B=∠D=90°,AB =AD ,BC 与DE 相交于点F ,请你判断四边形ABFD 是不是筝形,并说明理由;(2)请你结合图①,写出筝形的一个判定方法(定义除外):在四边形ABCD 中,若________________,则四边形ABCD 是筝形.人教版 八年级数学 12.2 全等三角形 针对训练 -答案一、选择题1. 【答案】C [解析] 还需添加条件∠1=∠2.理由:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠DAE. 在△ABC 和△ADE 中,⎩⎨⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).2. 【答案】C [解析] 当添加条件A 时,可用“ASA”证明△ABD ≌△ACD ;当添加条件B 时,可用“AAS”证明△ABD ≌△ACD ;当添加条件D 时,可用“SAS”证明△ABD ≌△ACD ;当添加条件C 时,不能证明△ABD ≌△ACD.3. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .4. 【答案】C [解析] 选项A 中添加AB =DE 可用“AAS”进行判定,故本选项不符合题意;选项B 中添加AC =DF 可用“AAS”进行判定,故本选项不符合题意;选项C 中添加∠A =∠D 不能判定△ABC ≌△DEF ,故本选项符合题意; 选项D 中添加BF =EC 可得出BC =EF ,然后可用“ASA”进行判定,故本选项不符合题意.故选C.5. 【答案】B [解析] 要添加的条件为BC=BD 或AC=AD.理由:若添加的条件为BC=BD ,在Rt △ABC 和Rt △ABD 中,∴Rt △ABC ≌Rt △ABD (HL);若添加的条件为AC=AD ,在Rt △ABC 和Rt △ABD 中,∴Rt △ABC ≌Rt △ABD (HL).6. 【答案】C [解析] ①∵BE ⊥AC ,CF ⊥AB ,∴∠CFB =∠BEC =90°.在Rt △BCF 和Rt △CBE 中,⎩⎨⎧CF =BE ,BC =CB , ∴Rt △BCF ≌Rt △CBE(HL).②∵BE ⊥AC ,CF ⊥AB ,∴∠AFC =∠AEB =90°.在△ABE 和△ACF 中, ⎩⎨⎧∠AEB =∠AFC ,∠A =∠A ,BE =CF ,∴△ABE ≌△ACF(AAS). ③设BE 与CF 相交于点O.∵BE ⊥AC ,CF ⊥AB ,∴∠OFB =∠OEC =90°.∵△ABE ≌△ACF ,∴AB =AC ,AE =AF.∴BF =CE.在△BOF 和△COE 中,⎩⎨⎧∠OFB =∠OEC ,∠BOF =∠COE ,BF =CE ,∴△BOF ≌△COE(AAS).7. 【答案】C [解析] A .∠A =∠D ,∠ABC =∠DCB ,BC =BC ,符合“AAS”,即能推出△ABC ≌△DCB ,故本选项不符合题意;B .∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,符合“ASA”,即能推出△ABC ≌△DCB ,故本选项不符合题意;C .∠ABC =∠DCB ,AC =DB ,BC =BC ,不符合全等三角形的判定条件,即不能推出△ABC ≌△DCB ,故本选项符合题意;D .AB =DC ,∠ABC =∠DCB ,BC =CB ,符合“SAS”,即能推出△ABC ≌△DCB ,故本选项不符合题意.故选C.8. 【答案】D [解析] ∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠CED =∠AFB =90°,∠A =∠C.又∵AB =CD ,∴△CED ≌△AFB.∴AF =CE =a ,DE =BF =b ,DF =DE -EF =b -c.∴AD =AF +DF =a +b -c.故选D.9. 【答案】A[解析] 根据图中尺规作图的痕迹,可得∠DAE=∠B,故D选项正确,∴AE∥BC,故C选项正确.∴∠EAC=∠C,故B选项正确.∵∠DAE=∠B,∠EAC=∠C,而∠C与∠B的大小关系不确定,所以∠DAE 与∠EAC的大小关系不确定.故选A.10. 【答案】D[解析] 在△AFD和△AFB中,∴△AFD≌△AFB.∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°.∴∠ADF=∠ABF=∠C.∴FD∥BC.二、填空题11. 【答案】2012. 【答案】40[解析] 在△ABC和△DEC中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,∴△ABC ≌△DEC(SSS).∴∠A =∠D.又∵∠AFG =∠DFC ,∴∠AGD =∠ACD =40°.13. 【答案】60 [解析] 在△ACB 和△DCE 中,⎩⎨⎧AC =DC ,∠ACB =∠DCE ,BC =EC ,∴△ACB ≌△DCE(SAS).∴DE =AB.∵DE =60米,∴AB =60米.14. 【答案】12【解析】由作法得BD 平分ABC ∠,∵90C =︒∠,30A ∠=︒,∴60ABC ∠=︒,∴30ABD CBD ∠=∠=︒,∴DA DB =,在Rt BCD △中,2BD CD =,∴2AD CD =, ∴12BCD ABD S S =△△.故答案为:12.15. 【答案】3 [解析] ∵∠ACB =90°,∴∠ECF +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°.∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎨⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE.∵AE =AC -CE ,BC =2 cm ,EF =5 cm ,∴AE =5-2=3(cm).三、解答题16. 【答案】证明:(1)在△ABC 与△ADC 中,⎩⎨⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC(SSS).∴∠BAC =∠DAC ,即AC 平分∠BAD.(2)由(1)知∠BAE =∠DAE.在△BAE 与△DAE 中,⎩⎨⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴△BAE ≌△DAE(SAS).∴BE =DE.17. 【答案】(1)证明:如图①,过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,由题意知,OE =OF ,OB =OC ,解图①∴Rt △OEB ≌Rt △OFC ,∴∠B =∠C ,从而AB =AC.(2)证明:如图②,过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,由题意知,OE =OF.在Rt △OEB 和Rt △OFC 中,∵OE =OF ,OB =OC ,解图②∴Rt△OEB≌Rt△OFC.∴∠OBE=∠OCF,又由OB=OC知∠OBC=∠OCB,∴∠ABC=∠ACB.∴AB=AC.(3)解:不一定成立.(注:当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC,如示例图③)解图③18. 【答案】(1)在ABC △与ADC △中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩,∴ABC ADC △≌△,∴BAC DAC ∠=∠,即AC 平分BAD ∠.(2)由(1)BAE DAE ∠=∠,在BAE △与DAE △中,得BA DA BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴BAE DAE △≌△,∴BE DE =.19. 【答案】证明:∵AE =BF ,∴AE +EF =BF +EF ,即AF =BE.∵AC ∥BD ,∴∠CAF =∠DBE.在△ACF 和△BDE 中,⎩⎨⎧AC =BD ,∠CAF =∠DBE ,AF =BE ,∴△ACF ≌△BDE(SAS).∴CF =DE.20. 【答案】解:(1)四边形ABFD 是筝形.理由:连接AF.在Rt △AFB 和Rt △AFD 中,⎩⎨⎧AF =AF ,AB =AD , ∴Rt △AFB ≌Rt △AFD(HL).∴BF =DF.又∵AB =AD ,∴四边形ABFD 是筝形.(2)答案不唯一,如AD =CD ,∠ADB =∠CDB12.3角平分线的性质一.选择题1.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =20,且BD :DC =3:2,则点D 到AB 边的距离为( )A .8B .12C .10D .152.如图已知OC 平分∠AOB ,P 是距离是OC 上一点,PH ⊥OB 于点H ,若PH =5,则点 P 到射线OA 的距离是( )A.6B.5C.4D.33.如图,四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=8,BD=13,BC=12,则四边形ABCD的面积为()A.30B.40C.50D.604.如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE =3,则△ABE的面积等于()A.15B.12C.10D.145.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为()A.1B.2C.3D.46.如图,四边形ABCD中,∠A=90°,AD=2,连接BD,BD⊥CD,垂足是D且∠ADB =∠C,点P是边BC上的一动点,则DP的最小值是()A.1B.1.5C.2D.2.57.如图,AD∥BC,BG,AG分别平分∠ABC与∠BAD,GH⊥AB,GH=5,则AD与BC 之间的距离是()A.5B.8C.10D.158.下列关于几何画图的语句,正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b9.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=5,AB=12,则△ABD的面积是()A.15B.30C.45D.6010.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM ∥AB ,BE 和MN 分别平分∠ABC 和∠EMC .下列结论中不正确的是( )A .∠MBE =∠MEBB .MN ∥BEC .S △BEM =S △BEND .∠MBN =∠MNB二.填空题 11.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =5cm ,BD :DC =3:2,则点D 到AB 的距离为 .12.如图点D 是△ABC 的两外角平分线的交点,下列说法:①AD =CD ;②AB =AC ;③D 到AB 、BC 所在直线的距离相等;@点D 在∠B 的平分线上;其中正确的说法的序号是 .13.已知如图,OP平分∠MON,P A⊥ON于点A,P A=4,点Q是射线OM上的一个动点,则线段PQ的最小值是.14.在正方形网格中,∠AOB的位置如图所示,则点P、Q、M、N中在∠AOB的平分线上是点.15.如图,已知△ABC的周长是16.MB和MC分别平分∠ABC和∠ACB.过点M作BC 的垂线交BC于点D,且MD=4.则△ABC的面积是.三.解答题16.如图,直线AC分别与射线DE交于A,与射线BF交于C,连接AB,连接DC,∠1+∠2=180°,AD=BC.若DC平分∠ACF,证明AB平分∠EAC.17.如图,三角形ABC中,点D在AC上.(1)请你过点D做DE平行BC,交AB于E.如果点E在∠C的平分线上,∠C=44°,那么∠DEC=.18.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.19.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.参考答案与试题解析一.选择题1.【解答】解:∵BC=20,BD:DC=3:2,∴CD=8,∵∠C=90°AD平分∠BAC∴D到边AB的距离=CD=8.故选:A.2.【解答】解:作PQ⊥OA于Q,如图,∵OC为∠AOB的平分线,PH⊥OB,PQ⊥OA,∴PQ=PH=5,即点P到射线OA的距离为5.故选:B.3.【解答】解:过D 作DE ⊥AB ,交BA 的延长线于E ,则∠E =∠C =90°,∵∠BCD =90°,BD 平分∠ABC ,∴DE =DC ,在Rt △BCD 中,由勾股定理得:CD ===5, ∴DE =5,在Rt △BED 中,由勾股定理得:BE ===12, ∵AB =8,∴AE =BE ﹣AB =12﹣8=4,∴四边形ABCD 的面积S =S △BCD +S △BED ﹣S △AED=+﹣ =+﹣=50,故选:C . 4.【解答】解:过点E 作EF ⊥AB 于点F ,如图:∵BD是AC边上的高,∴ED⊥AC,又∵AE平分∠CAB,DE=3,∴EF=3,∵AB=8,∴△ABE的面积为:8×3÷2=12.故选:B.5.【解答】解:过O作OD⊥AC于D,OE⊥AB于E,∵AO平分∠CAB,OB平分∠ABC,∴OD=OE=OM,∵在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,=ACBC=×ABOE+ACOD+BCOM,∴S△ABC∴=+OM+,∴OM=2,故选:B.6.【解答】解:过点D作DE⊥BC于E,则DE即为DP的最小值,∵∠BAD=∠BDC=90°,∠ADB=∠C,∴∠ABD=∠CBD,∵∠ABD=∠CBD,DA⊥AB,DE⊥BC,∴DE=AD=2,故选:C.7.【解答】解:作GE⊥AD于E,EG的延长线交BC于F,如图,则∠DEG=90°,∵AD∥BC,∴∠BFG=∠DEG=90°,∴EF⊥BC,∵BG,AG分别平分∠ABC与∠BAD,∴GE=GH=5,GF=GH=5,∴EF=5+5=10,即AD与BC之间的距离为10.故选:C.8.【解答】解:A.延长射线AB到点C,使BC=2AB,因为射线不能延长,所以A选项错误,不符合题意;B.因为直线不能反向延长,所以B选项错误,不符合题意;C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角.C选项正确,符号题意;D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b或=a﹣b.所以D选项错误,不符合题意.故选:C.9.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,∴DC⊥AC,∵DE⊥AB,DC⊥AC,∴DE=DC=5,∴△ABD的面积=×AB×DE=×12×5=30,故选:B.10.【解答】解:∵EM∥AB,BE和MN分别平分∠ABC和∠EMC,∴∠MEB=∠ABE,∠ABC=∠EMC,∠ABE=∠MBE,∠EMN=∠NMC,∴∠MEB=∠MBE(故A正确),∠EBM=∠NMC,∴MN∥BE(故B正确),∴MN和BE之间的距离处处相等,∴S△BEM =S△BEN(故C正确),∵∠MNB=∠EBN,而∠EBN和∠MBN的关系不知,∴∠MBN和∠MNB的关系无法确定,故D错误,故选:D.二.填空题11.【解答】解:作DE⊥AB于E,如图,∵BC=5cm,BD:DC=3:2,∴BD=3,CD=2,∵AD是△ABC的角平分线,∴DC=DE=2,即点D到AB的距离为2.故答案为2.12.【解答】解:AD与CD不能确定相等,AB与AC也不能确定相等,所以①②错误;作DE⊥BA于E,DF⊥BC于F,DH⊥AC于H,如图,∵AD平分∠EAC,∴DE=DH,同理可得DH=DF,∴DE=DF,即D到AB、BC所在直线的距离相等,所以③正确;∴点D在∠B的平分线上;所以④正确.故答案为③④.13.【解答】解:当PQ⊥OM时,PQ有最小值.∵OP平分∠MON,P A⊥ON于点A,P A=4,∴PQ =P A =4,故答案为4.14.【解答】解:点P 、Q 、M 、N 中在∠AOB 的平分线上是Q 点.故答案为Q .15.【解答】解:连接AM ,过M 作ME 于E ,MF ⊥AC 于F , ∵MD ⊥BC ,MB 和MC 分别平分∠ABC 和∠ACB ,MD =4,∴ME =MD =4,MF =MD =4,∵△ABC 的周长是16,∴AB +BC +AC =16,∴△ABC 的面积S =S △ABM +S △BCM +S △ACM=+==2AB +2BC +2AC=2(AB +BC +AC )=2×16=32,故答案为:32.三.解答题16.【解答】证明:∠1+∠2=180°,∠1+∠ACB=180°,∴∠2=∠ACB,∴AD∥BC,又∵AD=BC,∴四边形ABCD为平行四边形,∴DC∥AB,∴∠DCF=∠B,∠DCA=∠BAC,∵DC平分∠ACF,∴∠DCF=∠DCA,∴∠B=∠BAC,∵AD∥BC,∴∠EAB=∠B,∴∠BAC=∠EAB,即AB平分∠EAC.17.【解答】解:(1)如图1所示:作∠ADE=∠C交AB于E,DE即为所求;(2)如图2所示:∵DE∥BC,∴∠DEC=∠BCE,∵EC平分∠ACB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DC=DE,∴△DEC是等腰三角形,∴∠DEC=∠C=22°;故答案为:22°.18.【解答】解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;。